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Abstract. GMV -algebras endowed with additive closure operators or with its duals-
multiplicative interior operators (closure or interior GMV -algebras) were introduced as a
non-commutative generalization of topological Boolean algebras. In the paper, the multi-
plicative interior and additive closure operators on DRl-monoids are introduced as natu-
ral generalizations of the multiplicative interior and additive closure operators on GMV -
algebras.

Keywords: GMV -algebra, DRl-monoid, filter

MSC 2000 : 06D35, 06F05, 03G25

1. Introduction

In 1965, the commutative dually residuated lattice-ordered semigroups (DRl-

semigroups) were introduced by K.L.N. Swamy [28] as a common generalization of

abelian l-groups and Brouwerian algebras. Bounded commutative DRl-monoids are

in a close connection with algebras of fuzzy logic. For example, each BL-algebra (or

more precisely the dual to each BL-algebra) and eachMV -algebra can be considered

as a special case of a bounded commutative DRl-semigroup.

The non-commutative extension of DRl-semigroups was introduced first by

K. Swamy and later in 1996 T.Kovář dealt with them in his Ph.D.Thesis [15].

Definition 1.1. An algebraM = (M ;⊙,∨,∧,→, , 0, 1) of type 〈2, 2, 2, 2, 2, 0,

0〉 is called a bounded residuated lattice ordered monoid (bounded Rl-monoid) iff for

each x, y, z ∈M

(i) (M ;⊙, 1) is a monoid,

(ii) (M ;∨,∧, 0, 1) is a bounded lattice,
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(iii) x⊙ y 6 z ⇐⇒ x 6 y → z ⇐⇒ y 6 x z,

(iv) x ∧ y = (x→ y) ⊙ x = x⊙ (x y).

Bounded Rl-monoids are in fact the so called bounded integral generalized BL-

algebras-a special class of residuated lattices studied in [1] and [2]. One can show that

the lattice (M ;∨,∧) is distributive and also that the binary operation ⊙ distributes

over ∨ and ∧-see [9].

Bounded Rl-monoids form a variety of type 〈2, 2, 2, 2, 2, 0, 0〉. For example, every

GMV -algebra (pseudo MV -algebra) and every pseudo BL-algebra are special cases

of Rl-monoids. In the sequel, an Rl-monoid will mean a bounded Rl-monoid.

The aim of the paper is to generalize the results of the paper [26] (where one

works with additive closure and multiplicative interior operators on GMV -algebras)

to the wider class of algebras, to the class of Rl-monoids. In the second section

of the paper we will introduce multiplicative interior and additive closure operators

on Rl-monoids as natural generalization of the same operators on GMV -algebras

and we will describe their mutual relation. In the final third section we will study

operators of interior on algebras derived from Rl-monoids, for example derived by

factorization by their filters.

In the next lemma we will show some of the basic properties of Rl-monoids.

Lemma 1.1 ([15], [23]). Let M = (M ;⊙,∨,∧,→, , 0, 1) be an Rl-monoid.

Then the following assertions hold for every x, y, z ∈M :

(i) x⊙ y 6 x ∧ y 6 x, y;

(ii) if x 6 y then x⊙ z 6 y ⊙ z and z ⊙ x 6 z ⊙ y;

(iii) if x 6 y then z → x 6 z → y and z  x 6 z  y;

(iv) if x 6 y then y → z 6 x→ z and y  z 6 x z;

(v) x 6 y if f x→ y = 1 if f x y = 1;

(vi) x→ x = x x = 1;

(vii) 1 → x = 1 x = x;

(viii) y 6 x→ y and y 6 x y;

(ix) x→ 1 = x 1 = 1;

(x) if x 6 y then y → 0 6 x→ 0 and y  0 6 x 0.
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2. Multiplicative interior and additive closure

operators on Rl-monoids

Definition 2.1. Let M = (M ;⊙,∨,∧,→, , 0, 1) be an Rl-monoid and f :

M → M a mapping. Then f is called a multiplicative interior operator (or mi-

operator) onM iff for each x, y ∈M

1. f(x⊙ y) = f(x) ⊙ f(y),

2. f(x) 6 x,

3. f(f(x)) = f(x),

4. f(1) = 1.

