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Abstract. We explicitly perform some steps of a 3-descent algorithm for the curves
y2 = x3 + a, a a nonzero integer. In general this will enable us to bound the order of the
3-Selmer group of such curves.
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1. Introduction

Let E be an elliptic curve defined over Q, with complex multiplication given by the
ring of integers OF of a quadratic imaginary field F . Some results of K. Rubin ([4],

[5] and others) point out the necessity of computing explicitly the p-part of the

Tate-Shafarevich group for some “exceptional” primes, which always include those

dividing #O∗

F , in order to verify the whole Birch and Swinnerton-Dyer conjecture

for such curves.

The exact sequence

0 → E(Q)/pE(Q ) → Sel(p)(E/Q) → X(E/Q)[p] → 0

shows the importance of computing the middle term (the p-Selmer group) to bound

(and, in many cases, compute exactly) both the rank of E and the order of the p-part

of the Tate-Shafarevich groupX(E/Q).

Recently an algorithm to perform a p-descent has been described by E. Schaefer

and M. Stoll in [7]. It relies on number field computations (like computing S-units

for a finite set of primes S) which are quite accessible at least for the prime p = 3.

In this paper we consider curves Ea : y2 = x3 +a with a ∈ Z−{0}. They describe
all elliptic curves defined over Q admitting complex multiplication by the ring of
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integers of Q(
√
−3), and this is the only case in which 3 divides #O∗

F . Such curves

have been studied, for example, in [6], [11] and [12], so many results on their Selmer

groups are already known. The aim of this paper is to present a combination of

the algorithms of [1] and [7] which provides a nice and rather easy approach to the

problem. To simplify the computations we shall perform a descent via isogenies as

described for example in [13] and [1].

2. Notation and definitions

Let Ea : y2 = x3 + a with a ∈ Z−{0} be an elliptic curve and, to have a minimal
Weierstrass equation, assume that no 6th power divides a. Let Eα2 : y2 = x3 + α2

where

α2 =

{
−27a if 27 does not divide a,

− 1
27a otherwise.

Notation. The (rather unconventional) choice of writing α2 has been made to

lighten the notation in the rest of the paper, since its square root α will appear quite

often. Let m ∈ Z− {0}, then, in what follows, we fix the convention

√
m =

{
the unique positive root if m > 0,

i
√
|m| if m < 0.

There are isogenies ϕ : Ea → Eα2 and ψ : Eα2 → Ea such that Kerϕ = Ea[ϕ] =

{O, (0,√a), (0,−√
a)} ⊂ Ea[3], ψϕ = [3] on Ea and ϕψ = [3] on Eα2 (explicit

formulas in [1] and [13]). From now on we will simply write E and E′ for Ea and

Eα2 respectively.

Let G = Gal(Q/Q) and, for any prime p, let Gp be the decomposition group of p

in G. The cohomology of the exact sequence

0 → E[ϕ] → E(Q )
ϕ−→E′(Q ) → 0

gives a commutative diagram

0 // E′(Q)/ϕE(Q ) //

��

H1(G,E[ϕ]) //

resp

��

H1(G,E(Q ))

resp

��

0 // E′(Qp )/ϕE(Qp ) // H1(Gp, E[ϕ]) // H1(Gp, E(Qp ))
where resp is the usual restriction map. Then the ϕ-Selmer group is defined to be

the set

Sel(ϕ)(E/Q) = {β ∈ H1(G,E[ϕ]) : resp(β) ∈ Im (E′(Qp )/ϕE(Qp )) ∀p} .
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The Tate-Shafarevich group X(E/Q) fits into the exact sequence

0 → E′(Q)/ϕE(Q ) → Sel(ϕ)(E/Q) → X(E/Q)[ϕ] → 0.

Following the same path as in [1, Section 3] we let K = Q(
√
−3a) = Q(α) and

GK = Gal(Q/K). Via the inflation-restriction sequence and the isomorphism

H1(GK , E[ϕ]) ≃ H1(GK , µ3) ≃ K∗/K∗3

we get an injective map

δ : E′(Q)/ϕE(Q ) →֒ K∗/K∗3

which extends to local fields Qp and to their maximal unramified extensions Qunr
p as

well. We have a commutative diagram

(1)

E′(Q)/ϕE(Q )

��

� � δ
// K∗/K∗3

��

E′(Qp )/ϕE(Qp )
��

� � δp

// Qp (α)∗/Qp (α)∗3

��

E′(Qunr
p )/ϕE(Qunr

p ) � �
δunr

p

// Qunr
p (α)∗/Qunr

p (α)∗3

where all the horizontal maps are injective.

Let S be a finite set of finite primes of OK (the ring of integers of K) and define

H(S) = {β ∈ K∗/K∗3 : vp(β) ≡ 0 (mod 3) ∀ p 6∈ S},

where vp is the p-adic valuation. For any such set S let S(Q) be the set of primes

in Z lying below the primes in S.
Exploring the above diagram in [1] we proved (Theorem 3.6 there)

Theorem 2.1. Sel(ϕ)(E/Q) embeds in H(S1) with

S1 = {p : p | p, p of bad reduction for E and E′(Qp )/ϕE(Qp ) 6= 0}.

