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Let —co<a<bg oo,n>2andlet f;:[a,b) x R® = R, i =1, ..., n fulfil the
local Carathéodory conditions. When studying oscillatory solutions of the system

(1) ¥i = filt,yr,--,90), i=1,...,n
it is very often supposed that

@ a;fi(t,z1,...,2n)Tiy1 >0 for z;41 #0,
fi(t,z1,...,zp) =0for ;41 =0, i=1,...,n
where a; € {~1,1}, z,41 = 21, see [3, 4].

¥y = (v1,.-.,Yn) is called a solution of (1) if y;: J = (a,b) — R s locally absolutely
continuous and (1) holds for almost all ¢t € J.

The system (1) leads naturally to be the investigation of properties of a system of
differential inequalities

3) o y;(O)yi+1(t) > 0 for yi4a(t) #0,
yﬁ(t)=0<=y.~+1(t)=0, t=1,...,n
where o; € {-1,1},t € J, yn41 = ¥1.

y=(y1,.-.,Yn) is called a solution of (3) if y;: J — R is locally absolute continu-
ous and (3) holds for all ¢ € J for which y}(t) exists. Denote by T the set of all such
solutions. It is evident that T is not empty and that (1), (2) is a special case of (3).

Let no be the entire part of 3 and let yj4xn = yj, @j4rn = a;j be valid for
je{l,...,n}, ke {...,-1,0,1,...}.

A continuous function z: J — R is called oscillatory if sup Iz(t)l > 0 for any
7 € J and there exists a sequence of its zeros tending to b. *€[:?)

Let y € T,i € {1,...,n} hold. A number 7 is called a simple zero of y; if y;(7) = 0,
vi+1(7) # 0.
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Suppose that 7 is a simple zero of y;. It follows from (3) that there exists an
interval [ry, 2] C J such that 7 < 7 < 73, ¥i(7) # 0, y/(t) has a constant sign for
almost all ¢ € [y, 2] and thus y;(¢) yi(f) < 0 holds for t € [, 7), t € (7, 7).

In the paper conditions are given under which all zeros of oscillatory functions y;
for y € T are simple in a left neighbourhood of the number 8. We generalize to (3)
or (1), (2) similar results obtained for the differential equation of the n-th order in
[5] (linear case) and [2] (nonlinear case):

@) y("):f(t,y,...,y("_l)) inJ xR* n>2,
af(t,zy,...,zp)z1 >0
where a € {—1,1}, f is continuous. This equation can be transformed into (1), (2)
withao;=...=a,-1 =1, a, = a.
Let Z: J — R be continuous. A point ¢ € [a, b] is called an H-point of Z if there
exist sequences {7%}$°, {7x}° of numbers from J tending to ¢ such that Z(7x) = 0,
Z(‘f‘k) ;é 0, (Tk - c)(i'k — L‘) > 0.

Lemma 1. Let i,j € {1,...,n} and y € T hold. Then ¢ € [a,b] is an H-point of
yi if and only if ¢ is an H-point of y;.

Proof. Let {m}{, {7 }3° be increasing sequences of zeros of y; such that
e € Tk < Tkt1, klir& x = ¢, Y(t) # 0 on (7, 7x), k € N. Then there exist numbers

tr, tk, k € N such that 7, < tp < 1 < T, yi(te), ¥i(fe) exist and y}(tx)y!(fk) < 0
is valid. According to (3) we have yi4+1(tx)yi+1(fx) < O and there exists a zero
B of yis1, te < Pr < tx. Thus c is an H-point of y;4;, too. By repeating the
considerations for 1 + 1,1+ 2, ..., n, 1, 2, ..., i — 1 we get the statement of the
lemma. The lemma is proved. a

Let ye T, j € {1,...,n}, and let y; be oscillatory. Since b is an H-point of y;, it
follows from Lemma 1 that y;, i = 1, ..., n is oscillatory, too. Thus we can define:
A solution y € T is oscillatory if every component of y is oscillatory. A point ¢ € J
is an H-point of y € T if it is an H-point of every component of y. Further, let T,
To C T be the set of oscillatory solutions of (3) for which there exists no H-point in
the interval J. The set Ty is nonempty, it contains e.g. oscillatory solutions of (1),
(2), see [3,4].