Lemma 2.1. Each mi-operator on an Rl-monoidM is isotone.

P r o o f. Let us consider an mi-operator f onM and x, y ∈M such that x 6 y.

Then

f(x) = f(y ∧ x) = f((y → x) ⊙ y) = f(y → x) ⊙ f(y).

Since f(y) ⊙ f(y → x) 6 f(y), we have also f(x) 6 f(y). That means, f is isotone

onM . �

Hence (by 2 and 3 from Definition 2.1) f is an interior operator on the lattice

(M ;∨,∧) of the Rl-monoidM .

Lemma 2.2. For an mi-operator f on an Rl-monoidM and for each x, y ∈M ,

f(x→ y) 6 f(x) → f(y),

f(x y) 6 f(x) f(y).

P r o o f. Let x, y ∈M . Then

(x→ y) ⊙ x = x⊙ (x y) = x ∧ y 6 y

and by Lemma 2.1

f(x→ y) ⊙ f(x) = f(x) ⊙ f(x y) 6 f(y).

So, by Definition 1.1, the inequalities we are proving, hold onM . �

On an arbitraryRl-monoidM we define two unary operations, negations − : M →

M and ∼ : M →M by
x− := x→ 0,

x∼ := x 0

for each element x ∈M .
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We can characterize GMV -algebras by means of the negations, because by [22],

the class of GMV -algebras is a subvariety of the variety of Rl-monoids determined

by the identities x−∼ = x = x∼− and (x− ⊙ y−)∼ = (x∼ ⊙ y∼)−.

Let us show now some properties of the two operations of negation.

Lemma 2.3. In every Rl-monoid M the following assertions hold for each ele-

ments x, y ∈M :

(i) 0∼− = 0 = 0−∼, 1∼− = 1 = 1−∼;

(ii) x 6 x−∼, x∼−;

(iii) x− = x−∼−, x∼ = x∼−∼;

(iv) x 6 y =⇒ x− > y−, x∼ > y∼.

P r o o f. See [23]. �

Let us consider a mapping f : M →M and two new mappings

f∼

−
: M →M, f−

∼
: M →M

such that for each x ∈M

f∼

−
(x) := (f(x−))∼

and

f−

∼
(x) := (f(x∼))−.

Proposition 2.4. If f is an mi-operator on an Rl-monoid M then both the

mappings f∼

−
, f−

∼
are isotone.

P r o o f. Let us consider elements x, y ∈M such that x 6 y. Then y− 6 x− (see

Lemma 3.3(iv)), so f(y−) 6 f(x−). Therefore (f(x−))∼ 6 (f(y−))∼, or equivalently

f∼

−
(x) 6 f∼

−
(y). Analogously for f−

∼
. �

Proposition 2.5. If f is an mi-operator on an Rl-monoid M then for each

element x ∈M we have

2′. x 6 f∼

−
(x),

3′. f∼

−
(f∼

−
(x)) = f∼

−
(x),

4′. f∼

−
(0) = 0.

P r o o f. Let us consider an arbitrary element x ∈M .

2′: f∼

−
(x) = (f(x−))∼ > x−∼ > x.

3′: By 2′ we have

f∼

−
(x) 6 f∼

−
(f∼

−
(x)).
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Further we know that

f(x−) 6 (f(x−))∼−

and so

f(x−) = f(f(x−)) 6 f((f(x−))∼−).

Therefore

f∼

−
(f∼

−
(x)) = f((f(x−))∼−)∼ 6 f(x−)∼ = f∼

−
(x).