This, with an easy bound on dimF3
H(S1), was used to give bounds for

Sel(ϕ)(E/Q), Sel(ψ)(E′/Q) and X(E/Q)[3] and to show their triviality in some

particular cases.
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In [7] the authors describe a general algorithm for p-descent on elliptic curves

which, applied to our case, gives exactly the same embeddings δ and δp (in their

notation D is Q(α) and k ◦ωθ ◦δθ is our δ). For any prime p and any elliptic curve Ẽ
let cẼ,p = #Ẽ(Qp )/Ẽ0(Qp ) be the Tamagawa number. Let

S2 = {3} ∪ {p : 3 | cE,p or 3 | cE′,p},

which is a finite set of primes, and let

K(S2) = {β ∈ K∗/K∗3 : β is unramified outside S2}

where β is called unramified outside S2 ifK( 3
√
β)/K is unramified at all primes of OK

lying above the primes not in S2 (including infinite ones). One has an embedding

Sel(ϕ)(E/Q) →֒ K(S2) (see [7, Proposition 3.2 and Section 5]). Going through the

algorithm (in particular Sections 3 and 5 of [7]) one finds a way to compute explicitly

the function δ and a description of

Sel(ϕ)(E/Q) ≃ {β ∈ K(S2) : NK/Q(β) ∈ Q∗3 and

resp(β) ∈ δp(E
′(Qp )/ϕE(Qp )) ∀ p ∈ S2}

which is computable once one knows a basis for the S2-units and the S2-class group

of K. Such bases are not always easy to find and, in the next section, we will only

perform the computation of δp(E
′(Qp )/ϕE(Qp )) for any p ∈ S2. Then we will go

back to our set H(S1) with this new information to see how the set S1 can sometimes

be made a little smaller.

Notation. Note that the set S1 (and the, still to be defined, set S
′

1) contains

primes in K while S2 is a set of primes in Q. We decided to maintain this notation
to be coherent with the main references [1] and [7], hoping that no confusion will

arise from it.

3. The 3-descent

First we need to determine the set S2 and this can be done by Tate’s algorithm ([10,

IV, Section 9]). For the curve E : y2 = x3 + a (which has complex multiplication

by the ring of integers of Q(
√
−3)) one has 3 | cE,p if and only if the curve is of

reduction type IV or IV∗. Then

• for p = 2 one has 3 | cE,2 ⇐⇒ v2(a) = 0, 2 and a ∈ Q∗2
2 ;

• for p > 5 one has 3 | cE,p ⇐⇒ vp(a) = 2, 4 and a ∈ Q∗2
p ,
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where vp is the p-adic valuation (we recall that we are assuming 0 6 vp(a) < 6 for

any p and 3 need not be checked because 3 ∈ S2 in any case). The same has to be

done for E′ : y2 = x3 + α2. Finally, one gets

S2 = {3} ∪ {p : vp(4a) = 2, 4 and a ∈ Q∗2
p or

vp(4a) = 2, 4 and − 3a ∈ Q∗2
p }.

Now we can go on computing δp(E
′(Qp )/ϕE(Qp )) for any p ∈ S2.

3.1. Computing generators of E′(Qp )/ϕE(Qp )
In this section and in the next one we will consider only primes p ∈ S2.

The size of E′(Qp )/ϕE(Qp ) (see also [6, Lemme 1.9 and Lemme 1.10]) is given by
the formulas

#E′(Qp )/ϕE(Qp ) = #E(Qp )[ϕ] · cE′,p

cE,p
if p 6= 3;

#E′(Q3 )/ϕE(Q3 ) = γ · #E(Q3 )[ϕ] · cE′,3

cE,3

(see [8, Lemma 3.8]) where γ is the norm of the leading coefficient of the power series

representation of ϕ. Direct computations lead to

Proposition 3.1. For p ∈ S2 − {3} one finds

#E′(Qp )/ϕE(Qp ) =

{
3 if − 3a ∈ Q∗2

p ,

1 otherwise,

while #E′(Q3 )/ϕE(Q3 ) is equal to

1 if a ≡ 2, 8 (mod 9),

or v3(a) = 1 and a/3 ≡ 1 (mod 3),

or v3(a) = 2,

or v3(a) = 3 and a/27 ≡ 2, 4 (mod 9);

3 if a ≡ 1, 4, 5 (mod 9),

or v3(a) = 1 and a/3 ≡ 2 (mod 3),

or v3(a) = 3 and a/27 ≡ 1, 5, 7, 8 (mod 9),

or v3(a) = 4,

or v3(a) = 5 and a/243 ≡ 1 (mod 3);

9 if a ≡ 7 (mod 9),

or v3(a) = 5 and a/243 ≡ 2 (mod 3).
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Remark 3.2. More details on this computation can be found in [1, Theorem 4.1].

In that paper there is an error for p = 2 and v2(a) = 4 because in that case cE,2 =

cE′,2 = 1, so

#E′(Q2 )/ϕE(Q2 ) =

{
3 if a ∈ Q∗2

2 ,

1 otherwise.

Since E has good reduction at 2 for v2(a) = 4 and a ∈ Q∗2
2 , one has that if v2(a) = 4

then the primes dividing 2 are not in the set S1 of Theorem 2.1. Anyway, the other

data are correct and we are only interested in those because if v2(a) = 4 then 2 6∈ S2.

