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A GENERALIZATION OF STEENROD’S APPROXIMATION
THEOREM

Christoph Wockel

Abstract. In this paper we aim for a generalization of the Steenrod Approxi-
mation Theorem from [16, Section 6.7], concerning a smoothing procedure
for sections in smooth locally trivial bundles. The generalization is that we
consider locally trivial smooth bundles with a possibly infinite-dimensional
typical fibre. The main result states that a continuous section in a smooth
locally trivial bundles can always be smoothed out in a very controlled way
(in terms of the graph topology on spaces of continuous functions), preserving
the section on regions where it is already smooth.

1. Introduction

This paper generalises a result of Steenrod on a very nice smoothing procedure
for sections in locally trivial smooth bundles. It puts together ideas from [16,
Section 6.7], [6, Chapter 2] and [15, Section A.3] and tries to produce a theorem of
maximal generality out of them.

Theorem (Generalised Steenrod Approximation Theorem). Let M be a finite-di-
mensional connected manifold with corners, π : E →M be a locally trivial smooth
bundle with a locally convex manifold N as typical fibre and σ : M → E be a
continuous section. If L ⊆M is closed and U ⊆M is open such that σ is smooth
on a neighbourhood of L \ U , then for each open neighbourhood O of σ(M) in
E, there exists a section τ : M → O which is smooth on a neighbourhood of L
and equals σ on M \ U . Furthermore, there exists a homotopy F : [0, 1]×M → O
between σ and τ such that each F (t, ·) is a section of π and F (t, x) = σ(x) = τ(x)
if (t, x) ∈ [0, 1]× (M \ U).

This theorem is of maximal generality in the sense that the proof depends heavily
on the local compactness of M an the local convexity of N . Also, the topology kept
in mind is the graph topology on spaces of continuous function, which is rather
fine, e.g., in comparison to the compact-open topology. Thus there seems to be
no result of greater generality (e.g., for arbitrary base-spaces and arbitrary fibres)
which can be shown with the same method of proof.
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The paper is organized as follows. The first definitions and remarks introduce
the setting of calculus on locally convex vector spaces and manifolds (with and
without corners) modelled on such spaces. We then recall some basic constructions
on the smoothing procedure for continuous functions with values in locally convex
spaces, which we shall need in the proof of the main theorem. After having proved
the main theorem, we formulate some immediate consequences of it, concerning
the relation of smooth and continuous sections and functions.

Eventually, we arrive at the analogue result from [8] in the locally convex setting,
stating that smooth and continuous homotopies into locally convex manifolds agree.
However, our method of proof is different from the one used in [8] since it uses
heavily the existence of charts onto convex subsets, which are not available for a
convenient manifold in general. This result is quite interesting, because it has nice
applications in bundle theory [13].

Definition 1 (cf. [5], [12] and [4]). Let X and Y be locally convex spaces and
U ⊆ X be open. Then f : U → Y is called continuously differentiable or C1 if it is
continuous, for each v ∈ X the differential quotient

df(x) · v := lim
h→0

1
h

(
f(x+ hv)− f(x)

)
exists and the map df : U ×X → Y is continuous. For n > 1 we, recursively define

dnf(x) : (v1, . . . , vn) :=

lim
h→0

1
h

(
dn−1f(x+ h) · (v1, . . . , vn−1)− dn−1f(x) · (v1, . . . , vn)

)
and say that f is Cn if dkf : U × Xk → Y exists for all k = 1, . . . , n and is
continuous. We say that f is C∞ or smooth if it is Cn for all n ∈ N.

From this definition, the notion of a locally convex manifold is clear, i.e., a
Hausdorff space such that each point has neighbourhood that is homeomorphic to
an open subset of some locally convex space such that the corresponding coordinate
changes are smooth. Together with such a fixed differentiable structure on M , we
speak of M as a locally convex manifold.

Remark 2. In order to relate our results to other frequently used concepts of
differential calculus on infinite-dimensional vector spaces and infinite-dimensional
manifolds, we shortly line out the relation to our setting (cf. [7] for a more exhaustive
comparison, where smooth maps in our setting are called C∞c -maps). In the case of
Banach-spaces X and Y , a map is called Fréchet differentiable if it is differentiable
in the sense of Definition 1 and the differential x 7→ df(x) is a continuous map into
the space of bounded linear operators B(X,Y ), endowed with the norm topology.
Thus, Fréchet differentiable (resp. smooth) maps are differentiable (resp. smooth)
in our setting.