Lemma 2. Let y € T, i € {1,...,n}, 4i(t) = 0 on [c1,¢c3] C J, c1 < ¢z be valid.
Then y;j(t) =0on [c1,c2], i =1, ..., n.

Proof. As yi(t) =0 on [¢1,¢2], it follows from (3) that y;41(t) = 0 on [ey, ¢3).
By repeating this argument fori+1,7+2, ..., n, 1, ..., i — 1 we get the statement.
The lemma is proved. a
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Notation. Let y € T. Put V,(t)= Hy.(t), S ={t:te J,Va(t) #£0}. If
r.k € {1,...,2n}, r <k, then let us define *=!

Wi (t) = card{i: r < i < k,oi—19i-1(t)yi(t) < 0} for r < k,
W (t)=0,teS.

Put W(t) = Wi n41(t). Further, let 7 € J, W(r) =0, E‘y.('r)| # 0 be valid. Let

us define integer numbers m, j;, l;, i =1, ..., m and B(T) by the following relations:
lo =min{s: y,(r) #0, 1 < s < n},
Jm = max{s: y;(r) # 0, 1 < s < n},
gi=max{s:y(r)#0, .1 <I<s<Jm}, i=1,....m-1
L =min{s: y,(7) #0, ji <5< jm}, i=1,....m—1
In=n+l,
-1
(5) B(r)= Z {I -14= (( 1)l=3i 1) H (om ) sign (i, (r)y_,.(r))}
i=1 m=j;

Lemma 3. Let y € T, 0 < to < 7 < t; < b, Z|y,~(r)| > 0, Va(r) = 0 and
i=1
Va(t) #0 for t € [to,t1] — {7} be valid. Then
W(to) - W(tl) = B(T) 2 0
holds.
Proof. It is clear that the function W is constant on the intervals [to, 7) and

(7,t1). According to (5) we get

W(t) = Wl,ﬂ+1(t) = m(‘hlm(t)’ te [tU:T) U (7)t1]:

m

(6) W(to) = W(t1) = ) (Wju.(to) = Wjai(tr)).

=1
Consider the function Wj,;,. It follows from (5) that I; > ji + 2,
U] Y5:(1) # 0, y,(7) = 0 for j; < s < b, y,(7) # 0.

This together with (3) and (7) implies that the following relations are valid in a right
(left) neighbourhood of 7 for almost all ¢:

Yi-1(1) =0, y;(t) # 0= aj_1y;_,(t)y;(t) >0
(8) = aj_1y5-1(t)y; (t) > 0, (< 0)
i=k, L-1, ..., 5i+2.
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Thus

sign yj,+1(t1) = a;—1 .. . aj,41signy, (1),

sign gj.41(to) = (=1)" 7 lay,_1 ... @41 sign i, (fo)
and

;-1
Wiat1) = 5 (1~ T amsign(un()(7))
m=j;
li—-1
Wia,(to) =i —ji — 1+ %(1 - (1) T am Sign(yl.-(f)yj.-(f)))-

m=j;
Consequently, we have
li-1
. 1 li—ji .
Wias(to) = Wi (t1) = b = s = 14 5 (=1 + 1) [ amsign(u()s;.(r)) >0
m=j;
and the statement of the lemma follows from (6). The lemma is proved. O

Consequence 1. Let the assumptions of Lemma 3 be fulfilled and, moreover, let
there exist numbers i,j, 0 < ¢ < j < 2n such that y;(7)y;(7) # 0, y,(7) = 0 for
i< s < j andeither j —i =2, a4y signy;(7)y;(7) > 0 or j — ¢ > 3 is valid. Then
W(to) - W(tl) > 0.