Remark 3.3. From the definitions of S1 and S2 and Proposition 3.1 it is easy to

see that S1(Q) ⊆ S2.

Now we compute generators for the nontrivial cases.

3.1.1. Case 1: p 6= 3

The group E′(Qp )/ϕE(Qp ) is nontrivial when −3a ∈ Q∗2
p ; so E

′(Qp )[ψ] =

{O, (0, α), (0,−α)} (remember that α2 = −27a or −a/27). We have (0, α) =

ϕ(( 3
√
−4a,

√
−3a) + E[ϕ]). We are considering p ∈ S2 so vp(4a) = 2, 4 and −4a is

not a cube in Qp . Hence (0, α) 6∈ ϕE(Qp ) and, in this case,
E′(Qp )/ϕE(Qp ) = 〈(0, α)〉 .

3.1.2. Case 2: p = 3

In general, we look for points in E′(Q3 ) with first coordinate as small as possible

or for particular points like the 3-torsion point ( 3
√
−4α2,

√
−3α2). Then we have to

check that such points are not in ϕE(Q3 ) with the explicit formula for ϕ (but see also

Remark 3.4). Moreover, when #E′(Q3 )/ϕE(Q3 ) = 9, we shall also need to check

the independence of the generators we found.

For example, consider the case v3(a) = 4 with α2 = −a/27. Obviously

(1,
√

1 + α2) ∈ E′(Q3 ) and one looks for a solution of

ϕ(x, y) =

(
y2 + 3a

9x2
,
y(x3 − 8a)

27x3

)
=

(
1,

√
1 + α2

)
with (x, y) ∈ E(Q3 ).

However,

y2 + 3a

9x2
= 1 ⇐⇒ x3 + 4a = 9x2 ⇐⇒ x2(x− 9) = −4a.

This yields v3(x
2(x − 9)) = 4, which is not satisfied by any x ∈ Q3 . Hence

(1,
√

1 + α2) 6∈ ϕE(Q3 ) and it is a generator of E′(Q3 )/ϕE(Q3 ) in this case. In
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general, E′(Q3 )/ϕE(Q3 ) can be generated by

(0, α) if v3(a) = 1 and a/3 ≡ 2 (mod 3),

or v3(a) = 3 and a/27 ≡ 5, 8 (mod 9);
(
1,

√
1 + α2

)
if a ≡ 1, 4 (mod 9),

or v3(a) = 4,

or v3(a) = 5 and a/243 ≡ 1 (mod 3);
(
− 1,

√
α2 − 1

)
if v3(a) = 3 and a/27 ≡ 1, 7 (mod 9);

(
− 3,

√
α2 − 27

)
if a ≡ 5 (mod 9);

(0, α), (1,
√

1 + α2) if v3(a) = 5 and a/243 ≡ 2 (mod 3);
(
1,

√
1 + α2

)
,
(

3

√
−4α2,

√
−3α2

)
if a ≡ 7 (mod 9).

Remark 3.4. For the next step we are going to compute the image of these points

in Q3 (α)∗/Q3 (α)∗3 via the map δ3. Since this map is injective it suffices to check

that δ3(R) 6∈ Q3 (α)∗3 (which usually is quite easy) to know that R 6∈ ϕE(Q3 ). For

the same reason the independence of the generators for the cases a ≡ 7 (mod 9) and

v3(a) = 5, a/243 ≡ 2 (mod 3) can be checked by verifying the independence of their

images.

3.2. Computing δp(E
′(Qp )/ϕE(Qp ))

We start with the explicit description of the map δ (see [7, Section 3] and [3,

Section 2]). Let P = (0, α) and consider the map on the points of E′ given by

f(x, y) = y − α. Its divisor is 3P − 3O and it satisfies

f ◦ ϕ(x, y) =






(y −
√
−3a

x

)3

if 27 - a,
(y −

√
−3a

3x

)3

if 27 | a,
∀ (x, y) ∈ E.

For any R ∈ E′(Q) let
n∑
i=1

Pi −
n∑
i=1

Qi be a Q-defined divisor which is linearly
equivalent to R − O and whose support avoids E′[ψ]. Then δ is equivalent to the

function F defined on divisors of degree 0

δ : E′(Q)/ϕE(Q ) →֒ Q(α)∗/Q(α)∗3 ,

δ(R) = F (R−O)
def
=

n∏

i=1

f(Pi)
/ n∏

i=1

f(Qi).
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Since f ◦ ϕ is a cube, for any R 6∈ E′[3] we simply have F (R − O) = f(R). For

R ∈ E′[3] we have to find a linearly equivalent divisor as described in [3, Section 2]

and then apply f to it.

For example, consider R = ( 3
√
−4α2,

√
−3α2) ∈ E′[3] (the computation for R =

(0, α) is similar and easier). Take −R = ( 3
√
−4α2,−

√
−3α2) and let T = (0, 0). Let

r : y = −
√
−3α2

3
√
−4α2

· xdef
= bx

be the line through −R and T which does not pass through any other 3-torsion point.
Let −R, P1 = (x1, bx1) and P2 = (x2, bx2) be the points of intersection of r with E

′.