Next, we recall the basic definitions of the convenient calculus from [9]. Let X
and Y be arbitrary locally convex spaces. A curve f : R→ X is called smooth if
it is smooth in the sense of Definition 1. Then the c∞-topology on X is the final
topology induced from all smooth curves f ∈ C∞(R, X). If X is a Fréchet space,
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then the c∞-topology is again a locally convex vector topology which coincides
with the original topology [8, Theorem 4.11]. If U ⊆ X is c∞-open, then f : U → Y
is said to be of class C∞ or smooth if

f∗ (C∞(R, U)) ⊆ C∞(R, Y ) ,

i.e., if f maps smooth curves to smooth curves. The chain rule [3, Proposition
1.15] implies that each smooth map in the sense of Definition 1 is smooth in the
convenient sense. On the other hand, [8, Theorem 12.8] implies that on a Fréchet
space a smooth map in the convenient sense is smooth in the sense of Definition 1.
Hence for Fréchet spaces, this notion coincides with the one from Definition 1.

Definition 3. A d-dimensional manifold with corners is a paracompact Hausdorff
space such that each point has a neighborhood that is homeomorphic to an open
subset of

Rd+ =
{

(x1, . . . , xd) ∈ Rd : xi ≥ 0 for all i = 1, . . . , d
}

and such that the corresponding coordinate changes are smooth (cf. [10]). The
crucial point here is the notion of smoothness for non-open domains. The usual
notion is to define a map f : A ⊆ Rn → Rm to be smooth if for each x ∈ A,
there exists a neighborhood Ux of x which is open in Rn, and a smooth map
fx : Ux → Rm such that fx|A∩Ux = f |A∩Ux .

A more general concept of manifolds with corners modeled on locally convex
spaces can be found in [11], [17] and [4], along with the appropriate definitions of
differentiable or smooth functions. Basically, in this setting, a map on a non-open
domain with dense interior is defined to be smooth if it is smooth on the interior
and differentials extend continuously to the boundary.

Remark 4. We recall some basic facts from general topology. A topological space
X is called paracompact if each open cover has a locally finite refinement. If X is
the union of countably many compact subsets, then it is called σ-compact, and if
each open cover has a countable subcover, it is called Lindelöf .

Now, let M be a finite-dimensional manifold with corners, which is in particular
locally compact and locally connected. For these spaces, [2, Theorems XI.7.2+3]
imply that M is paracompact if and only if each component is σ-compact, equiva-
lently, Lindelöf. Furthermore, since paracompact spaces are normal, M is normal
in each of these cases.

One very important fact on M is that it permits smooth partitions of unity (c.f.
[6, Theorem 2.1]). That means that for each locally finite open cover (Vi)i∈I we find
smooth functions λi : M → [0, 1] such that supp(λi) ⊆ Vi and

∑
i∈I
(
λi(x)

)
= 1.

Definition 5. If X is a Hausdorff space and Y is a topological space, then
C(X,Y )c.o. is the space of continuous functions from X to Y , endowed with the
compact-open topology (cf. [1, Section X.3.4]). A basic open set in this topology is
given by bC1,W1c∩· · ·∩bCn,Wnc for C1, . . . , Cn ⊆ X compact and W1, . . . ,Wn ⊆
Y open, where

bC,W c :=
{
f ∈ C(X,Y ) : f(C) ⊆W

}
.
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Remark 6. If Y happens to be a topological group, then this topology coincides
with the topology of compact convergence [1, Theorem X.3.4.2] and thus C(X,Y )c.o.
is a topological group itself. If Y is a locally convex space, then C(X,Y )c.o. is again
a locally convex space space with respect to pointwise operations.

If Y is a locally compact space, then the exponential law yields that the canonical
map ϕ : C(X,C(Y,Z))→ C(X × Y,Z), ϕ(f)(x, y) = f(x)(y) is a homeomorphism
[1, Section X.3.4].

A finer topology on C(X,Y ) is the graph topology, which we term C(X,Y )Γ (cf.
[14]). A basic open set in this topology is given by ΓU :=

{
f ∈ C(X,Y ) : Γ(f) ⊆ U

}
,

where Γ(f) denotes the graph of f in X × Y and U ⊆ X × Y is open.

