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Abstract. In the present paper we introduce the notion of an ideal of a partial monounary
algebra. Further, for an ideal (I, fI) of a partial monounary algebra (A, fA) we define the
quotient partial monounary algebra (A, fA)/(I, fI). Let (X, fX), (Y, fY ) be partial mo-
nounary algebras. We describe all partial monounary algebras (P, fP ) such that (X, fX ) is
an ideal of (P, fP ) and (P, fP )/(X, fX ) is isomorphic to (Y, fY ).
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0. Introduction

In the present paper we introduce the notion of an ideal of a partial monounary

algebra. Further, for an ideal (I, fI) of a partial monounary algebra (A, fA) we define

the quotient partial monounary algebra (A, fA)/(I, fI).

The aim of the paper is as follows. Let (X, fX), (Y, fY ) be partial monounary

algebras. Find all partial monounary algebras (P, fP ) such that (X, fX) is an ideal

of (P, fP ) and (P, fP )/(X, fX) is isomorphic to (Y, fY ). In particular, we con-

sider the question under which assumptions on (X, fX), (Y, fY ) such a (P, fP ) ex-

ists. If for given (X, fX), (Y, fY ) such a (P, fP ) exists, then we describe construc-

tively all (P, fP ) with this property; (P, fP ) is called an ideal extension of (Y, fY )

by (X, fX).

This paper is a continuation of [3] where subalgebra extensions of partial mo-

nounary algebras were dealt with; the investigation was motivated by extension

problems for various structures, cf., e.g., the extension problem for groups: Given

This work was supported by the Slovak VEGA Grant No. 1/3003/06 and by the Science
and Technology Assistance Agency under the contract No. APVT-20-004104.
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two groups H and K, construct all groups G which have a normal subgroup N such

that N is isomorphic to H and the quotient G/N of G by N is isomorphic to K.

G is the well known Schreier’s extension of H by K. Following the extension of

groups, the ideal extension of semigroups has been considered by A.H. Clifford [1].

Related investigations dealing with extensions by ideals were performed for lattice

ordered groups (in connection with the product of torsion classes, cf. Martinez [7]),

for ordered and totally ordered semigroups (Kehayopulu, Tsingelis [6], Hulin [2]) and

for lattices (Kehayopulu, Kiriakuli [5]).

1. Preliminaries

Monounary and partial monounary algebras play a significant role in the study of

algebraic structures (cf., e.g., Jónsson [4], M. Novotný [8]).

A partial monounary algebra is a pair (A, fA), where A is a nonempty set and fA

is a partial unary operation on A. If dom fA = A, then (A, fA) is called complete; if

dom fA 6= A, then (A, fA) is said to be incomplete. The class of all partial monounary

algebras will be denoted by U .

A partial monounary algebra (A, fA) is said to be trivial if |A| = 1.

We will denote by N the set of all positive integers and if n ∈ N, then we putNn = {0, 1, . . . , n}. Let (A, fA) ∈ U , x, y ∈ A. Put f0
A(x) = x and f−1

A (x) = {z ∈

dom fA : fA(z) = x}. If n ∈ N, fn−1
A (x) is defined and fn−1

A (x) ∈ dom fA, then we

put fn
A(x) = fA(fn−1

A (x)). Next we put x ∼ y if there are m,n ∈ N ∪ {0} such that

fn
A(x), fm

A (y) are defined and fn
A(x) = fm

A (y). Then ∼ is an equivalence relation

on the set A and the elements of A/ ∼ are called connected components of (A, fA).

Further, (A, fA) is said to be connected if it has only one connected component.

An element c ∈ A is called cyclic if fk
A(c) = c for some k ∈ N. The set of all cyclic

elements of a connected component of (A, fA) is called a cycle of (A, fA). An element

c ∈ A is called a top of (A, fA) if (A, fA) is connected and either c /∈ dom fA or {c} is

a cycle.

Let (A, fA), (B, fB) ∈ U . Let B ⊆ A, dom fB ⊆ dom fA and if x ∈ B ∩ dom fA

then x ∈ dom fB, fB(x) = fA(x). Then (B, fB) is called a subalgebra of (A, fA).

Let (A, fA) ∈ U , ∅ 6= X ⊆ A. We will denote by fA ↾ X the partial operation

on X defined as follows: dom(fA ↾ X) = {x ∈ X ∩ dom fA : fA(x) ∈ X} and if

x ∈ dom(fA ↾ X) then (fA ↾ X)(x) = fA(x). The partial algebra (X, fA ↾ X) is

called the relative subalgebra of (A, fA) with the support X .

