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Abstract. Let R be a prime ring of char R 6= 2 with a nonzero derivation d and let U be its
noncentral Lie ideal. If for some fixed integers n1 > 0, n2 > 0, n3 > 0, (u

n1 [d(u), u]un2)n3 ∈

Z(R) for all u ∈ U , then R satisfies S4, the standard identity in four variables.
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1. Introduction

Throughout this paper R always denotes a prime ring with center Z(R), extended

centroid C and two-sided Martindale quotient ring Q. For x, y ∈ R, set [x, y]1 =

[x, y] = xy − yx and [x, y]2 = [[x, y], y].

A well-known result proved by Posner [11] states that for a derivation d of R,

if [d(x), x] ∈ Z(R) for all x ∈ R then either d = 0 or R is commutative. In [9]

Lanski generalized the result of Posner to a Lie ideal. Lanski proved that if U is a

noncommutative Lie ideal of R and d 6= 0 is a derivation of R such that [d(x), x] ∈

Z(R) for all x ∈ U , then either R is commutative, or char R = 2 and R satisfies

S4, the standard identity in four variables. Carini and Filippis [2] studied the case

[d(u), u]n ∈ Z(R) for all u in a noncentral Lie ideal of R. They showed that if U is

a noncentral Lie ideal of R with char R 6= 2 and d a nonzero derivation of R such

that [d(u), u]n ∈ Z(R) for all u ∈ U then R satisfies S4. Here we shall prove that the

same conclusion of Carini and Filippis holds if (un1 [d(u), u]un2)n3 ∈ Z(R) for all u

in a noncentral Lie ideal of R with char R 6= 2.
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2. Main results

First we prove some lemmas.

Lemma 2.1. Let R = Mk(F ) be the set of all k × k matrices over a field F of

characteristic 6= 2. If for some b ∈ R, ([b, [x, y]]2[x, y]n)t = 0 for all x, y ∈ R, where

t (> 0), n (> 1) are fixed integers and t is even, then b ∈ F.Ik.

P r o o f. Let b = (bij)k×k. We choose x = e12, y = e21 and then compute

[x, y] = e11 − e22,

[b, [x, y]]2 =















0 4b12 b13 . . . b1k

4b21 0 b23 . . . b2k

b31 b32 0 . . . 0
...

...
...

...

bk1 bk2 0 . . . 0















,

[b, [x, y]]2[x, y]n =















0 (−1)n4b12 0 . . . 0

4b21 0 0 . . . 0

b31 (−1)nb32 0 . . . 0
...

...
...

...

bk1 (−1)nbk2 0 . . . 0















,

e11([b, [x, y]]2[x, y]n)t = (−1)tn/24tb
t/2
12 b

t/2
21 e11.

Now the assumption e11([b, [x, y]]2[x, y]n)t = 0 implies that one of b12 and b21 must

be zero. So without loss of generality we assume that b12 = 0. Now choose x =

e11, y = e12 − e21 and then compute

[x, y]n =

{

I2, if n is even,

e12 + e21, if n is odd,

[b, [x, y]]2 =















2(b11 − b22) −2b21 b13 . . . b1k

2b21 −2(b11 − b22) b23 . . . b2k

b31 b32 0 . . . 0
...

...
...

...

bk1 bk2 0 . . . 0















.

If n is even then

[b, [x, y]]2[x, y]n =















2(b11 − b22) −2b21 0 . . . 0

2b21 −2(b11 − b22) 0 . . . 0

b31 b32 0 . . . 0
...

...
...

...

bk1 bk2 0 . . . 0
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and e11([b, [x, y]]2[x, y]n) = 2(b11 − b22)e11 − 2b21e12. If n is odd then

[b, [x, y]]2[x, y]n =















−2b21 2(b11 − b22) 0 . . . 0

−2(b11 − b22) 2b21 0 . . . 0

b32 b31 0 . . . 0
...

...
...

