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(Received May 11, 1991) 

Dedicated to the memory of Professor Earl A. Coddington 

0 . INTRODUCTION 

The aim of the present paper is to compare some notions of multidimensional 

generalized Riemann integrals whose definitions involve the notion of regularity of 

interval (i.e. the minimum of the ratios of its edges), among them those introduced 

by J. Mawhin [5], W. F. Pfeffer [6] and the authors [3]. 

Let I be a compact interval in R n , / : I —> R. In connection with his investigation 

of the Gauss-Green theorem, J . Mawhin in [5] introduced a generalized Riemann 

integral which we will call the M-integral (see Definitions 5 and 1 in Section 2). Let 

us assume t h a t / is M-integrable. It is known that F(J) — M fj f exists for every 

interval J C I and that F is additive in the following sense: 

let J, I\ be nonoverlapping intervals such that J U I\ is an interval, J U I\" C I; 

then 

F(JUK) = F(J)-f F(/\). 

On the other hand, g : JUI\ —- R need not be M-integrable even if both its restrictions 
g\ji Q\K a r e M-integrable (see [2], Example 1). This drawback was removed by W. 
P. Pfeffer [6] and, in a different way that will not be followed here, by the authors 
[2]. Pfeffer's integral, here called the Pf-integral (see Definitions 5 and 3 in Section 
2) has the following properties: 

(i) if / is Pf-integrable, then it is M-integrable and both integrals are equal to 
each other; 

This research was supported by grant No. 11928 GA of the Czechoslovak Academy of 
Sciences. 
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(ii) if J and A' have the same properties as above, if g: J U A' — R and both its 

restrictions g\j,g\i\ are Pf-integrable, then g is Pf-integrable and 

P f / g=W fg + Vr f <,. 
JjuK Jj JK 

Let L be a compact interval, / C Int L, / : / —» R. Extend / to L by zero, i.e. 

define / e x : L —> R by 
( f(l) for/, G / , 

jex(0= < 
1 ' \ 0 for I eL\I. 

We will prove in the paper thai / is Pf-integrable iff fex is M-integrable (and, of 

course, the integrals are equal to each other). Moreover, a simplified version of the 

Pf-integral (see Definitions 5 and 4 in Section 2) is shown to be equivalent to the 

original one. (This result was announced in [3], Example 7.) 

Since a descriptive definition of the M-integral is available, see [3] and Section 4 

of this paper, we thus solve also one of the problems posed by W. F. Pfeffer in [6]. 

1. PRELIMINARIES 

Throughout the paper, n > 1 is an integer, Rn is the /.--dimensional Euclidean 

space with the norm 

H-i'H = niax{|x*i|; / = \, 2, .. ., n}. 

For x G Rn , r > 0 we denote 

V(x,r) = {yeRn;\\y-x\\^r). 

(Using these sets instead of balls B(x, r) does not affect our considerations but often 

simplifies them technically.) The symbols I n t M , C1M, DM, dist(x, M) are used 

with the s tandard meaning provided x G Rn , A/ C R", m(M) is the 7i-diniensional 

Lebesgue measure, |A/| the number of elements of a finite set. 

If a = (ai, ao, . .. , an), b = (bi, bo, . .. , bn), a.- < b.- for i = 1, 2, . . ., n, we write 

[a l 5b i] x [a2M] x . . . x [an,bn] = [a,b], 

[r/!,bi) x [a2 ,o2) x . . . x [a„,6TI) = [a,b). 

(iiven k G {0, 1,2, . . ., n — 1} then any k-dimensional linear manifold E in Rn 

which is p a r a l l e l t o k d i s t i n c t c o o r d i n a t e axes will be called a k-plant (plane, 

if its dimension is not specified). (Note that the definition does not include the case 

k = n, i.e. E = Rn . ) 
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With help of the notion just introduced we will generalize the well known concept 

of regularity of an interval. Recall that the regularity of a nondegenerate interval 

J = [a,b] in Hn is the number 

reg J = min{b2 — a,, i = 1 ,2 , . . . , ??}/ max{/;z — a,-, / = 1 ,2 , . . . , ??.}. 

Let E he a k-plane parallel to the x^-axes, ji •£ j t for ? / f, ?, (' = 1,2, . . ., k. If 

J n E = 0, we define reg^J = reg J; if J H F ?- 0 we set 

(1) re&E J — ---i--{&/, — c/j t; i = 1, 2, . . ., k}/ max{bj — a ; ; j = 1, 2, . . . , ??} 

provided k E {1, 2, . . . ,?? — 1}; 

regE J = 1 provided k = 0. 

Let £ = {E\, F2> • • •, Et} be a finite family of planes (generally of various dimen­

sions). We define 

(2) r e g , J = max{regE J; E E <f U {R n }} , 

where we put regR„ J = reg J (which is formally justified by the formulas defining 

regEJ , reg J). 

R e in a r k . Modifying our definitions, we can introduce 

rgJ = (b! - ai)(b-> - a2) . . . ( & „ - a n ) / (max{b i - a,-; i = 1,2, . . . , ??})" 

and 

r g E I = (hi -(lJx)(bJ2 -o,J2)...(bjk -ajk)/(nv<\x{bi - a , ; i = 1, 2 , . . . , n})k, 

if E is as above, E H J 7- 0, k > 0; 

r g ^ J = 1 if FnJ ^ 0 ,k = 0; 

rg , , . / = rgJ if En J = 0. 