Let (A, fA) ∈ U . If x, y ∈ A, then we set x 6 y if fk
A(x) = y for some k ∈ N∪{0}.

Notice that the relation 6 is a quasi-order on the set A. For a quasiordered set (A,6)

and an element a ∈ A we put (a〉 = {x ∈ A : x 6 a}, 〈a) = {x ∈ A : a 6 x}. The

notion of an ideal of a lattice is well known. Let us modify the definition for lattices
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to the following definition for quasi-ordered sets: Let (Q,6) be a quasi-ordered set,

∅ 6= X ⊆ Q. Then (X,6) is called an ideal in (Q,6) if the following conditions are

satisfied:

(1) if a ∈ X , b 6 a, then b ∈ X ,

(2) if a, b ∈ X and c ∈ Q is a minimal upper bound of {a, b}, then c ∈ X .

1.1 Definition. Let (A, fA) ∈ U , ∅ 6= X ⊆ A. If (X,6) is an ideal of (A,6),

then the relative subalgebra (X, fA ↾ X) of (A, fA) with the support X is called an

ideal of (A, fA).

Clearly, (A, fA) is an ideal of (A, fA); it will be called improper. If (X, fX) is an

ideal of (A, fA) such that X 6= A, it will be said to be proper.

Let (A, fA) ∈ U . An equivalence relation θ on A is said to be a congruence

of (A, fA) if {x, y} ⊆ dom fA, (x, y) ∈ θ implies (fA(x), fA(y)) ∈ θ. For x ∈ A,

the block (equivalence class) of θ containing x is denoted by [x]θ or simply [x]. The

quotient algebra (A, fA)/θ = (A/θ, fA/θ) is such that dom fA/θ = {[x] ∈ A/θ : [x] ⊆

dom fA} and if [x] ∈ dom fA/θ, then fA/θ([x]) = [fA(x)].

1.2 Notation. Let (A, fA) ∈ U , ∅ 6= X ⊆ A. We denote by θX the smallest

congruence of (A, fA) such that if x, y ∈ X belong to the same connected component

of (A, fA), then x, y belong to the same equivalence class of the congruence θX .

Furthermore, we denote by G(X) the support of the subalgebra generated by the

set X .

1.3 Lemma. Let (A, fA) be a connected monounary algebra, ∅ 6= X ⊆ A a set

such that there exists x0 ∈ X with fA(x0) ∈ X . Then A/θX = {G(X)} ∪ {{x} : x ∈

A−G(X)}.

P r o o f. (1) Consider the system of sets {G(X)} ∪ {{x} : x ∈ A − G(X)}. It

is easy to see that this is a system of blocks of a congruence ψ on (A, fA) and that

X is a subset of the block G(X). Thus θX ⊆ ψ.

(2) Clearly, X ⊆ [x0]θX
. Suppose y ∈ [x0]θX

. Then (x0, y) ∈ θX . If fA(y) exists,

we obtain (fA(x0), fA(y)) ∈ θX , fA(y) = [x0]θX
because fA(x0) ∈ [x0]θX

. Hence

[x0]θX
is the support of a subalgebra of (A, fA). It follows that G(X) ⊆ [x0]θX

,

hence the block G(X) of ψ is a subset of the block [x0]θX
of θX . Thus ψ ⊆ θX . �

1.4 Notation. Let (A, fA) ∈ U and let (X, fX) be an ideal of (A, fA). By the

quotient partial monounary algebra (A, fA)/(X, fX) = (A/X, fA/X) we understand

the partial algebra (A, fA)/θX .

1.5 Remark. Let (A, fA) be a connected partial monounary algebra, (X, fX) its

improper ideal. Then the quotient partial algebra (A, fA)/(X, fX) is trivial.
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Let (A, fA) be a connected partial monounary algebra and c ∈ A. Then c will be

said to be inconvenient if it is either a top or a cyclic element. An element of A is

called convenient if it is not inconvenient. A convenient element a ∈ A will be said

to be very convenient if f−1(a) 6= ∅.

1.6 Lemma. Let (A, fA) be a connected partial monounary algebra, (X, fX) its

proper ideal. Then there exists a convenient element a ∈ A such that X = (a〉.

P r o o f. Let c ∈ X . If fn
A(c) ∈ X for any n ∈ N ∪ {0}, then, clearly, A =

X , which is a contradiction. Thus, there exists the least n ∈ N ∪ {0} such that

fn
A(c) ∈ X and either fn+1

A (c) does not exist or fn+1
A (c) 6∈ X . Put a = fn

A(c). If

fn+1
A (c) = fA(a) does not exist, then a is the top of (A, fA) and A = X , which is

a contradiction. Hence, the only possibility is fA(a) = fn+1
A (c) 6∈ X , which entails

that a is a convenient element of (A, fA).