4′: f∼

−
(0) = (f(0−))∼ = (f(1))∼ = 1∼ = 0. �

Remark 2.6.

a) Of course, relations 2′–4′ from the preceding proposition are satisfied also for

the operator f−

∼
.

b) By Propositions 2.4 and 2.5 and Remark 2.6 a), f∼

−
and f−

∼
are closure operators

on the lattice (M ;∨,∧).

c) By the proof of part 2′ of Proposition 2.5 the stronger inequality x−∼ 6 f∼

−
(x)

is satisfied in M .

Definition 2.2. An Rl-monoidM is said to be good if and only if

(G) x−∼ = x∼−

holds for each element x ∈M .

Remark 2.7. The identity (G) holds for example in every GMV -algebra. On

the other hand, the situation is not so clear for the case of pseudo BL-algebras.

It was proved [5], [6] that every linearly ordered pseudo BL-algebra, hence every

representable pseudo BL-algebra is good. Anyway, the general problem is still open-

see [12], Open problem 3.21.

Moreover, we can show (see [23]) that every good BL-algebra and every Heyting

algebra satisfy the identity

(N1) (x⊙ y)−∼ = x−∼ ⊙ y−∼

or the equivalent form

(N2) (x ⊙ y)∼− = x∼− ⊙ y∼−.

Therefore, it is clear that the class of Rl-monoids satisfying (N1) and (N2) is really

wide, which leads us to the following definition.
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Definition 2.3. An Rl-monoidM is said to be normal if and only if it satisfies

both the identities (N1) and (N2).

We can define a new binary operation “⊕” on every Rl-monoidM = (M ;⊙,∨,∧,

→, , 0, 1). For arbitrary elements x, y ∈M we put

x⊕ y := (x− ⊙ y−)∼.

Then this new binary operation has the following properties.

Lemma 2.8. If M is a good Rl-monoid and x, y, z ∈M , then

(a) x⊕ (y ⊕ z) = (x⊕ y) ⊕ z,

(b) x⊕ y = (x∼ ⊙ y∼)−,

(c) x, y 6 x ∨ y 6 x⊕ y,

(d) x⊕ 0 = x−∼ = 0 ⊕ x,

(e) x⊕ 1 = 1 = 1 ⊕ x.

P r o o f. See [8]. �

Lemma 2.9. The following equalities hold in every good normal Rl-monoidM :

(i) (x⊕ y)− = x− ⊙ y−;

(ii) (x⊕ y)∼ = x∼ ⊙ y∼;

(iii) (x⊙ y)− = x− ⊕ y−;

(iv) (x⊙ y)∼ = x∼ ⊕ y∼.

P r o o f. Let us choose arbitrary x, y ∈M . Then we have

(i): (x ⊕ y)− = (x− ⊙ y−)∼− = x−∼− ⊙ y−∼− = x− ⊙ y− (we have used (N2) and

Lemma 2.3 (iii));

(ii): (x⊕y)∼ = (x∼⊙y∼)−∼ = x∼−∼⊙y∼−∼ = x∼⊙y∼ (we have used Lemma 2.8(b),

(N1) and Lemma 3.3(iii));

(iii): (x⊙y)− = (x⊙y)−∼− = (x−∼⊙y−∼)− = x−⊕y− (we have used Lemma 2.3(iii),

(N1) and Lemma 3.8(b));

(iv): (x⊙y)∼ = (x⊙y)∼−∼ = (x∼−⊙y∼−)∼ = x∼⊕y∼ (we have used Lemma 2.3(iii)

and (N2)). �

Definition 2.4. If M is an Rl-monoid and g : M → M a mapping then g is

called an additive closure operator (ac-operator) on M iff for each x, y ∈M

1′. g(x⊕ y) = g(x) ⊕ g(y),

2′. x 6 g(x),

3′. g(g(x)) = g(x),

4′. g(0) = 0.
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Theorem 2.10. IfM is a good normal Rl-monoid and f is anmi-operator onM

then the mappings f∼

−
and f−

∼
are ac-operators onM , which are moreover isotone.