Lemma 4. Let y€e T,0<to < < <ti<by=0on[n,mn],i=1,..,n
and V,(t) # 0 for t € [to,t1] — [r1, 72) be valid. Then W(to) — W(¢1) > 0.

Proof. Therelations (8) are valid in a right (left) neighbourhood of the number
2 (r) forj=n+1,n+2,..., 2and thus W(t;) = n, W(to) = 0 holds. The lemma
is proved. a

Theorem 1. Let y € T be valid and let the interval J have no H-point of this
solution. Then the function W is nonincreasing on the set S.

Proof. Lett;,t3 € S,t; <t;bevalid. As J has no H-points of y, the interval
[t1,12] can be divided into a finite number of subintervals on which the assumptions
of Lemma 3 or Lemma 4 are fulfilled. The theorem is proved. a

Remark. The fact that W is nonincreasing was proved for differential equation
of the n-th order in [5], [2]. It is also used in [6] for a cyclic feedback system
v} = fi(yi-1,¥i), it modn (the assumptions of f are such that this system can be
easily transformed into (1), (2)).
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Theorem 2. Lety € Ty." Then there exists a numbert € J such that the following
statements hold for I = [t,b).

I. The zeros of y;, i = 1, ..., n are simple on I.

I Ifi € {1,...,n}, c € I, yi(c) = 0 is valid, then a;_10;yi+1(c)yi-1(c) < 0.

III. The function m = W(t) is constant on the set SNI, m € {1....,n— 1}, and

the number m + %(1 + [1 a,-) is odd.
i=1

IV. Let i € {1,...,n}. Between two arbitrary consecutive zeros of y; lying in I
there exists a single zero of yi4i.

V. Leti € {2,...,n+1}. Between two arbitrary consecutive zeros of y; lying in I
there exists a single zero of y;_;.

Proof. It follows from Theorem 1 that W is increasing on S. As y € Tp, we
have SN [7,b) # @ for an arbitrary 7 € J. As W acquires the values from the set
{0,1,...,n}, there exist numbers ¢ and m such that t € S, W(t) =mfort € INS.
The statements I and II follow from Consequence 1 and Lemma 4.

Let us prove the rest of III. The inequality m # 0 follows directly from y € Tp and
the case I. Thus let m = n. Let 7 € I be an arbitrary zero of y,. Then it follows from
the case II that ajas sign(y1(t)ys(t)) < 0 holds in a left neigbourhood of 7. Accord-
ing to (8) we have assign(y2(t)ys(t)) < 0 and thus we get oy sign(y:(t)y2(t)) > 0,
which contradicts W(t) = n. Thus m < n. Further, let 7 € INS be valid. Then the

number
n

z = [Jeaw(Mwina () = [[ e [T ()

ij=1

is equal to +1 (= —-1) if H a; = 1 (= —1). On the other hand, by the definitions

of mand W(r), Z =1 (é :l —1) if m = W(r) is even (odd). This yields the rest of
the statement III.

The case IV: Let £ < 7, < T, be consecutive zeros of y;. It follows from the
proof of Lemma 1 that y;4+; has a zero in the interval (71, 72). The statement will
be proved by the indirect proof. Thus, let there exist zeros c;, ¢z of yi4+1 such that
1 < ¢1 < ¢2 < 7T2. Without loss of generality we can suppose that c;, c; are
consecutive zeros, yi+1(t) # 0 on (c1,c2). Then according to the statement II we
have ajji0;yig2(cj)yi(c;) <0, j = 1,2. Thus yit2(c1) and yip2(c2) have the same
sign and by virtue of (3) the function g;,, has a constant sign in a neighbourhood
of ¢1, ¢z (for almost all t). But this contradicts the fact that c;, c, are consecutive
zeros of y;41.