Since a ∈ X and X is an ideal of (A, fA), we obtain (a〉 ⊆ X . Suppose x ∈ X .

There exist m ∈ N ∪ {0}, k ∈ N ∪ {0} such that fk
A(a) = fm

A (x) where k has the

least possible value. Then fk
A(a) is a minimal upper bound of {a, x}, which yields

fk
A(a) ∈ X . This implies k = 0 and, therefore, x 6 a. Thus, X ⊆ (a〉. �

1.7 Lemma. If (A, fA) is a connected partial monounary algebra and a ∈ A a

convenient element, then A− (a〉 is the support of a subalgebra of (A, fA).

P r o o f. Indeed, if x ∈ A and fA(x) ∈ (a〉, then x ∈ (a〉. Thus, x ∈ A − (a〉

implies fA(x) ∈ A− (a〉 if fA(x) exists. Hence, A− (a〉 is the support of a subalgebra

of (A, fA). �

1.8 Lemma. Let (A, fA) be a connected partial monounary algebra, a ∈ A a

convenient element. Then (a〉 ∪ 〈fA(a)) is the support of the subalgebra of (A, fA)

generated by the set (a〉.

P r o o f. (1) We prove that the set (a〉 ∪ 〈fA(a)) is the support of a subalgebra

of (A, fA). Suppose x ∈ (a〉 ∪ 〈fA(a)). Then either x 6 a or fA(a) 6 x.

In the former case there exists n ∈ N ∪ {0} such that fn
A(x) = a. If n = 0, we

obtain x = a, fA(x) = fA(a) ∈ 〈fA(a)). The case n > 0 entails fn−1
A (fA(x)) = a,

hence fA(x) ∈ (a〉.

If fA(a) 6 x and fA(x) exists, we obtain fA(a) 6 fA(x) and, therefore, fA(x) ∈

〈fA(a)).

Hence, (a〉 ∪ 〈fA(a)) is the support of a subalgebra of (A, fA).

(2) Let Y be the support of a subalgebra of (A, fA) such that (a〉 ⊆ Y . If x ∈

〈fA(a)), then there exists n ∈ N ∪ {0} such that fn
A(fA(a)) = x, which yields x =

fn+1
A (a) ∈ Y because a ∈ Y . It follows that (a〉∪〈fA(a)) ⊆ Y and, hence, (a〉∪〈fA(a))

is the support of the subalgebra generated by the set (a〉. �
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Let (A, fA) be a connected partial monounary algebra, a ∈ A a convenient element.

Put X = (a〉, Y = 〈fA(a)), Z = X ∪ Y . Then the sets A−X , Y , Z are supports of

subalgebras of (A, fA) by 1.7, 1.8.

1.9 Proposition. Let (A, fA) be a connected partial monounary algebra, a ∈ A

a convenient element. Put X = (a〉, Y = 〈fA(a)), Z = X ∪ Y . Then the factor

partial algebras (A, fA)/(Z, fZ) and (A−X, fA−X)/(Y, fY ) are isomorphic.

P r o o f. The trivial blocks of the factor partial algebra (A, fA)/(Z, fZ) are

formed by the elements of the set A−Z, the trivial blocks of (A−X, fA−X)/(Y, fY )

are formed by the elements of the set A−X − Y = A− Z. Hence the trivial blocks

in the two factor partial algebras are the same.

It follows that trivial blocks with trivial values of the operation are the same in

the two factor partial algebras and the values of operations coincide.

If x ∈ A − Z is such that fA(x) ∈ Z, then fA(x) ∈ Y . Indeed, if fA(x) ∈ Z,

fA(x) 6∈ Y is satisfied, then x 6 fA(x) ∈ X = (a〉 and, hence, x ∈ X ⊆ Z, which is

a contradiction.

Thus the trivial blocks with nontrivial values of the operation are the same in

the two factor algebras and the value {Y } in the latter factor algebra corresponds

to the value {Z} of the former factor algebra. Since the partial algebras (Y, fY ),

(Z, fZ) are either both complete or both incomplete, the two factor partial algebras

are isomorphic in view of 1.3. �

Let (A, fA) be a complete connected monounary algebra having a cycle. If a ∈ A

is arbitrary, we denote by p(a) the least number n ∈ N∪{0} such that fn
A(a) is cyclic.