...

bk2 bk1 0 . . . 0















and e11([b, [x, y]]2[x, y]n) = −2b21e11 + 2(b11 − b22)e12. Thus whether n is even or

odd both cases give e11([b, [x, y]]2[x, y]n)t = (−)tn/22t{(b11 − b22)
2 − b2

21}
t/2e11. The

assumption e11([b, [x, y]]2[x, y]n)t = 0 implies (b11 − b22)
2 − b2

21 = 0.

On the other hand, by choosing x = e11, y = e12 + e21 we obtain in a similar

manner as earlier that (b11 − b22)
2 + b2

21 = 0. The addition and subtraction of

(b11 − b22)
2 − b2

21 = 0 and (b11 − b22)
2 + b2

21 = 0 implies b21 = 0 and b11 = b22.

In this way we can prove for any i 6= j that bij = bji = 0 and bii = bjj . Thus

b ∈ F.Ik. �

Lemma 2.2. Let R = Mk(F ) be the set of all k × k matrices over a field F of

characteristic 6= 2 and k > 3. If for some b ∈ R, ([x, y]m[b, [x, y]]2[x, y]n)t ∈ Z(R) for

all x, y ∈ R, where t(> 0), n(> 0), m(> 0) are fixed integers, then b ∈ F.Ik.

P r o o f. Let b = (bij)k×k. We choose x = e12, y = e21 and then compute

[x, y] = e11 − e22,

([x, y]m[b, [x, y]]2[x, y]n)t =

{

αt/2βt/2I2, if t is even,

α(t−1)/2β(t−1)/2(αe12 + βe21), if t is odd

where α = (−1)n4b12 and β = (−1)m4b21. Since k > 3, ([x, y]m[b, [x, y]]2[x, y]n)t ∈

Z(R) implies that at least one of α and β must be zero, i.e., b12 or b21 is equal to

zero.

Let b12 = 0. Now choose x = e11, y = e12 − e21 and then compute

[x, y]n =

{

I2, if n is even,

e12 + e21, if n is odd.

If both n and m are odd integers then

([x, y]m[b, [x, y]]2[x, y]n)t =











λt/2I2, if t is even,

λ(t−1)/2{−2(b11 − b22)e11 + 2b21e12

−2b21e21 + 2(b11 − b22)e22}, if t is odd
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where λ = 4{(b11 − b22)
2 − b2

21}. Since k > 3, the assumption ([x, y]m[b, [x, y]]2

[x, y]n)t ∈ Z(R) implies that λ = 0 for t even and −2(b11 − b22)λ
(t−1)/2 = 0,

2b21λ
(t−1)/2 = 0 for t odd, which gives λ(t+1)/2 = 0, i.e., λ = 0. If n is odd and m is

even then

([x, y]m[b, [x, y]]2[x, y]n)t =











(−λ)t/2I2, if t is even,

(−λ)(t−1)/2{−2b21e11 + 2(b11 − b22)e12

−2(b11 − b22)e21 + 2b21e22}, if t is odd

is in the center of R, again implying λ = 0. Similarly, for any choice of n and m,

even or odd, we get λ = 0.

By the same process as above, we obtain by choosing x = e11, y = e12 + e21 that

µ = 4{(b11 − b22)
2 + b2

21} = 0. Hence 0 = λ ± µ leads to b21 = 0. Thus for any

i 6= j, bij = bji = 0, i.e., b is diagonal. So let b =
k
∑

i=1

biieii. For any F -automorphism

θ of R, bθ enjoy the same property as b does, namely, ([x, y]m[bθ, [x, y]]2[x, y]n)t ∈

Z(R) for all x, y ∈ R. Hence, bθ must also be diagonal. For each j 6= 1 we have

(1 + e1j)b(1 − e1j) =
k
∑

i=1

biieii + (bjj − b11)e1j diagonal. Therefore, bjj = b11 and so

b ∈ F.Ik. �

We are now in a position to prove our first theorem.