Proposition 7. If M is a finite-dimensional σ-compact manifold with corners,
then for each locally convex space Y the space C∞(M,Y ) is dense in C(M,Y )c.o..
If f ∈ C(M,Y ) has compact support and U is an open neighbourhood of supp(f),
then each neighbourhood of f in C(M,Y ) contains a smooth function whose support
is contained in U .

Proof. The proof of [15, Theorem A.3.1] carries over. �

Corollary 8. If M is a finite-dimensional σ-compact manifold with corners and
V is an open subset of the locally convex space Y , then C∞(M,V ) is dense in
C(M,V )c.o..

Lemma 9. Let M be a finite-dimensional σ-compact manifold with corners, Y be
a locally convex space, W ⊆ Y be open and convex and f : M →W be continuous.
If L ⊆M is closed and U ⊆M is open such that f is smooth on a neighbourhood
of L \ U , then each neighbourhood of f in C(M,W )c.o. contains a continuous map
g : M →W , which is smooth on a neighbourhood of L and which equals f on M \U .

Proof. (cf. [6, Theorem 2.5])
Let A ⊆ M be an open set containing L \ U such that f

∣∣
A

is smooth. Then
L \ A ⊆ U is closed in M , and, since M is normal (cf. Remark 4), there exists
V ⊆ U open with L \ A ⊆ V ⊆ V ⊆ U . Then {U,M \ V } is an open cover of M ,
and there exists a smooth partition of unity {λ1, λ2} subordinated to this cover.
Then

Gf : C(M,W )c.o. → C(M,W )c.o. , Gf (γ)(x) = λ1(x)γ(x) + λ2(x)f(x)
is continuous since γ 7→ λ1γ and λ1γ 7→ λ1γ + λ2f are continuous.

If γ is smooth on A ∪ V then so is Gf (γ), because λ1 and λ2 are smooth, f is
smooth on A and λ2

∣∣
V
≡ 0. Note that L ⊆ A∪ (L\A) ⊆ A∪V , so that A∪V is an

open neighbourhood of L. Furthermore, we have Gf (γ) = γ on V and Gf (γ) = f
on M \ U . Since Gf (f) = f , there is for each open neighbourhood O of f an open
neighbourhood O′ of f such that Gf (O′) ⊆ O. By Corollary 8 there is a smooth
function h ∈ O′ such that g := Gf (h) has the desired properties. �

Lemma 10. Let M be a finite-dimensional σ-compact manifold with corners, N be
a smooth manifold, modelled on a locally convex space, W ⊆ N be diffeomorphic to
an open convex subset of the modelling space of N and f : M →W be continuous.
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If L ⊆M is closed and U ⊆M is open such that f is smooth on a neighbourhood
of L \U , then each neighbourhood of f in C(M,W )c.o. contains a map g : M →W
which is smooth on a neighbourhood of L and which equals f on M \ U .

Proof. Let ϕ : W → ϕ(W ) be a diffeomorphism. If bC1, V1c ∩ . . . ∩ bCn, Vnc is an
open neighbourhood of f ∈ C(M,W )c.o., then bC1, ϕ(V1)c∩ . . .∩bCn, ϕ(Vn)c is an
open neighbourhood of ϕ ◦ f in C(M,ϕ(W ))c.o.. We apply Lemma 9 to this open
neighbourhood to obtain a map h. Then g := ϕ−1◦h has the desired properties. �

Theorem 11 (Generalised Steenrod Approximation Theorem). Let M be a
finite-dimensional connected manifold with corners, π : E →M be a locally trivial
smooth bundle with a locally convex manifold N as typical fibre and σ : M → E
be a continuous section. If L ⊆ M is closed and U ⊆ M is open such that σ is
smooth on a neighbourhood of L \ U , then for each open neighbourhood O of σ(M)
in E, there exists a section τ : M → O which is smooth on a neighbourhood of L
and equals σ on M \ U . Furthermore, there exists a homotopy F : [0, 1]×M → O
between σ and τ such that each F (t, ·) is a section of π and F (t, x) = σ(x) = τ(x)
if (t, x) ∈ [0, 1]× (M \ U).