The case V can be proved similarly to IV. The theorem is-proved. a

As the system (1), (2) is a special case of (3), we get the following consequence of
Theorem 2.
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Consequence 2. Let y € Ty be a solution of (1), (2). Then the statement of
Theorem 2 holds.

In [1] it is proved that for the equation (4) there exist at most two H-points in
the interval J if either n is odd or n is even and (—1)"°a = —1. If n is even and
(=1)"°a = 1, then infinitely many H-points may exist in J, see an example in [1].
In the sequel this result will be generalized to the inequalities (3).

Lemma 5. Let y € T, 1 € {1,...,n} and either n be odd or n be even and
(=1)" J] s = 1. Let
i=1

Vi 1Yi4itl = Qi iYi—in1 Yy, 1=1,2,...,s
hold where s = n — ng — 1. Then the function

no—1

FO= 3 (- ' I atss Jur-ssis1(0)

ji=-1

+ 2(n = 2mo)( 1)"°(1'[a,)y,+,,o+l(t)

j=0

is nondecreasing on J.

Proof. For almost all t € J we have

F'(t) = eiyyigr = "il [(_l)i(

i
H al+j)(y§-iyl+i+1 - 011+i011+iy1—i+1yf+i]

i=1 j=-1
no—1
+ (—1)""-1( H aj+1)yl—ﬂo+1y;+no
j=—-no+l
n
+ (n - 2710)(—1)"0 ( H C!j) yl+no+ly;+no+1.
i=1

Using the assumptions of the lemma and the fact that yi4no41 = yi—n, holds for n
odd we get for almost all ¢:

F'(t) = aqy;(t)yi41(t)  for n odd,

F/(t) = e (O (8) + (—1)7? (Ha)az+noy,+m(t>y:+no+1(t) for n even.
1=1

Thus according to (3) F is nondecreasing on J. The lemma is proved. O
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Theorem 3. Let the assumptions of Lemma 5 be fulfilled. Then there exist at
most two H-points of y in J. If ¢j, ¢2, 0 < ¢1 < ¢3 < b are two H-points then
yi =0on[cy,c2), i =1,2,..., n. Moreover, if y is oscillatory then the statement of
Theorem 2 is valid.

Proof. It follows from the definition of H-points that ¢ is an H-point, and the
implication ¢ € (0,b) = y;(c) =0,i=1, ..., n holds. Thus, F(c¢;) = F(c2) =0 and
according to Lemma 5 we have F(t) = 0, t € [c1,c2]. This together with (9), (3)
yields y}(t)yi4+1(t) = 0 for almost all ¢ € [cy, ¢2] and thus using (3) we have yi41 =0
on [c1, ¢2]. We can conclude by virtue of Lemma 2 that y; = 0 holds'on [e1,¢2), i = 1,
..+, n. It is clear that three H-points cannot exist. The theorem is provea. a

Consequence 3. Let y be a solution of (1), (2),1 € {1,...,n}. Let either n be odd
n
or n be even and (—1)"° [] a; = —1. Let there exist functions F;: J x R, — (0, 00),

=1
j=1,..,s5 s=n—-ng 2 1 such that F; fulfil the local Carethéodory conditions and

¢ fieitzy, oo zn) = oo Fi(t 2, . Z0) T4y

f1+j(t,1‘1, .. .,.‘L’n) = aH.ij(t,l'], .. .,1:,1)1:1+J'+1, ] = 1, sy S
Then the statement of Theorem 3 holds.

Remark. Suppose that there exist € > 0 and functions a;: J — (0,00), i = 1,
..., n such that a; are locally integrable and

|fi(t, 21, ., 20)] S ai(t) D Jail on T x [—,]™.
i=1

Then it is clear that the Cauchy problem of (1), (2) with zero initial conditions is
uniquely solvable. Thus there exists no H-point of an oscillatory solution y, and the
statement of Theorem 2 holds for y.
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