Theorem 2.3. Let R be a prime ring of char R 6= 2, d a derivation of R and

U a noncentral Lie ideal of R. If for some fixed integers n1 > 0, n2 > 0, n3 > 0,

(un1 [d(u), u]un2)n3 = 0 for all u ∈ U , then d = 0.

P r o o f. By virtue of our assumption, we can write ([d(u), u]un1+n2)n3+1 = 0.

Letm = n1+n2 and choose an even integer t > n3+1. Then we have ([d(u), u]um)t =

0 for all u ∈ U . For m = 0, the result holds true by [2, Lemma 1.1]. So we are to

deal with the case m > 1.

Now since char R 6= 2 and U is noncentral, by [1, Lemma 1] [U, U ] 6= 0 and

0 6= [I, R] ⊆ U , where I is the ideal of R generated by [U, U ]. So [I, I] ⊆ U . Hence

without loss of generality we can assume U = [I, I]. By our assumption we have

(1) ([d[x, y], [x, y]][x, y]m)t = 0

for all x, y ∈ I, which implies

([[d(x), y] + [x, d(y)], [x, y]][x, y]m)t = 0

for all x, y ∈ I.
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If d is not Q-inner then by Kharchenko’s theorem [7],

([[u, y] + [x, v], [x, y]][x, y]m)t = 0

for all x, y, u, v ∈ I. By Chuang [3, Theorem 2], this generalized polynomial identity

(GPI) is also satisfied by Q and hence by R as well. In this case it is a polynomial

identity and hence there exists a field F such that R ⊆ Mk(F ) and R and Mk(F )

satisfy the same polynomial identities [5, Theorem 2, p. 57 and Lemma 1, p. 89].

Suppose k > 2. If we choose x = e12, y = e21, u = e22, v = e11, then we get the

contradiction

0 = ([[u, y] + [x, v], [x, y]][x, y]m)t = 2t(e21 + (−1)me12)
t 6= 0.

Therefore, k = 1 and so R is commutative, contradicting the fact that U is noncen-

tral.

Now if d is Q-inner, i.e., d(x) = [b, x] for all x ∈ R and for some b ∈ Q, then (1)

becomes

([[b, [x, y]]2[x, y]m)t = 0

for all x, y ∈ I. By Chuang [3, Theorem 2], this GPI is also satisfied by Q, i.e.,

(2) f(x, y) = ([[b, [x, y]]2[x, y]m)t = 0

for all x, y ∈ Q.

In the case the center C of Q is infinite, we have f(x, y) = 0 for all x, y ∈ Q⊗C C,

where C is the algebraic closure of C. Since both Q and Q ⊗C C are prime and

centrally closed [4, Theorem 2.5 and 3.5], we may replace R by Q orQ⊗CC according

to whether C is finite or infinite. Thus we may assume that R is centrally closed

over C (i.e., RC = R) which is either finite or algebraically closed, and f(x, y) = 0

for all x, y ∈ R.

Now suppose that d 6= 0. Then b /∈ C and so the GPI ([[b, [x, y]]2[x, y]m)t is

nontrivial in R. By Martindale’s theorem [10], R is then a primitive ring having

nonzero socle H with C as the associated division ring. Hence by Jacobson’s theorem

[6, p. 75] R is isomorphic to a dense ring of linear transformations of some vector

space V over C, and H consists of the linear transformations in R of finite rank.

Assume first that V is finite dimensional over C. Then the density of R on V

implies that R ∼= Mk(C) where k = dimCV . By Lemma 2.1 we have b ∈ Z(R)

implying d = 0, a contradiction. Assume next that V is infinite dimensional over

C. Then for any e = e2 ∈ H we have e Re ∼= Mk(C) with k =dimCV e. Since

b /∈ C, b does not centralize the nonzero ideal H of R, so bh0 6= h0b for some
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h0 ∈ H . By Litoff’s theorem [9, p. 280] there exists an idempotent e ∈ H such that

h0, h0b, bh0 are all in e Re. We have e Re ∼= Mk(C) where k =dimCV e. Since R

satisfies the GPI e([[b, [exe, eye]]2[exe, eye]m)te = 0, the subring e Re satisfies the