Proof. (cf. [16, Section 6.7]) We describe roughly how the proof is going to
work. After choosing an appropriate cover (Vi)i∈N of M in the beginning, we shall
inductively construct sections τi of π, that become smooth on increasing subsets of
M . To avoid convergence considerations, we construct τ stepwise from the τi in
the end.

We claim that there exist locally finite open covers (Vi)i∈N0 , (V ′i )i∈N0 of M ,
(Wi)i∈N0 of σ(M) and a collection (Zi)i∈N0 of open subsets of N which are dif-
feomorphic to convex open subsets of the modelling space of N , such that we
have

– V ′i and Vi are compact
– V ′i ⊆ Vi and Wi ⊆ O
– σ(Vi) ⊆Wi (which is equivalent to Vi ⊆ π(Wi) and implies Vi ⊆ π(Wi))
– the restricted bundle π

∣∣
π(Wi)

is trivial and there exist smooth trivializations
ϕi : π−1(π(Wi)

)
→ π(Wi)× Y such that ϕi

(
π−1(Vi)

)
= Vi × Zi

for each ∈ N0. First, we recall the properties of the topology on M from Remark
4. Now, let (St)t∈T be a trivialising cover of M and ϕt : π−1(St) → St × N be
the corresponding local trivializations. That means, each ϕt is a diffeomorphism
satisfying pr1

(
ϕt(x)

)
= π(x) for all x ∈ π−1(St). Then each x ∈ M is in St(x)

for some map M 3 x 7→ t(x) ∈ T . Furthermore, there exist open neighbourhoods
Ux ⊆ St(x) of x and Zx ⊆ N of pr2

(
ϕt(x)(σ(x))

)
∈ N such that Zx is diffeomorphic

to an open convex subset of the modelling space of N and ϕ−1
(t(x))(Ux × Zx) ⊆ O.

Since M is normal, each x ∈ M has a relatively compact open neighbourhood
Vx such that Vx ⊆ Ux and pr2

(
ϕt(x)(σ(Vx))

)
⊆ Zx. Furthermore, let V ′x be an

open neighbourhood of x such that V ′x ⊆ Vx. As M is paracompact, (Vx)x∈M
has a locally finite refinement (Vj)j∈J . Since each Vj is covered by finitely many



100 CH. WOCKEL

V ′xj,1 , . . . , V
′
xj,kj

, we deduce that

(Vj ∩ V ′xj,1 , . . . , Vj ∩ V
′
xj,kj

)j∈J
is also a locally finite open cover of M . By re-defining the index set we thus get
two locally finite open covers (Vi)i∈I and (V ′i )i∈I such that V ′i and Vi are compact
and we have V ′i ⊆ Vi for each i ∈ I. In addition, we may assume that I = N+ for
M is Lindelöf.

Since each Vi is contained in some Vx(i) of M and the values of pr2 ◦ϕt(x(i)) ◦ σ
on Vx(i) are contained in Zx(i), we get local trivializations ϕi := ϕt(x(i))

∣∣
π−1(Ux(i))

and open subsets Zi := Zx(i) of N and Wi := ϕ−1
t(x(i))(Ux(i) × Zi) satisfying all

requirements.
We set V0 := ∅ and V ′0 := ∅, and observe that (Vi)i∈N0 and (V ′i )i∈N0 are locally

finite covers by their construction. Furthermore, we assume that σ is smooth on
the open neighbourhood A of L \ U and that A′ is another open neighbourhood of
L \ U with A′ ⊆ A. Define

Li := L ∩ V ′i \ (V ′0 ∪ . . . ∪ V ′i−1)
which is closed and contained in Vi. Since L \ A′ ⊆ U we have Li \ A′ ⊆ Vi ∩ U
and there exist open subsets Ui ⊆ Vi ∩ U such that Li \ A′ ⊆ Ui ⊆ Ui ⊆ Vi ∩ U .
We claim that there exist continuous sections τi ∈ C(M,E), i ∈ N0, satisfying

(a) τi = τi−1 on M \ Ui for all i ∈ N+,
(b) τi(M) ⊆ O and τi(Vj) ⊆Wj for all i, j ∈ N0,
(c) τi is smooth on a neighbourhood of L0 ∪ . . . ∪ Li ∪A′ for all i ∈ N0 and
(d) for each i ∈ N+ there exists a homotopy Fi−1 : [0, 1]×M → O such that

each F (t, ·) is a section of π, Fi−1(0, ·) = τi−1 and Fi−1(1, ·) = τi, which is
constantly τi−1 = τi on [0, 1]× (M \ Ui).