P r o o f. Thanks to Proposition 2.6 it is enough to check the identity 1′ from

the definition of an ac-operator. Let us do it for f∼

−
, for f−

∼
it is analogous. Let

x, y ∈M . Then by Lemma 2.9(i)

f∼

−
(x⊕ y) = (f((x⊕ y)−))∼ = (f(x− ⊙ y−))∼ = (f(x−) ⊙ f(y−))∼.

By Lemma 2.9(iv) we further get

(f(x−) ⊙ f(y−))∼ = (f(x−))∼ ⊕ (f(y−))∼ = f∼

−
(x) ⊕ f∼

−
(y).

The isotony of the operators f∼

−
and f−

∼
is a direct consequence of the isotony of f

and Lemma 2.3(iv). �

Now, let us consider the converse situation. We choose an ac-operator g on an

Rl-monoidM and we will study properties of the mappings g∼
−
and g−

∼
.

Lemma 2.11. Every ac-operator g on a good Rl-monoidM satisfies the equality

g(x−∼) = (g(x))−∼.

P r o o f. We have

g(x−∼) = g(x⊕ 0) = g(x) ⊕ g(0) = g(x) ⊕ 0 = (g(x))−∼.

�

Theorem 2.12. Let g be an ac-operator on a good normal Rl-monoidM . Then

the mappings g∼
−
and g−

∼
satisfy identities 1, 3, 4 from Definition 2.1. Moreover, if g

is isotone then both g∼
−
and g−

∼
are also isotone.

P r o o f. Let us choose arbitrary elements x, y ∈ M . Then for example for g∼
−

we have

1: g∼
−

(x⊙y) = (g((x⊙y)−))∼ = (g(x−⊕y−))∼ = (g(x−)⊕g(y−))∼ = (g(x−))∼⊙

(g(y−))∼ = g∼
−

(x) ⊙ g∼
−

(y);

3: g∼
−

(g∼
−

(x)) = (g((g(x−))∼−))∼ = (g(g(x−∼−)))∼ = (g(g(x−)))∼ = (g(x−))∼ =

g∼
−

(x) (we have used Lemma 3.10);

4: g∼
−

(1) = (g(1−))∼ = (g(0))∼ = 0∼ = 1.

The second part is obvious. �

Remark 2.13. Axiom 2. from Definition 2.1 need not be satisfied by g∼
−
(or g−

∼
)

in general. Only the following weaker inequality holds for arbitrary x ∈M :

g∼
−

(x) = (g(x−))∼ 6 x−∼.
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Theorem 2.14. Let us consider a good normal Rl-monoidM and an operator h

on M which satisfies identities 1, 3, 4 from Definition 2.1 and the ineqality h(x) 6

x−∼ for arbitrary x ∈M . Then the mappings h∼
−
and h−

∼
are ac-operators onM .

P r o o f. We must check axioms 1′–4′ from Definition 2.4 for our mappings h∼
−

and h−
∼
and the Rl-monoidM . So, for an arbitrary element x ∈M we have

2′ : h∼
−
(x) = (h(x−))∼ > ((x−)∼−)∼ = x−∼

> x.

For the other three identities 1′, 3′ and 4′ we have now the same situation as in

Proposition 2.5 and Theorem 2.10. �

3. Operators on algebras derived from Rl-monoids

Let us have an Rl-monoidM and its mi-operator f . In this chapter, the algebra

(M , f) = (M ;⊙,∨,∧,→, 0, 1, f) will be called an interior Rl-monoid (analogously

to the GMV -algebras in [26]).

Definition 3.1. IfM is an Rl-monoid then a non-empty subset F ofM is called

a filter in M iff

(F1) x, y ∈ F =⇒ x⊙ y ∈ F ,

(F2) x ∈ F, y ∈M, x 6 y =⇒ y ∈ F .

A filter F is called normal iff

(F3) x→ y ∈ F ⇐⇒ x y ∈M for each x, y ∈M .