Take any c ∈ Q which is not the x-coordinate of any 3-torsion point of E′ and let

Q1 = (c,
√
c3 + α2), Q2 = (c,−

√
c3 + α2) ∈ E′. Then R−O is linearly equivalent to

P1 + P2 −Q1 −Q2 and, since f(Q1)f(Q2) is always a cube, we can compute

δ(R) = F (R−O) ≡ f(P1)f(P2) (mod Q(α)∗3 )

≡ − α2 + αb(x1 + x2) − b2x1x2 (mod Q(α)∗3 ).

From the equations for r ∩ E′ one has that x1 and x2 are the zeros of x
2 −

(α2/
3
√

16α4)x− α2/ 3
√
−4α2. Hence, substituting b, x1 + x2 and x1x2, one finds

F (R −O) ≡ −α
2

4
+
α
√
−3α2

4
(mod Q(α)∗3 ).

Now, since R is among the generators we choose only for a ≡ 7 (mod 9), one can

substitute α2 = −27a to get

F (R−O) ≡ 27a

4
(1 +

√
−3) ≡ 2a(1 +

√
−3) (mod Q(α)∗3 ).

To conclude, as p varies in S2 we have only five points involved among the gener-

ators of E′(Qp )/ϕE(Qp ), and their images are
• δp(0, α) ≡ 4a (mod Qp (α)∗3);

• δ3(1,
√

1 + α2) =
√

1 + α2 − α;

• δ3(−1,
√
α2 − 1) =

√
α2 − 1 − α;

• δ3(−3,
√
α2 − 27) =

√
α2 − 27 − α;

• δ3(
3
√
−4α2,

√
−3α2) ≡ 2a(1 +

√
−3) (mod Q3 (α)∗3).

With these values it is easy to check the independence of the generators as indi-

cated in Remark 3.4. We recall that (by [7, Section 5]) one has

Sel(ϕ)(E/Q) ≃ {β ∈ K(S2) : NK/Q(β) ∈ Q∗3 and

resp(β) ∈ δp(E
′(Qp )/ϕE(Qp )) ∀ p ∈ S2}.
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3.3. A new set S′

1

We recall the definition of the set H(S) where S is a finite set of (finite) primes

of OK ,

H(S) = {β ∈ K∗/K∗3 : vp(β) ≡ 0 (mod 3) ∀ p /∈ S}.
For any such set S let S(Q) be the set of primes of Z lying below the primes in S.
Consider the embedding Sel(ϕ)(E/Q) →֒ H(S1), where

S1 = {p : p | p, p of bad reduction for E and E′(Qp )/ϕE(Qp ) 6= 0}

described in Theorem 2.1.

Using the condition resp(β) ∈ δp(E
′(Qp )/ϕE(Qp )) and the computations done so

far we are going to define a new set of primes S′

1 ⊆ S1 (the difference will concern only

primes dividing 3) and an embedding Sel(ϕ)(E/Q) →֒ H(S′

1). Such an embedding

is sufficient to prove Sel(ϕ)(E/Q) = 0 in some cases and can be useful to reduce

the computations on S2-units of K to the minimum by considering elements in

H(S′

1) ∩ K(S2) (as suggested in [7]) where now one has S
′

1(Q) ⊆ S1(Q) ⊆ S2 (see

Remark 3.3).

Theorem 3.5. Let S′

1(Q) be the set described by

3 6= p ∈ S′

1(Q) ⇐⇒ vp(4a) = 2, 4 and − 3a ∈ Q∗2
p ;

3 ∈ S′

1(Q) ⇐⇒ v3(a) = 1 and a/3 ≡ 2 (mod 3), or

v3(a) = 5 and a/243 ≡ 2 (mod 3),

and let S′

1 = {p : p | p, p ∈ S′

1(Q)}.
Then there is an embedding Sel(ϕ)(E/Q) →֒ H(S′

1).

P r o o f. We take β ∈ K∗/K∗3 and check that resp(β) ∈ Im δp yields vp(β) ≡ 0

(mod 3) for all primes p dividing p /∈ S′

1(Q). The conditions on p 6= 3 are equivalent

to p being of bad reduction and E′(Qp )/ϕE(Qp ) 6= 0, so the main difference from

Theorem 2.1 concerns the prime 3. We briefly recall the arguments for the other

primes and then focus on p = 3.

If E′(Qp )/ϕE(Qp ) = 0 then Im δp is trivial and there is nothing to prove (this

obviously holds for any prime).

If p 6= 3 the isogeny ϕ and the reduction mod p map give the diagram

0 // E1(Qunr
p )

��
ϕ

��

// E0(Qunr
p )

ϕ

��

mod p
// Ens(Fp) //

��
ϕ

��

0

0 // E′

1(Qunr
p ) // E′

0(Qunr
p )

mod p
// E′

ns(Fp) // 0

437



where the right and left vertical arrows are surjective (see [9, VII, Section 2]), so

E′

0(Qunr
p )/ϕE0(Qunr

p ) = 0. Consider also diagram (1) in Section 2.