Condition (a) will ensure that we can construct τ stepwise from the τi, and condition
(b) will ensure that we can view τi−1

∣∣
Vi

as a Zi-valued function on Vi and thus can
apply Corollary 10 to τi−1

∣∣
Vi

in order to construct τi. Finally, condition (c) will
ensure the asserted smoothness property of τ , and condition (d) will enable us to
construct the asserted homotopy.

For i = 0 we set τ0 = σ, which clearly satisfies conditions (a)-(c). Hence we
assume that the τi are defined for i < a. We consider the set

Q :=
{
γ ∈ C(Va,Wa) : γ = τa−1 on Va \ Ua

}
,

which is a closed subspace of C(Va,Wa)c.o.. Then we have a well-defined map

G : Q→ C(M,Wa) , G(γ)(x) =
{
γ(x) if x ∈ Ua
τa−1(x) if x ∈M \ Ua .

Note that, by condition (b), we have τa−1(Va) ⊆ Wa, whence τa−1
∣∣
Va
∈ Q. Fur-

thermore, τa−1(M) ⊆ O ensures
(1) G(γ)(M) ⊆ O if γ(Va) ⊆ O .
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Since (Vj)j∈N0 is locally finite and Vj is compact, the set
{
j ∈ N0 : Ua ∩ Vj 6= ∅} is

finite and hence
O′ =

⋂
j∈N0

bUa ∩ Vj ,Wa ∩Wjc

is an open neighbourhood of τa−1
∣∣
Va

in C(Va,Wa)c.o. by condition (b).
Since τa−1 is a section, τa−1

∣∣
Va

is also a section of the restricted bundle πa := π
∣∣
Va

.
For πa has the smooth trivialization ϕa, the space of sections of πa is homeomorphic
to C(Va, N) by the homeomorphism σ′ 7→ H(σ′) := pr2 ◦ϕa ◦ σ′ with inverse given
by f 7→ ϕ−1

a ◦ (id×f)
circdiag. This shows in particular that H(σ′) is smooth in a neighbourhood of
x ∈ Va if and only if σ′ is so.

We want to apply Lemma 10 to g := H
(
τa−1

∣∣
Va

)
∈ C(Va, N) and claim for

this reason that g takes values in some subset of N , diffeomorphic to a convex
neighbourhood of its modelling space. This in turn is true, as ϕa(Wa) ⊆ Va × Za
and thus g = pr2 ◦ϕa ◦ τa−1

∣∣
Va

takes values in Za by condition (b).
In order to construct τi, we now apply Lemma 10 to the manifold with corners

Va, its closed subset L′a := (L ∩ V ′a) ∪ (A′ ∩ Va) ⊆ Va, the open set Ua ⊆ Va,
g ∈ C(Va, Za) and the open neighbourhood H(O′) of g. Due to the construction,
we have La \Ua ⊆ A′ ∩Va and, furthermore, L∩V ′a ⊆ L0 ∪ . . .∪La. Hence we have

L′a \ Ua ⊆
(
L0 ∪ · · · ∪ La−1 ∪ (La \ Ua)

)
∪ (A′ ∩ Va \ Ua) ⊆ L1 ∪ . . . ∪ La−1 ∪A′

so that by condition (c), τa−1
∣∣
Va

and, consequently, g are smooth on a neigh-
bourhood of L′a \ Ua. We thus obtain a map h ∈ H(O′) ⊆ C(Va, Za) which is
smooth on a neighbourhood of L′a. Furthermore, H−1(h) coincides with τa−1

∣∣
Va

on Va \ Ua ⊇ Va \ Ua, because there h coincides with g and h(x) = g(x) implies
H−1(h)(x) = H−1(g)(x) = τa−1(x) for x ∈ Va. As a consequence, H−1(h) is
contained in O′ ∩Q, and we set τa := G

(
H−1(h)

)
.