It is known (see [2] or [18]) that normal filters of Rl-monoids coincide with kernels

of their congruences. If F is a normal filter of an Rl-monoidM then F is the kernel

of the unique congruence Θ(F ) such that

〈x, y〉 ∈ Θ(F ) ⇐⇒ (x→ y), (y → x) ∈ F

for each x, y ∈ M . Therefore, for each Rl-monoid M we can consider the quotient

Rl-monoidM /F by its filter F .

Definition 3.2. Let F be a filter in an interior Rl-monoid (M , f). Then F is

called an i-filter (or interior filter) iff

(F4) x ∈ F =⇒ f(x) ∈ F .
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Theorem 3.1. Let (M , f) be an interior Rl-monoid and let F be its normal

i-filter. Further, let us consider the mapping f̃ : M /F → M /F such that for each

x ∈M ,

f̃(x/F ) := f(x)/F.

Then the Rl-monoidM /F endowed with f̃ is an interior Rl-monoid.

P r o o f. Let us consider x, y ∈ M such that x/F = y/F . So we have 〈x, y〉 ∈

Θ(F ) or equivalently (x → y), (y → x) ∈ F and further f(x → y), f(y → x) ∈ F

with regard to (F4). Acording to Lemma 2.2,

f(x→ y) 6 f(x) → f(y), f(y → x) 6 f(y) → f(x),

therefore also f(x) → f(y), f(y) → f(x) ∈ F and 〈f(x), f(y)〉 ∈ Θ(F ). This means

that the unary operation f̃ is correctly defined onM /F . We have to check conditions

1–4 from the definition of the mi-operator on the Rl-monoid for f̃ and the proof will

be done. Let x, y be arbitrary elements from M .

1: f̃(x/F ) ⊙ f̃(y/F ) = f(x)/F ⊙ f(y)/F = (f(x) ⊙ f(y))/F == f(x ⊙ y)/F =

f̃((x ⊙ y)/F ) = f̃((x/F ) ⊙ (y/F ));

2: f̃(x/F ) = f(x)/F 6 x/F ;

3: f̃(f̃(x/F )) = f̃(f(x)/F ) = f(f(x))/F = f(x)/F = f̃(x/F );

4: f̃(1/F ) = f(1)/F = 1/F . �

Corollary 3.2. There is a one-to-one correspondence between the normal i-filters

and the congruences of the interior Rl-monoids.

We will denote by D(M ) = {x ∈M : x−∼ = 1} the set of all dense elements of a

good Rl-monoidM .

Proposition 3.3. For every good Rl-monoidM the set D(M ) is a normal filter

in M .

P r o o f. See [23], Theorem 10. �

Similarly to the commutative case, we can show (see [23], Theorems 9, 10) that

for a good Rl-monoidM the quotient Rl-monoid M/D(M ) is a GMV -algebra. By

Theorem 3.1, Proposition 3.3 and [26] we have
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Theorem 3.4. Let us consider an interior Rl-monoid (M , f). Further, consider

a mapping f̃ : M /D(M ) → M /D(M ) such that for each element x ∈M ,

f̃(x/D(M )) := f(x)/D(M ).

Then f̃ is an mi-operator on the GMV -algebraM /D(M ).

Let us consider an Rl-monoid M and the set R(M ) = {x ∈ M : x∼− = x =

x−∼}. It is known (see [8]) that if an Rl-monoid M is good then R(M ) =

(R(M );⊕R,−R,∼R, 0, 1), where “⊕R” is introduced on R(M ) in the same way as

on the whole M , and “−R”, “∼R” are restrictions of unary operations “−”, “∼” of

negations from M to R(M ), is a GMV -algebra.

Theorem 3.5. Let us introduce a mapping f̂ : R(M ) → R(M ) on a good normal

interior Rl-monoid (M ; f) by

f̂(x) := (f(x))−∼

for each x ∈ R(M ). Then f̂ is an mi-operator on the GMV -algebra R(M ).