Let (A, fA) be an incomplete connected partial monounary algebra, c its top. For

an arbitrary a ∈ A, we denote by r(a) the least number n ∈ N ∪ {0} such that

fn
A(a) = c.

1.10 Lemma. Let (A, fA) be a connected partial monounary algebra, a ∈ A a

convenient element. The following assertions hold:

(i) if (A, fA) is complete and has no cyclic elements, then 〈fA(a)) = {fn
A(a) : n ∈N};

(ii) if (A, fA) is complete and has a cycle with q > 1 elements, then 〈fA(a)) =

{fn
A(a) : 1 6 n 6 p(a) + q − 1};

(iii) if (A, fA) is incomplete, then 〈fA(a)) = {fn
A(a) : 1 6 n 6 r(a)}.

The algebras appearing in this lemma will play a role in the following construction.

To simplify the formulations we introduce the following definitions.

(i) The algebra defined on the set N0 = N ∪ {0} with the operation fN0 of the

successor will be called an infinite stick.
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(ii) The algebra defined on the set Sn = {1, 2, . . . , n} with n ∈ N such that there
exists k ∈ Sn and the operation fSn

satisfies fSn
(i) = i + 1 for 1 6 i 6 n − 1,

fSn
(n) = k will be called an (n, k)-lasso.

(iii) The algebra defined on the set Sn = {1, 2, . . . , n} with n ∈ N, n 6∈ dom fSn
and

fSn
(i) = i+ 1 for 1 6 i 6 n− 1 will be called an n-element stick.

The partial algebras defined above will be called good algebras.

Let (B, fB) be a connected partial monounary algebra, (Y, fY ) a good algebra.

Then (Y, fY ) will be said to be suitable to (B, fB) if either both (B, fB), (Y, fY ) are

complete or both (B, fB), (Y, fY ) are incomplete.

1.11 Construction. Let (B, fB), (X, fX) be connected partial monounary alge-

bras with B∩X = ∅, |B| > 1, |X | > 1. Suppose that (X, fX) is incomplete and that

(B, fB) has a top.

Choose a good algebra (Y, fY ) suitable to (B, fB).

Construct a partial algebra (C, fC) such that C ∩ X = ∅ and (C, fC)/(Y, fY ) is

isomorphic to (B, fB), using a critical mapping (see [3]).

Construct the algebra (A, fA), where A = C ∪ X , fA(x) = fC(x) for any x ∈

C ∩ dom fC , fA(x) = fX(x) for any x ∈ X ∩ dom fX , fA(a) = 1 where a is the top

of (X, fX) and 1 is the least element in Y ⊆ C.

1.11.1 Lemma. If partial algebras are as in 1.11, then (X, fX) is an ideal

of (A, fA) and (A, fA)/(X, fX) is isomorphic to (B, fB).

P r o o f. Consider (A, fA). Then X = (a〉, 〈fA(a)) = 〈1) = Y , Z = X ∪ Y is

the support of the subalgebra of (A, fA) generated by the set X (according to 1.8).

Clearly, (X, fX) is an ideal of (A, fA). Then (A, fA)/(X, fX) = (A, fA)/(Z, fZ)

by 1.3 and 1.8, (A, fA)/(Z, fZ) is isomorphic to (A−X, fA−X)/(Y, fY ) by 1.9. Fur-

ther, (A − X, fA−X)/(Y, fY ) = (C, fC)/(Y, fY ) and the last partial algebra is iso-

morphic to (B, fB). �

1.12 Proposition. Let (B, fB), (X, fX) be partial monounary algebras satisfying

the assumption of 1.11. Suppose that (P, fP ) is a connected partial monounary

algebra. The following conditions are equivalent:

(1) (X, fX) is an ideal of (P, fP ) and (P, fP )/(X, fX) ∼= (B, fB);

(2) (P, fP ) is (up to isomorphism) obtained by the construction 1.11 from the

pair (B, fB), (X, fX).

P r o o f. The implication (2) ⇒ (1) was shown in 1.11.1.

Assume that (1) is valid. Then (X, fX) is a proper ideal of (P, fP ) and by 1.6

there is a convenient element a ∈ P with X = (a〉. Then 1.10 yields that (Y, fY ) =

336



(〈fA(a)), f〈fA(a))) is, up to isomorphism, a good algebra which is suitable to (B, fB).

Denote C = P − X . Then C ∩ X = ∅. By 1.9, (C, fC)/(Y, fY ) ∼= (P, fP )/(X ∪

Y, fX∪Y ). Further, [3; 4.3] yields that (P, fP )/(X, fX) ∼= (P, fP )/(X ∪ Y, fX∪Y ).