It remains to check that τa satisfies conditions (a)–(d). Since H−1(h) coincides
with τa−1

∣∣
Va

on Va \ Ua, condition (a) is satisfied. From the construction we
know that H−1(h)(Va) ⊆ Wa ⊆ O, which implies G(H−1(h))(M) ⊆ O by (1).
In addition H−1(h) ∈ O′, which implies in turn H−1(h)(Ua ∩ Vj) ⊆ Wj and,
furthermore, τa(Vj) ⊆ Wj . Eventually, condition (b) is fulfilled. Furthermore, τa
inherits the smoothness properties from τa−1 on M \ Ua, from h on Va and since
La ⊆ L ∩ V ′a, condition (c) also holds. To construct Fa−1, we set

Fa−1 : [0, 1]×M → O ,

(t, x) 7→
{
τa−1(x) if x /∈ Va
ϕ−1
a (x, (1− t) · g(x) + t · h(x)) if x ∈ Va ,

where the convex combination between g(x) and h(x) in Za has to be understood
in local coordinates in the convex set which Za is diffeomorphic to. Since g equals h
on Va \Ua and we have ϕ−1

a (x, g(x)) = τa−1(x) for x ∈ Va, this defines a continuous
map which satisfies the requirements of condition (d). This finishes the construction
of τa and thus the induction.
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We next construct τ . First we set m(x) := max
{
i : x ∈ Vi

}
and n(x) := max

{
i :

x ∈ Vi
}

. Then obviously n(x) ≤ m(x) and each x ∈ M has a neighbourhood on
which τn(x), . . . , τm(x) coincide since Ui ⊆ Vi and τi = τi−1 on M \Ui. Hence τ(x) :=
τn(x)(x) defines a continuous function on M . If x ∈ L, then x ∈ L0∪ . . .∪Ln(x) and
thus τ is smooth on a neighbourhood of x. If x ∈M \ U , then x /∈ U1 ∪ . . . ∪ Un(x)
and thus τ(x) = σ(x).

We finally construct the homotopy F . First observe that if x ∈M and n > n(x),
then x /∈ Vn ⊇ Un and Fn(t, x) = τn−1(x) = τn−2(x) = · · · = τn(x)(x) = τ(x) by
condition (d). We set

F : (0, 1]×M → O , (t, x) 7→ Fn−1
(
(n+ 1) · (1− nt), x

)
if t ∈

[ 1
n
,

1
n+ 1

]
.

This is well-defined and continuous since
([ 1
n ,

1
n+1

]
×M

)
n∈N+ covers (0, 1]×M ,

and for n ≥ 2 and

(t, x) ∈
([ 1
n− 1 ,

1
n

]
×M

)
∩
([ 1
n
,

1
n+ 1

]
×M

)
we have t = 1

n and thus F (t, x) = Fn−2(1, x) = τn−1(x) = Fn−1(0, x) by condition
(d). Furthermore, F

∣∣
{1}×M = F (0, ·) = σ. We extend F to [0, 1] ×M by setting

F (0, x) = τ(x). This is in fact a continuous extension since each x is contained in
its open neighbourhood Vm(x) and F (t, x′) = τ(x′) for (t, x′) ∈

[ 1
m(x) , 0

]
× Vm(x)

by the first observation of this paragraph. Clearly, each F
∣∣
{t}×M is a section,

because each Fn
∣∣
{t}×M and τ are so. Furthermore, if (t, x) ∈ [0, 1]× (M \U), then

x /∈ U1 ∪ . . . ∪ Un(x) and thus F0(t, x) = · · · = Fn(x)(t, x) = F (t, x). �

Corollary 12. Let M be a finite-dimensional connected manifold with corners,
N a be a locally convex manifold and f ∈ C(M,N). If A ⊆ M is closed and
U ⊆ M is open such that f is smooth on a neighbourhood of A \ U , then each
open neighbourhood O of f in C(M,N)Γ contains a map g, homotopic to f in O,
which is smooth on a neighbourhood of A and equals f on M \ U . In particular,
C∞(M,N) is dense in C(M,N)Γ.

Furthermore, the same statement holds if we replace the graph topology C(X,Y )Γ
with the compact-open topology C(X,Y )c.o..
Proof. We consider the globally trivial bundle pr1 : M × N → M . Then the
space of (continuous or smooth) mappings from M to N is isomorphic to the
space of (continuous or smooth) sections by f 7→ σf with σf (x) =

(
x, f(x)

)
.