GPI ([[ebe, [x, y]]2[x, y]m)t = 0. Then by Lemma 2.1, ebe ∈ Z(e Re). Thus

bh0 = ebh0 = ebeh0 = h0ebe = h0be = h0b,

a contradiction. Thus the proof of the theorem is complete. �

Theorem 2.4. Let R be a prime ring of char R 6= 2, d a nonzero derivation of R

and U a noncentral Lie ideal of R. If for some fixed integers n1 > 0, n2 > 0, n3 > 0,

(un1 [d(u), u]un2)n3 ∈ Z(R) for all u ∈ U , then R satisfies S4, the standard identity

in four variables.

P r o o f. Since char R 6= 2 and U is noncentral, by [1, Lemma 1] there exists

an ideal I of R such that 0 6= [I, R] ⊆ U and [U, U ] 6= 0. Let J be any nonzero

two-sided ideal of R. Then it is easy to check that V = [I, J2] ⊆ U is a noncentral

Lie ideal of R. If for each v ∈ V , (vn1 [d(v), v]vn2 )n3 = 0, then by Theorem 2.3 d = 0,

which contradicts our assumption. Hence for some v ∈ V , 0 6= (vn1 [d(v), v]vn2 )n3 ∈

J ∩ Z(R), since d(V ) ⊆ J . Thus J ∩ Z(R) 6= 0. Now let K be a nonzero two-sided

ideal of RZ , the ring of central quotients of R. Since K ∩ R is a nonzero two-sided

ideal of R, (K ∩ R) ∩ Z(R) 6= 0. Therefore, K contains an invertible element in RZ

and so RZ is a simple ring with identity 1.

Moreover, without loss of generality, we may assume that U = [I, I]. Thus I

satisfies the generalized differential identity

(3) [([x1, x2]
n1 [d[x1, x2], [x1, x2]][x1, x2]

n2)n3 , x3].

If d is not Q-inner then by Kharchenko’s theorem [7],

(4) [([x1, x2]
n1 [[y1, x2] + [x1, y2], [x1, x2]][x1, x2]

n2)n3 , x3] = 0

for all x1, x2, x3, y1, y2 ∈ I. By Chuang [3], this GPI of (4) is also satisfied by Q and

hence by R as well. By localizing R at Z(R), we obtain that [([x1, x2]
n1 [[y1, x2] +

[x1, y2], [x1, x2]][x1, x2]
n2)n3 , x3] is also an identity of RZ . Since R and RZ satisfy

the same polynomial identities, in order to prove that R satisfies S4, we may assume

that R is a simple ring with 1 and [R, R] ⊆ U . Thus R satisfies the identity (4).

Now putting y1 = [b, x1] = δ(x1) and y2 = [b, x2] = δ(x2) for some b /∈ Z(R), where

δ is an inner derivation induced by some b ∈ R, we obtain that R satisfies

[([x1, x2]
n1 [δ[x1, x2], [x1, x2]][x1, x2]

n2)n3 , x3] = 0.
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Thus by Martindale’s theorem [10], R is a primitive ring with a minimal right ideal,

whose commuting ring D is a division ring which is finite dimensional over Z(R).

However, since R is simple with 1, R must be Artinian. Hence R = Dk′ , the ring of

k′ × k′ matrices over D, for some k′ > 1. Again, by [8, Lemma 2], it follows that

there exists a field F such that R ⊆ Mk(F ), the ring of k × k matrices over the field

F , and Mk(F ) satisfies

[([x1, x2]
n1 [δ[x1, x2], [x1, x2]][x1, x2]

n2)n3 , x3] = 0.

If k > 3, then by Lemma 2.2 we have b ∈ Z(R), a contradiction. Thus k = 2, that

is, R satisfies S4. �

Similarly, we can draw the same conclusion in the case d is a Q-inner derivation

induced by some b ∈ Q.
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