Then by virtue of (1), (C, fC)/(Y, fY ) ∼= (B, fB), thus (C, fC) is constructed as

in 1.11. From the definition of C it follows that (P, fP ) is, up to isomorphism,

obtained by the construction 1.11 from (B, fB), (X, fX). �

1.13 Theorem. Suppose that (X, fX), (B, fB) are disjoint connected partial

monounary algebras. An ideal extension of (B, fB) by (X, fX) exists if and only if

one of the following conditions is satisfied:

(i) |X | = |B| = 1, (X, fX) ∼= (B, fB);

(ii) |X | = 1, dom fX 6= X , |B| > 1 and there is y ∈ B with f−1
B (y) = ∅;

(iii) |X | > 1, |B| = 1 and (X, fX) is complete iff (B, fB) is complete;

(iv) |X | > 1, |B| > 1, dom fX 6= X and (B, fB) contains a top.

If (i) or (iii) is valid then (A, fA) is an ideal extension of (B, fB) by (X, fX)

iff (A, fA) = (X, fX). If (ii) holds then (A, fA) is an ideal extension of (B, fB)

by (X, fX) iff (A, fA) ∼= (B, fB). If (iv) is valid then (A, fA) is an ideal extension

of (B, fB) by (X, fX) iff (A, fA) is obtained (up to isomorphism) by the construc-

tion 1.11 from the pair (B, fB), (X, fX).

P r o o f. First let |X | = 1. If dom fX = X , then for any ideal extension (A, fA)

of (Y, fY ) by (X, fX) we get (A, fA) = (X, fX) and (Y, fY ) ∼= (X, fX). If dom fX 6=

X , then for any ideal extension (A, fA) of (Y, fY ) by (X, fX), the congruence θX

is trivial, i.e. (A, fA) ∼= (Y, fY ), and (X, fX) is isomorphic to an ideal of (Y, fY ),

i.e. f−1
Y (y) = ∅ for some y ∈ Y . If dom fX 6= X , |Y | = 1, then also |A| = 1, A = X

and (Y, fY ) ∼= (X, fX).

Let |Y | = 1, |X | > 1. Then for any ideal extension (A, fA) of (Y, fY ) by (X, fX) we

have (A, fA) = (X, fX). Next, (A, fA)/(X, fX) is complete iff (X, fX) is complete.

Suppose that |X | > 1, |Y | > 1. If (A, fA)/(X, fX) ∼= (Y, fY ), then the alge-

bra (Y, fY ) contains a top. Since dom fX 6= X , the algebra (X, fX) contains a top.

Thus by 1.12 we obtain that (A, fA) is an ideal extension of (Y, fY ) by (X, fX)

iff (A, fA) is obtained (up to isomorphism) by the construction 1.11 from the

pair (Y, fY ), (X, fX). �

2. The general case

In the present section we will generalize the above results to the case when the

partial monounary algebras under consideration are not assumed to be connected.
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2.1 Notation. Let (S, fA) ∈ U and let {Aj}j∈J be the system of connected

components of (A, fA); we will express this by writing

A =
∑

j∈J

Aj , (A, fA) =
∑

j∈J

(Aj , fAj
).

2.2 Lemma. Let (A, fA) =
∑

j∈J

(Aj , fAj
) ∈ U , let (X, fX) be an ideal of (A, fA)

and let (Y, fY ) = (A, fA)/(X, fX). Then Y =
∑

j∈J

Yj , X =
∑

l∈L

Xl, L ⊆ J . Further,

(1) if j ∈ J − L, then (Yj , fYj
) ∼= (Aj , fAj

),

(2) if j ∈ L, then (Aj , fAj
) is an ideal extension of (Yj , fYj

) by (Xj , fXj
).

P r o o f. For j ∈ J we denote Xj = X ∩ Aj . Let L = {j ∈ J : Xj 6= ∅}.

Then (Xl, fA ↾ Xl) for l ∈ L is an ideal of (Al, fAl
) and (X, fX) =

∑

l∈L

(Xl, fXl
).

From the definition of θX it follows that if (x, y) ∈ θX , x 6= y, then x, y belong to

the same connected component of (A, fA). Therefore (Y, fY ) =
∑

j∈J

(Yj , fYj
). The

assertions (1) and (2) then hold in view of the definition. �

2.3 Theorem. Let (X, fX) =
∑

l∈L

(Xl, fXl
), (Y, fY ) =

∑

j∈J

(Yj , fYj
), (P, fP ) ∈ U .