If p is of good reduction then E′(Qunr
p )/ϕE(Qunr

p ) ≃ E′

0(Qunr
p )/ϕE0(Qunr

p ) = 0 and

Im δunr
p = 1. Hence if resp(β) ∈ Im δp then β is unramified at all primes dividing p,

i.e. vp(β) ≡ 0 (mod 3) for any p | p.
If p is of bad reduction then, by Proposition 3.1, one has E′(Qp )/ϕE(Qp ) = 0

unless −3a ∈ Q∗2
p .

For p = 3 we go back to the computations done for Im δ3 (Section 3.2) and check

what comes out from the condition res3(β) ∈ Im δ3. We are interested in the class

of vp(β) modulo 3 (for any prime p | 3); namely we need it to be 0 to eliminate 3

from our new set S′

1(Q) (i.e. to eliminate p | 3 from S′

1). Since we are working

modulo Q3 (α)∗3, it suffices to check the class of vp(x) modulo 3 for any x ∈ Im δ3
and, more precisely, it is enough to do that for x = δ3(P ) as P varies in a set of

generators for E′(Q3 )/ϕE(Q3 ) (computed in Section 3.1.2). As an example take

P = (1,
√

1 + α2) with δ3(P ) =
√

1 + α2 − α.

If a ≡ 1, 4, 7 (mod 9) then Q3 (α) = Q3 (
√
−3) is ramified at 3 with (3) = (

√
−3)2 =

p2 and α2 = −27a. Therefore

vp(
√

1 − 27a−
√
−27a) = 0,

and so, if 〈P 〉 = E′(Q3 )/ϕE(Q3 ) (i.e. if a 6≡ 7 (mod 9)), we can eliminate 3 from our

new set S′

1(Q) (if α ≡ 7 (mod 9) one has to check the other generator as well).

If v3(a) = 4 then (3) = p2 is again ramified in Q3 (α) with α2 = −a/27 and α ∈ p.

As above,

vp(
√

1 − a/27 −
√
−a/27) = 0,

so 3 can be eliminated again.

If v3(a) = 5 and a/243 ≡ 1 (mod 3) then Q3 (α) = Q3 (
√
−1) is unramified at 3

which remains prime and α2 = −a/27. Thus

v3(
√

1 − a/27 −
√
−a/27) = 0

and 3 6∈ S′

1(Q).

If v3(a) = 5 and a/243 ≡ 2 (mod 3) then Q3 (α) = Q3 and α
2 = −a/27. Thus

v3(
√

1 − a/27 −
√
−a/27) = 0

but, in this case, to eliminate 3 there is still one generator to check.
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The same thing can be checked for all the generators chosen except (0, α). When

(0, α) is one of the generators one finds

v3(4a) ≡





1 (mod 3) if v3(a) = 1 and a/3 ≡ 2 (mod 3),

0 (mod 3) if v3(a) = 3 and a/27 ≡ 5, 8 (mod 9),

2 (mod 3) if v3(a) = 5 and a/243 ≡ 2 (mod 3),

and we have 3 6∈ S′

1(Q) only for v3(a) = 3 and a/27 ≡ 5, 8 (mod 9) (note that for the

same reason we could not eliminate the primes p 6= 3 of bad reduction having (0, α)

as a generator of E′(Qp )/ϕE(Qp )). �

Remark 3.6. It follows from the theorem that to have p ∈ S′

1(Q) it is necessary

(but not sufficient) to have α ∈ Qp , i.e. Qp (α) = Qp . So any p ∈ S′

1(Q) splits in

K = Q(α) and one gets #S′

1 = 2 · #S′

1(Q).

There is an exact sequence

0 → O∗

K,S′

1

/(O∗

K,S′

1

)3 → H(S′

1) → Cl(OK,S′

1
)[3]

(with S′

1-units and the 3-torsion of the S
′

1-class group of K), which immediately

yields the bound

dimF3
Sel(ϕ)(E/Q) 6 dimF3

H(S′

1) 6 r3(K) + dimF3
O∗

K/O
∗3
K + #S′

1

(where r3(K) is the 3-rank of the ideal class group of K, see [1, Lemma 3.4]). More-

over, the generators of Sel(ϕ)(E/Q) can be found using the generators of O∗

K,S′

1

and

of Cl(OK,S′

1
) (as suggested in [7] with S2) where now S

′

1(Q) ⊆ S2.

4. Examples

We consider only the case a > 0 since all curves with a < 0 are then included among

the E′’s. Moreover, once one knows #Sel(ϕ)(E/Q), one can compute #Sel(ψ)(E′/Q)

by a theorem of Cassels (see [2] or [6, Proposition 1.17]). After that, the commutative

diagram

E′(Q)/ϕE(Q )
� � //

��

Sel(ϕ)(E/Q) //

��

X(E/Q)[ϕ]
� _

��

E(Q)/3E(Q ) � � //

��
��

Sel(3)(E/Q) //

��

X(E/Q)[3]

��

E(Q)/ψE′ (Q)
� � // Sel(ψ)(E′/Q) // X(E′/Q)[ψ]

439



(see [7, Section 6]) can be used in several cases to compute the 3-Selmer group and

the 3-part of the Tate-Shafarevich group of E. Note that for a > 0 one has

dimF3
O∗

K/O
∗3
K =

{
1 if a is a square,

0 otherwise.