P r o o f. Since

f̂(x)−∼ = ((f(x))−∼)−∼ = (f(x))−∼ for each x ∈ R(M ),

it is clear that f̂ is a self-mapping of R(M ). Let us check the conditions from the

definition of an mi-operator on a GMV -algebra (see [26]) for f̂ and R(M ). For

arbitrary x, y ∈ R(M ) we have

1: f̂(x⊙y) = (f(x⊙y))−∼ = (f(x)⊙f(y))−∼ = (f(x))−∼⊙(f(y))−∼ = f̂(x)⊙f̂ (y);

2: f̂(x) = (f(x))−∼ 6 x−∼ = x;

3: f̂(f̂(x)) = f̂(f(x)−∼) = (f((f(x))−∼))−∼ > (f(f(x)))−∼ = (f(x))−∼ = f̂(x).

Conversely, (f(x))−∼ = f̂(x) 6 x, so (f((f(x))−∼))−∼ 6 (f(x))−∼ or equivalently

f̂(f̂(x)) 6 f̂(x);

4: f̂(1) = (f(1))−∼ = 1−∼ = 1. �

It was proved that for every good normalRl-monoidM the GMV -algebrasR(M )

and M /D(M ) are isomorphic ([23], Th. 10), where the mappings ϕ : R(M ) →

M /D(M ) and ψ : M /D(M ) → R(M ) such that

ϕ(x) := x/D(M ),

ψ(y/D(M )) := y−∼

are mutually inverse isomorphisms.
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Let M be an Rl-monoid. Let us denote by I(M ) = {a ∈ M : a ⊙ a = a} the set

of all idempotent elements in M and by B(M ) the set of elements from M which

have a complement in the lattice (M,∨,∧). It is known that ifM is a GMV -algebra

then I(M ) = B(M )—see [10], Prop. 4.2.

Theorem 3.6. For each Rl-monoidM we have B(I(M )) = B(M ).

P r o o f. Clearly 0, 1 ∈ I(M ), so 0 is the least and 1 the greatest element in the

lattice (I(M );∨,∧). Let x ∈ B(I(M )). Then there exists an element y ∈ I(M ) such

that x∨ y = 1 and x∧ y = 0 in the lattice (I(M );∨,∧). Since I(M ) ⊆M and since

the operations “∨”, “∧” in (I(M );∨,∧) are restrictions of the “same” operations in

(M ;∨,∧), y is also a complement of x in the lattice (M ;∨,∧). So x ∈ B(M ).

The converse inclusion is proved in [17], Lemma 15. �

Lemma 3.7. If M is an Rl-monoid, a ∈ I(M ) and x ∈ M then a ∧ x = a⊙ y.

P r o o f. See [17], Lemma 6. �

Lemma 3.8. IfM is a normal good Rl-monoid and a ∈ I(M ) then a−∼ ∈ I(M )

and a∼ ⊕ a∼ = a∼.

P r o o f. For an arbitrary element a ∈ I(M ) we have

a−∼ ⊙ a−∼ = (a⊙ a)−∼ = a−∼

thanks to normality of M . Moreover,

a∼ ⊕ a∼ = (a∼− ⊙ a∼−)∼ = (a⊙ a)∼−∼ = a∼.

�

Theorem 3.9. If M is an Rl-monoid then I(M ) is a subalgebra of the reduct

(M ;⊙,∨,∧, 0, 1) of the Rl-monoidM .

P r o o f. Closedness of I(M ) with respect to the operation “∧” follows from

Lemma 3.7. It is enough to check that I(M ) is closed with respect to the operation

“∨”. Let a, b ∈ I(M ). Since “⊙” is distributive over the lattice operations join and

meet, we conclude

(a∨ b)⊙ (a∨ b) = (a⊙ a)∨ (a⊙ b)∨ (b⊙ a)∨ (b⊙ b) = a∨ b∨ (a⊙ b)∨ (b⊙ a) = a∨ b.

�
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