The following conditions are equivalent:

(i) (P, fP ) is an ideal extension of (Y, fY ) by (X, fX);

(ii) P =
∑

j∈J

Pj and there is an injection τ : L→ J such that, for j ∈ J ,

(1) if j 6= τ(l) for each l ∈ L, then (Yj , fYj
) ∼= (Pj , fPj

),

(2) if j = τ(l), l ∈ L, then (Pj , fPj
) is an ideal extension of (Yj , fYj

)

by (Xl, fXl
).

P r o o f. Assume that (P, fP ) is an ideal extension of (Y, fY ) by (X, fX). In view

of 2.2, the number of connected components of (P, fP ) is the same as the number of

connected components of (Y, fY ), P =
∑

j∈J

Pj . Since (X, fX) is an ideal of (P, fP ),

for each l ∈ L there is a uniquely determined j ∈ J such that (Xl, fXl
) is an ideal

of (Pj , fPj
); put τ(l) = j. Then τ : L → J is an injection and (2) holds. Let j ∈ J

and suppose that τ(l) 6= j for each l ∈ L. Then (Pj , fPj
) ∼= (Yj , fYj

) by 2.2; hence

(1) is valid.

Conversely, assume that the condition (ii) is satisfied. Then (X, fX) is an ideal

of (P, fP ). Denote (D, fD) = (P, fP )/(X, fX). According to 2.2, D =
∑

j∈J

Dj .

Further, by 2.2, (X, fX) can be written in the form (X, fX) =
∑

k∈K

(Ek, fEk
), K ⊆ J

and

(3) if j ∈ J −K, then (Dj , fDj
) ∼= (Pj , fPj

),
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(4) if j ∈ K, then (Pj , fPj
) is an ideal extension of (Dj , fDj

) by (Ej , fEj
).

By the assumption, (X, fX) =
∑

l∈L

(Xl, fXl
), thus τ is a bijection L → K; we can

suppose that Xl = Eτ(l) for each l ∈ L.

Let j ∈ J −K, i.e., j 6= τ(l) for each l ∈ L. By (1) and (3) we obtain

(5) (Yj , fYj
) ∼= (Pj , fPj

) ∼= (Dj , fDj
).

Let j ∈ K, i.e., j = τ(l) for some l ∈ L. From (2) and (4) we obtain

(6) (Pj , fPj
) is an ideal extension of (Yj , fYj

) by (Xj , fXj
),

(7) (Pj , fPj
) is an ideal extension of (Dj , fDj

) by (Eτ(l), fEτ(l)
) = (Xl, fXl

).

Therefore

(8) (Xl, fXl
) is an ideal of (Pj , fPj

) and (Pj , fPj
)/(Xl, fXl

) ∼= (Yj , fYj
),

(9) (Xl, fXl
) is an ideal of (Pj , fPj

) and (Pj , fPj
)/(Xl, fXl

) ∼= (Dj , fDj
),

hence

(10) (Yj , fYj
) ∼= (Dj , fDj

).

Then (5) and (10) imply that (Y, fY ) ∼= (D, fD) and that (P, fP ) is an ideal extension

of (Y, fY ) by (X, fX). �

2.4 Proposition. Let (X, fX) =
∑

l∈L

(Xl, fXl
), (Y, fY ) =

∑

j∈J

(Yj , fYj
). An ideal

extension (P, fP ) of (Y, fY ) by (X, fX) exists if and only if there is an injection τ :

L→ J such that for l ∈ L

(α) if (Xl, fXl
) is complete then (Yτ(l), fYτ(l)

) is a one-element cycle,

(β) if (Xl, fXl
) is incomplete, (Yτ(l), fYτ(l)

) is complete and contains no one-element

cycle, then |Xl| = 1.

P r o o f. Let (P, fP ) be an ideal extension of (Y, fY ) by (X, fX) and let τ be as

in 2.3.

Let l ∈ L. By 2.3, (Xl, fXl
) is an ideal of (Pτ(l), fPτ(l)

), (Pτ(l), fPτ(l)
)/(Xl, fXl

) ∼=

(Yτ(l), fYτ(l)
). If (Xl, fXl

) is complete, then (Pτ(l), fPτ(l)
) = (Xl, fXl

), hence

(Yτ(l), fYτ(l)
) is a one-element cycle.

Assume that (Xl, fXl
) is incomplete, |Xl| > 1, (Yτ(l), fYτ(l)

) is complete and

contains no one-element cycle. Since (Xl, fXl
) is incomplete, |Xl| > 1, hence

(Yτ(l), fYτ(l)
) has a top, which is a contradiction to the other assumptions.