Then Γ(f) = σf (M) and the assertion follows directly from Theorem 11 and the
observation that the graph topology is finer than the compact-open topology. �

Proposition 13. Let M be a finite-dimensional connected manifold with corners
and π : E →M be a locally trivial smooth bundle with a locally convex manifold N
as typical fibre. Then each continuous section is homotopic to a smooth section.
Furthermore, if there exists a continuous homotopy between the smooth sections σ
and τ , then there exists a smooth homotopy between σ and τ .

Furthermore, we have that each base-point preserving continuous section is
homotopic, by a base-point preserving homotopy, to a base-point preserving smooth
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section. Furthermore, if there exists a continuous base-point preserving homotopy
between the smooth sections σ and τ , then there exists a smooth base-point preserving
homotopy between σ and τ .

Proof. The first assertion is already covered by Theorem 11. For the second
assertion let F ′ : [0, 1]×M → E be a homotopy with F ′(0, ·) = σ and F ′(1, ·) = τ .
Then we can construct a new homotopy F ′′ between σ and τ which is smooth
on a neighbourhood of the closed subset {0, 1} ×M of the manifold with corners
[0, 1]×M . In fact, taking a smooth map γ : [0, 1]→ [0, 1] with γ([0, ε]) = {0} and
γ([1−ε, 1]) = {1} for some ε ∈ (0, 1

2 ), F ′′(t, x) = F ′(γ(t), x) defines such a homotopy.
Now, σ′ : [0, 1] ×M → [0, 1] ×M × E, (t, x) 7→ (t, x, F ′′(t, x)) defines a section
in the pull-back bundle pr∗2(E) of E along the projection pr2 : [0, 1] ×M → M .
Furthermore, σ′ inherits the smoothness properties of F ′′. Applying Theorem 11 to
the manifold with corners [0, 1]×M , the closed subset {0, 1}×M , the open subset
(0, 1)×M and σ′ yields in the third component a smooth map F : [0, 1]×M → E
with F (0, ·) = F ′′(0, ·) = F ′(0, ·) = f and F (1, ·) = F ′′(1, ·) = F ′(1, ·) = g.

In the case of a base-point preserving section σ, we first claim that there exists
a base-point preserving homotopy to a section which is constantly f(x0) on a
neighbourhood of the base-point x0 of M . In fact, if x0 denotes the base-point
of M , then it has a neighbourhood U such that there exists a local trivialisation
φ : π−1(U) → U × N and that pr2

(
ϕ(σ(U))

)
⊆ Z for some open subset Z of N

which is diffeomorphic to the modelling space of N . We set f := pr2 ◦ϕ ◦ σ
∣∣
U

and
take a smooth map λ : M → [0, 1] which is constantly 1 on some neighbourhood of
x0 and with supp(λ) ⊆ U . Then we define a homotopy

G : [0, 1]×M → E ,

(t, x) 7→
{
σ(x) if x /∈ U
ϕ−1(x, (1− tλ(x)

)
· f(x) + tλ(x) · f(x0)

)
if x ∈ U ,

where the convex combination between f(x) ∈ Z and f(x0) ∈ Z has to be
understood in local coordinates in the convex set which Z is diffeomorphic to. It
is easily verified that G is continuous and has the desired properties, so we may
assume that σ is already smooth on some neighbourhood of x0. Again, interpreting
G as a section in the pull-back bundle pr∗2(E) as in the first part of the proof and
applying Theorem 11 yields a homotopy which is constantly σ(x0) on [0, 1]× {x0}.

Similarly, if σ and τ are smooth and homotopic by a continuous and base-point
preserving homotopy F ′, then the construction of the first part of the proof
yields a homotopy F ′′ which is yet base-point preserving. By a partition of unity
argument similar to construction on G, we may also assume that F ′′ is continuously
σ(x0) = τ(x0) on a neighbourhood of [0, 1] × {x0}. Once more, interpreting F ′′
as a section in the pull-back bundle pr∗2(E) as in the first part of the proof and
applying Theorem 11 yields a smooth homotopy which coincides with F ′′ on
{0, 1} ×M ∪ [0, 1]× {x0} and thus meets all requirements. �

Corollary 14 (cf. [8]). Let M be a finite-dimensional connected manifold with
corners and N a be a locally convex manifold. Then each continuous map is
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homotopic to a smooth map. Furthermore, two smooth maps f and g are homotopic
if and only if they are smoothly homotopic, i.e., there exists a smooth map F : [0, 1]×
M → N with F (0, ·) = f and F (1, ·) = g.
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