4.1. S′

1(Q) = ∅ and Sel(ϕ)(E/Q) = 0

As a simple corollary of Theorem 3.5 and of the bounds on dimF3
H(S′

1) one has

Corollary 4.1. If the following conditions are satisfied:

i) a is not a square;

ii) 3 does not divide the order of the ideal class group of Q(α);

iii) S′

1(Q) = ∅;
then Sel(ϕ)(E/Q) = 0.

Writing down explicitly condition iii) one has that S′

1(Q) = ∅ if and only if
• v2(a) 6= 0, 2,

or v2(a) = 0, 2 and a/2v2(a) 6≡ 5 (mod 8);

• v3(a) 6= 1, 5,

or v3(a) = 1 and a/3 ≡ 1 (mod 3),

or v3(a) = 5 and a/243 ≡ 1 (mod 3);

• for p > 5, vp(a) 6= 2, 4,

or vp(a) = 2, 4 and −3a/pvp(a) is not a square mod p.

As a particular case consider a = b3 when there is a rational 2-torsion point and

it is quite easy to perform a 2-descent (for example see [9, X]). Only the prime 2

can be in S′

1(Q) and this occurs if and only if v2(a) = 0 and −3a ≡ 1 (mod 8),

i.e. a = b3 ≡ 5 (mod 8). Therefore

S′

1(Q) =

{
{2} if a ≡ 5 (mod 8),

∅ otherwise.

Moreover, a is not a square (we are assuming vp(a) < 6 for any p so b is squarefree)

and one has

Corollary 4.2. Let a = b3. If a 6≡ 5 (mod 8) then Sel(ϕ)(E/Q) embeds in

Cl(Q(α))[3]. In particular, if 3 does not divide the order of the ideal class group

of Q(α) then Sel(ϕ)(E/Q) = 0.

P r o o f. The hypotheses yield

Sel(ϕ)(E/Q) →֒ H(∅) →֒ Cl(Q(α))[3].

�
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We conclude this part with some remarks regarding the Tate-Shafarevich group

(the group directly involved in the Birch and Swinnerton-Dyer conjecture).

In the case a = b3 Cassels’ formula ([6, Proposition 1.17]) yields

dimF3
Sel(ψ)(E′/Q) = dimF3

Sel(ϕ)(E/Q) +m+ y∞(a)

where

m =





1 if a ≡ 1 (mod 8),

0 if a ≡ 0, 3 (mod 4),

−1 if a ≡ 5 (mod 8)

(m depends only on the behaviour of the prime 2 in Q(α)), and

y∞(a) =

{
1 if v3(a) = 0,

0 otherwise.

Proposition 4.3. Let a = b3. Assume that 3 does not divide the order of the

ideal class group of Q(α) and thatX(E/Q) is finite. If a 6≡ 1, 5, 13, 17, 21 (mod 24)

thenX(E/Q)[3] = 0.

P r o o f. The hypothesis on the ideal class group and a 6≡ 5, 13, 21 (mod 24)

yield Sel(ϕ)(E/Q) = 0. With the above formula it is easy to check that a 6≡ 1, 17

(mod 24) implies dimF3
Sel(ψ)(E′/Q) 6 1. Therefore #X(E′/Q)[ψ] 6 3, which

yields #X(E/Q)[3] 6 3. Since the order of the Tate-Shafarevich group has to be a

square, by [9, X, Theorem 4.14], this impliesX(E/Q)[3] = 0. �

In the cases a ≡ 1, 17 (mod 24) one still has Sel(ϕ)(E/Q) = 0 but one finds

dimF3
Sel(ψ)(E′/Q) = 2, so we can only say that #X(E/Q)[3] 6 9.

4.2. The case a = b2 with S′

1(Q) = ∅
If a is a square then K = Q(

√
−3a) = Q(

√
−3), r3(K) = 0 and O∗

K/O
∗3
K = 〈ζ3〉

where ζ3 = 1
2 (−1 +

√
−3) is a cube root of unity. Obviously −3a 6∈ Q∗2

3 and −3a 6∈Q∗2
2 , so 2, 3 6∈ S′

1(Q). For primes p > 5 one has −3a ∈ Q∗2
p ⇐⇒ −3 is a square

mod p, i.e., if and only if p ≡ 1 (mod 3). Therefore

S′

1(Q) = {p > 5: p | a and p ≡ 1 (mod 3)}

and S′

1(Q) = ∅ if and only if all primes p > 5 dividing a are ≡ 2 (mod 3).

From now on we consider the case S′

1(Q) = ∅. From the exact sequence

0 → O∗

K/O
∗3
K → H(∅) → Cl(K)

one gets Sel(ϕ)(E/Q) →֒ H(∅) ≃ 〈ζ3〉.
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It suffices to check whether ζ3 belongs to δp(E
′(Qp )/ϕE(Qp )) for all p ∈ S2 to see

whether Sel(ϕ)(E/Q) = 0 or Sel(ϕ)(E/Q) = 〈ζ3〉 (obviously ζ3 ∈ KerNK/Q, so the
first condition for Sel(ϕ)(E/Q) is verified).