Conversely, suppose conditions (α) and (β) are satisfied. Let us define (Pj , fPj
)

for each j ∈ J .

Let j ∈ J − L. Then we put (Pj , fPj
) = (Yj , fYj

). Now let j ∈ L. By the

assumption, j = τ(l) for some l ∈ L. If (Xl, fXl
) is complete, then we put (Pj , fPj

) =

(Xl, fXl
). Further suppose that (Xl, fXl

) is incomplete. If |Xl| = 1, then we put

(Pj , fPj
) = (Yj , fYj

). If |Xl| 6= 1, then (β) yields that (Yj , fYj
) contains a top and

either it has at least two elements or it is incomplete. According to 1.13 there exists

an ideal extension (Pj , fPj
) of (Yj , fYj

) by (Xl, fXl
).
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Now put (P, fP ) =
∑

j∈J

(Pj , fPj
). From the above construction and in view of 2.3

it follows that (P, fP ) is an ideal extension of (Y, fY ) by (X, fX), which completes

the proof. �

3. Isomorphic systems of ideals

For a partial monounary algebra (A, fA) let Id(A, fA) be the set of all ideals

of (A, fA).

Let us consider the following question:

(Q1) Is a partial monounary algebra uniquely, up to isomorphism, determined

by the system of its ideals?

In a more detailed formulation: Let (A, fA), (B, fB) be partial monounary algebras

and let ϕ : Id(A, fA) → Id(B, fB) be a bijection such that if (X, fX) ∈ Id(A, fA),

then (X, fX) ∼= ϕ((X, fX)). Does this assumption imply that (A, fA) and (B, fB) are

isomorphic?

Similarly, let (Q2) be the following question:

(Q2) Is a (complete) monounary algebra uniquely, up to isomorphism, deter-

mined by the system of its ideals?

(The detailed form of (Q2) is analogous to the case of (Q1).)

4

3

2

1

0

3′

2′

1′

(A, f)

5

4

3

2

1

0

2′

1′

(A, g)

Figure 1.
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3.1 Example. Let N′ = {n′ : n ∈ N}, A = N ∪ N′ ∪ {0}. We define partial unary

operations f , g on A by putting dom f = dom g = N ∪ N′ and

f(x) =

{

x− 1 if x ∈ N,
2n− 2 if x ∈ N′ , x = n′;

g(x) =

{

x− 1 if x ∈ N,
2n− 1 if x ∈ N′ , x = n′.

In (A, f) there are ideals ((b〉, f(b〉) of three types:

(a) trivial (incomplete partial monounary algebras possessing one element): for each

b ∈ N′ ,

(b) isomorphic to (A, f): for each b = 2n, where n ∈ N ∪ {0},

(c) isomorphic to (A, g): for each b = 2n− 1, where n ∈ N.
Similarly, in (A, g) there are ideals ((b〉, g(b〉) of the same types:

(a) for each b ∈ N′ ,

(b) for each b = 2n− 1, n ∈ N,
(c) for each b = 2n, n ∈ N.
We obtain

(1) (A, f) � (A, g),

(2) there is a bijection ϕ : Id(A, fA) → Id(B, fB)

such that if (X, fX) ∈ Id(A, fA), then ϕ((X, fX)) ∼= (X, fX).

This implies the following assertion:

3.2 Proposition. The answer to (Q1) is negative.

3.3 Proposition. The answer to (Q2) is affirmative.

P r o o f. Let (A, fA) be a monounary algebra. Then the system of all ide-

als (X, fX) of (A, fA) such that (X, fX) is connected and complete, coincides with

the system of all connected components of (A, fA). Since a monounary algebra is

determined by the system of its connected components, the answer to (Q2) is affir-

mative. �
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4. Extensions by means of initial segments

A consideration similar to that performed for subalgebra extensions or for ideal

extensions can be done for extensions by means of initial segments; this question

was proposed by P. Burmeister at the Conference on Universal Algebra AAA68,

Dresden, 2004 as follows: for given partial monounary algebras (X, fX), (B, fB),

describe by means of an initial segment (X, fX) all extensions of (B, fB), i.e. all

partial monounary algebras (P, fP ) such that (X, fX) is an initial segment of (P, fP )

and (P, fP )/(X, fX) ∼= (B, fB).

If (P,6) is a quasiordered set, then ∅ 6= X ⊆ P is called an initial segment of (P,6)

if p ∈ P , x ∈ X , p 6 x implies p ∈ X .

For a partial monounary algebra (A, fA), ∅ 6= X ⊆ A, we will say that the relative

subalgebra (X, fX) is an initial segment of (A, fA) if X is an initial segment of the

corresponding quasiordered set (A,6).

4.0 Lemma. Let (X, fX) be an initial segment of a connected partial monounary

algebra (A, fA), X 6= A. Then X can be written as a union X =
⋃

m∈M

(xm〉 with

pairwise disjoint summands.

P r o o f. Put M = {x ∈ X : x ∈ dom fA, fA(x) /∈ X}. Then X =
⋃

m∈M

(m〉 and

the summands are obviously mutually disjoint. �

Good algebras defined above can be characterized as partial algebras with one

generator. Similarly we introduce

4.1 Definition. Let U = {ui : i ∈ I} be any set with ui 6= uj for i, j ∈ I, i 6= j.

A partial monounary algebra (Y, fY ) will be called U -good if U ⊆ Y and Y =
⋃

i∈I

〈ui).

If (B, fB) is a connected partial monounary algebra, then a U -good algebra (Y, fY )

is said to be suitable to (B, fB) if either both (B, fB), (Y, fY ) are complete or both

(B, fB), (Y, fY ) are incomplete.

4.2 Construction. Let (B, fB) be a connected partial monounary algebra,

|B| > 1. Further, let (X, fX) =
∑

i∈I

(Xi, fXi
) ∈ U be such that for each i ∈ I we

have |Xi| > 1 and (Xi, fXi
) is incomplete with a top xi.

Take a U -good algebra (Y, fY ) (for arbitrary U = {ui : i ∈ I} suitable to (B, fB)).

Using critical mappings as in [3], construct a partial monounary algebra (C, fC) such

that C ∩X = ∅ and (C, fC)/(Y, fY ) ∼= (B, fB).

Now construct a partial monounary algebra (A, fA) such that A = C∪X , fA(x) =

fX(x) for each x = X∩dom fX , fA(c) = fC(c) for each c ∈ C∩dom fC , fA(xi) = ui.
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Now the following assertions can be proved analogously to Section 2:

4.2.1 Lemma. Let all partial algebras be as in 4.1. Then (X, fX) is an initial

segment of (A, fA) and (A, fA)/(X, fX) ∼= (B, fB).

4.3 Lemma. Let (B, fB) and (X, fX) satisfy the assumption of 4.2. Suppose

that (P, fP ) ∈ U . The following conditions are equivalent:

(1) (P, fP ) is an extension of (B, fB) by means of the initial segment (X, fX);

(2) (P, fP ) can be obtained, up to isomorphism, by the construction 4.2.

4.4 Theorem. Let (X, fX) =
∑

l∈L

(Xl, fXl
) ∈ U , L1 = {l ∈ L : (Xl, fXl

) is

complete}, L2 = {l ∈ L − L1 : |Xl| = 1}. Further, let (Y, fY ) =
∑

j∈J

(Yj , fYj
) ∈ U ,

J1 = {j ∈ J : |Yj | = 1, (Yj , fYj
) is complete}, Y 0 = {y ∈ Y : y is convenient,

f−1(y) = ∅}.

(a) An extension of (Y, fY ) by means of an initial segment (X, fX) exists if and

only if |L1| = |J1|, |L2| 6 |Y 0|.

(b) Assume that L1 = J1 and that ϕ is an injection of {xl : l ∈ L2} into Y 0, where

Xl = {xl} for l ∈ L2. Let (P, fP ) ∈ U . Then (P, fP ) is, up to isomorphism, an

extension of (Y, fY ) by means of an initial segment (X, fX) if and only if there is a

mapping τ : L→ J such that

(i) (P, fP ) =
∑

j∈J

(Pj , fPj
),

(ii) if l ∈ L, then τ(l) = l, (Pl, fPl
) = (Xl, fXl

),

(iii) if j ∈ J , τ−1(j) = ∅, then (Pj , fPj
) ∼= (Yj , fYj

),

(iv) if j ∈ J , τ−1(j) 6= ∅, then τ−1(j) ⊆ L− (L1 ∪ L2) and (Pj , fPj
) is an extension

of (Yj , fYj
) by means of an initial segment

∑

l∈τ−1(j)

(Xl, fXl
).

Remark. Notice that if (i)–(iv) are valid, X ′ =
∑

l∈L−L2

Xl +
∑

l∈L2

{ϕ(Xl)}, then

(X ′, fX′) is isomorphic to (X, fX) and (X ′, fX′) is an initial segment of (P, fP ).
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