Since a is a square we have S2 = {3} ∪ {p : vp(4a) = 2, 4} and we are assuming
that p ∈ S2 − {3} =⇒ p ≡ 2 (mod 3). In this situation it is not hard to check that

Sel(ϕ)(E/Q) = 0 for any a 6= 16, 1296.

Corollary 4.4. Assume a = b2 is a square and S′

1(Q) = ∅. If S2 6= {3} then
Sel(ϕ)(E/Q) = 0.

P r o o f. Let p ∈ S2 − {3}. Then −3a 6∈ Q∗2
p yields E

′(Qp )/ϕE(Qp ) = 0 and we

need to check whether ζ3 ∈ Qp (√−3)∗3 or not. Obviously ζ3 is a cube if and only

if a primitive 9th root of unity ζ9 is in Qp (√−3)∗ and this occurs only for primes p

such that p ≡ 1 (mod 9) or p2 ≡ 1 (mod 9). Since we are assuming p ≡ 2 (mod 3)

these conditions reduce to p ≡ 8 (mod 9).

Let a = 32ip2e1
1 . . . p2en

n with 0 6 i 6 2 and 1 6 ej 6 2, then pj ≡ 8 (mod 9) for

any j yields a/32i ≡ 1 (mod 9). Therefore (see Section 3.1.2)

• i = 0 =⇒ E′(Q3 )/ϕE(Q3 ) is generated by (1,
√

1 + α2);

• i = 1 =⇒ E′(Q3 )/ϕE(Q3 ) = 0 (by Proposition 3.1);

• i = 2 =⇒ E′(Q3 )/ϕE(Q3 ) is generated by (1,
√

1 + α2).

Case 1 : i = 0. We need to see whether ζ3 or ζ
2
3 are congruent to

√
1 − 27b2 −√

−27b2 modulo Q3 (
√
−3)∗3. As an example consider

ζ3 ≡
√

1 − 27b2 −
√
−27b2 (mod Q3 (

√
−3)∗3),

which yields

4(−1 +
√
−3)(

√
1 − 27b2 +

√
−27b2) = (x+ y

√
−3)3 ∈ Q3 (

√
−3)∗3.

One finds two equations

{
−4

√
1 − 27b2 − 36|b| = x(x2 − 9y2), (∗)

4
√

1 − 27b2 − 12|b| = 3y(x2 − y2). (∗∗)

Consider the 3-adic valuation v3 and note that

v3
(
−4

√
1 − 27b2 − 36|b|

)
= v3

(
4
√

1 − 27b2 − 12|b|
)

= 0.

Hence

if v3(x) > 0, then (∗) =⇒ v3(y) < −1 =⇒ (∗∗) has no solutions;
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if v3(x) < 0, then (∗) =⇒ v3(y) < −1 =⇒ (∗∗) has no solutions;
if v3(x) = 0, then (∗∗) has no solutions.

The same can be done with ζ2
3 , so, for i = 0, ζ3 6∈ Sel(ϕ)(E/Q) = 0.

Case 2 : i = 1. Obviously ζ9 6∈ Q3 (
√
−3), hence ζ3 6∈ Q3 (

√
−3)∗3 and ζ3 6∈

Sel(ϕ)(E/Q) = 0 as well.

Case 3 : i = 2. We have to check whether ζ3 or ζ
2
3 are congruent to

√
1 − 1

27b
2 +

1
9b
√
−3 modulo Q3 (

√
−3)∗3. One can easily see, as in Case 1, that this does not

hold, hence again ζ3 6∈ Sel(ϕ)(E/Q) = 0. �

We are left with the case S′

1(Q) = ∅ and S2 = {3}. Looking back at the compo-
sition of the two sets we see that this can only occur for a = 16 · 32i with 0 6 i 6 2

(the 16 is needed to have 2 6∈ S2), i.e. a = 16, 144, 1296 (well known cases which we

include here for completeness only).

• a = 16 ≡ 7 (mod 9)

The set E′(Q3 )/ϕE(Q3 ) is generated by (1,
√
−431) and (12, 36). We have

δ3(12, 36) ≡ 32(1 +
√
−3) ≡ ζ2

3 (mod Q3 (
√
−3)∗3).

Hence Sel(ϕ)(E/Q) = 〈ζ3〉 and, moreover, (12, 36) ∈ E′(Q) − ϕE(Q) implies

#X(E/Q)[ϕ] = 0.

Cassels’ formula yields Sel(ψ)(E′/Q) = 0 as well, so

X(E′/Q)[ψ] = 0 and X(E/Q)[3] = 0.

• a = 144, v3(a) = 2

One has E′(Q3 )/ϕE(Q3 ) = 0 and ζ9 6∈ Q3 (
√
−3) =⇒ ζ3 6∈ Sel(ϕ)(E/Q) = 0.

Cassels’ formula yields #Sel(ψ)(E′/Q) = 3. Moreover, E′ is y2 = x3 − 3888 and

(0, 12) ∈ E(Q) − ψE′(Q). The diagram then shows that X(E′/Q)[ψ] = 0, which

yieldsX(E/Q)[3] = 0 as well.

• a = 1296, v3(a) = 4

Now E′(Q3 )/ϕE(Q3 ) is generated by (1,
√
−47) and one can check that

δ3(1,
√
−47) ≡ ζ2

3 (mod Q3 (
√
−3)∗3).

Hence Sel(ϕ)(E/Q) = 〈ζ3〉 and Cassels’ formula yields #Sel(ψ)(E′/Q) = 3 as well. To

conclude the three descent for this case note that E′ is y2 = x3−48, so E′(Q)[ψ] = 0,
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(4, 4) ∈ E′(Q) − ϕE(Q) and (0, 36) ∈ E(Q) − ψE′(Q). Hence the diagram shows

that

#E′(Q)/ϕE(Q ) = #E(Q)/ψE′ (Q) = #Sel(ϕ)(E/Q) = #Sel(ψ)(E′/Q) = 3,

X(E′/Q)[ψ] = X(E/Q)[ϕ] = X(E/Q)[3] = 0.

Note that for a = b2 6= 16 one has (0, b) ∈ E(Q)−ψE′ (Q), so that#Sel(ψ)(E′/Q) >

3. Consequently, we have

Corollary 4.5. Let a = b2 6= 16. Assume that Sel(ϕ)(E/Q) = 0 and that

X(E/Q) is finite. If dimF3
Sel(ψ)(E′/Q) 6 2 thenX(E/Q)[3] = 0.

P r o o f. Since a 6= 16, one has #E(Q)/ψE′ (Q) > 3. Therefore the hypotheses

imply #X(E′/Q)[ψ] 6 3 andX(E/Q)[ϕ] = 0. The diagram yields #X(E/Q)[3] 6

3 and, since this order has to be a square, eventuallyX(E/Q)[3] = 0. �

As examples we consider the case S′

1 = ∅ and Sel(ϕ)(E/Q) = 0. Let n be the

number of primes of bad reduction for E which are congruent to 2 (mod 3). In this

case Cassel’s formula ([6, Proposition 1.17]) reads

dimF3
Sel(ψ)(E′/Q) = n− 1 + y∞(a) + y3(a)

where

y∞(a) =

{
1 if v3(a) = 0, 2,

0 if v3(a) = 4

and

y3(a) =






1 if v3(a) = 2, 4,

0 if a ≡ 1, 4 (mod 9),

−1 if a ≡ 7 (mod 9).

This yields

dimF3
Sel(ψ)(E′/Q) =





n− 1 if a ≡ 7 (mod 9),

n if v3(a) = 4,

n if a ≡ 1, 4 (mod 9),

n+ 1 if v3(a) = 2.

So the hypothesis in Corollary 4.5 can easily be verified by counting the number of

primes dividing a (and checking their congruence classes modulo 9).

Acknowledgement. The author wishes to thank the anonymous referee for help-

ful comments which led to some corrections and improvements in the exposition.

444



References

[1] A. Bandini: Three-descent and the Birch and Swinnerton-Dyer conjecture. Rocky Mt.
J. Math. 34 (2004), 13–27. zbl

[2] J.W. S. Cassels: Arithmetic on curves of genus 1. VIII: On conjectures of Birch and
Swinnerton-Dyer. J. Reine Angew. Math. 217 (1965), 180–199. zbl

[3] Z. Djabri, E. F. Schaefer, N. P. Smart: Computing the p-Selmer group of an elliptic
curve. Trans. Am. Math. Soc. 352 (2000), 5583–5597. zbl

[4] K. Rubin: Tate-Shafarevich groups and L-functions of elliptic curves with complex mul-
tiplication. Invent. Math. 89 (1987), 527–560. zbl

[5] K. Rubin: The “main conjectures” of Iwasawa theory for imaginary quadratic fields.
Invent. Math. 103 (1991), 25–68. zbl

[6] P. Satgé: Groupes de Selmer et corpes cubiques. J. Number Theory 23 (1986), 294–317. zbl
[7] E.F. Schaefer, M. Stoll: How to do a p-descent on an elliptic curve. Trans. Am. Math.
Soc. 356 (2004), 1209–1231. zbl

[8] E.F. Schaefer: Class groups and Selmer groups. J. Number Theory 56 (1996), 79–114. zbl
[9] J.H. Silverman: The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics,
Vol. 106. Springer, New York, 1986. zbl

[10] J.H. Silverman: Advanced Topics in the Arithmetic of Elliptic Curves. Graduate Texts
in Mathematics, Vol. 151. Springer, New York, 1994. zbl

[11] M. Stoll: On the arithmetic of the curves y2 = xl + A and their Jacobians. J. Reine
Angew. Math. 501 (1998), 171–189. zbl

[12] M. Stoll: On the arithmetic of the curves y2 = xl +A. II. J. Number Theory 93 (2002),
183–206. zbl

[13] J. Top: Descent by 3-isogeny and 3-rank of quadratic fields. In: Advances in Number
Theory (F.Q. Gouvea, N. Yui, eds.). Clarendon Press, Oxford, 1993, pp. 303–317. zbl

Author’s address: A . B a n d i n i, Dipartimento di Matematica, Università della Cal-
abria, Via P. Bucci–Cubo 30B, 87036 Arcavacata di Rende (CS), Italy, e-mail: bandini
@mat.unical.it.

445


		webmaster@dml.cz
	2020-07-03T17:21:22+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