Finally, for a finite system £ of planes we set 

r g , J = m a x { r g E J ; KG^U{R'1}}, 

putting rgR„ J = rgJ analogously as above. 
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Let us note that rg^ J is tlie quantity used by W. F. Pfeffer to define (s,S)-

intervals in his paper on generalized Riemann integrals [6] (except for the inessential 

difference in taking the diameter of J instead of the maximal edge). Since the 

inequalities 

(reg£, J ) * ^rgEJ <C regE J 

evidently hold, the difference between reg and rg is immaterial. 

Let / C Rn be a nondegenerate compact interval. Any finite set of pairs ( f ,J ) , 

where J is a nondegenerate compact interval, / G J C / , and all intervals J from the 

set are (pairwise) nonoverlapping, is called a system in I. If, moreover, the union of 

all J's is the whole / , the system is called a partition of I. 

Let 0 < cv -$ 1. We say that an interval J is a-regular (Ea-regular, 'S'a-regular) 

if reg J ^ a (reg^ J j> a, reg^ J j> a). A system A is called a-regular {Ea-regular, 

(fa-regular) if J is a-regular (Ea-regular, ^a-regular) for every J for which there is 

/ such that (t,J) e A. 

Let 8: I —» (0,oo) (6 is called a gauge on I). A pair (/, J), t G J C / is said to he 

6-fine if J C V(t,6(t)). A system A in / is said to be 8-fine if each of its elements 

is o~-iine. 

I f / : / —- R and A = { ( ^ J ) } is a system in / , vve will write 

5 ( / , A ) = J2 /(<)»'(«/). 
( t , J ) € A 

2. D E F I N I T I O N S AND MAIN RESULTS 

In the present section we will define several types of integral and formulate the 

main results (Theorems 1, 2) describing the relations between them. Throughout 

the section vve assume that / C Rn is a compact nondegenerate interval, / : / —» R, 

0 < rv < 1. 

De f in i t ion 1. The function / is said to be M a-integrable (M for Mawhin) if 

there is c G R such that for every e > 0 there is a gauge 6 on / such that 

05) \S(f,A)-c\^e 

for every (5-fine a-regular partition A of I. We write c = \\afjf; c is called the 

\\(\-int((jral ( o f / over / ) . 

D e f i n i t i o n 2. Let / C In tL C Uu, L a compact interval, let / e x : L —- R be 

defined by 
( f(.r) forxef, 

f-<(•>•) = { 
I 0 for r e L\l. 



The function / : I —* R is called extensively a-integrable (ex a-integrable) if there 

exists L, / C Int L, such that / e x ' . L —> IR is M a-integrable (on L). We write 

ex cv fjf = M cv fL fex and call this number lhe extensive a-integral (of / over 1). 

R e m a r k . Neither the extensive o-integrability nor the value of the extensive 

cv-integral depends on the choice of L. The proof is straightforward . 

Def in i t ion 3. The function / is said to be Pf a-mtegrable (Pf for Pfeffer) if 

there is c E R such that for every e > 0 and every system of planes & there is a 

gauge h on 1 such that (3) holds for every Wine <fcv-regular partition A of 1. We 

write c = Pf cv J^ b; c is called the Pf a-integral (of / over 1). 

Def in i t ion 4. The function / is said to be weakly Pf a-integrable if there is c E R 

such that for every e > 0 there is a gauge 6 on 1 such that (3) holds for every 6-fine 

^cv-regular parti t ion A of 1, where & is the family of all k-planes which include a 

^-dimensional face of 1, k = 0, 1, 2, . . . , n — I. We write c = w Pf cv fl / ; c is called 

the weak Pf a-integral (of / over / ) . 

Def in i t ion 5. The function / is M-mtegrable (extensively integrable, Pf-inte-

grable, weakly Pf-integrable) if it is M a-integrable (extensively a-integrable, Pf cv-

integrable, weakly Pf a-integrable) for every a, 0 < a < 1. We then write 

M I f = Ma I f (the M-integrat), 

ex / / = ex cv / / (the extensive integral), 

Pf / / = P f a If (the Pf-integral), 

iv Pf / / = ID P f a / / (the weak Pf -integral), 

where a G (0, 1) is chosen arbitrarily. (The correctness of the definition is obvious.) 

For each of the above notions of integral we can define the respective primitive 

function F by F: K »—> F(K) = *fKf, where A' C 1 is an interval and * s tands 

for any one of the symbols from Definition 5. By the elementary properties of the 

above integrals F exists and is an additive function of interval (on 1). By additivity 

we can extend its definition to finite unions of (nonoverlapping) intervals. 

The following two theorems represent the main result of the present paper. Their 

proof is obtained by simply combining Propositions 1-4, which are formulated and 

proved in the next section. 

T h e o r e m 1. The following conditions are er/mvaient: 
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(\a) f is extensively a-integrable, 

(ua) f is Pf a-integrable, 

(i i i a) / is weakly Pf a-integrable. 

If one of the above conditions is fulfilled, then also 

(-va) / is M a-integrable 

and 

ex< ;cv / / = P f a / / = ujPfa / / = M a / / . 

T h e o r e m 2. The following conditions are equivalent: 

(i) / is extensively integrable, 

(ii) / is Pf-integrable, 

(iii) / is wPf-integrable. 

If one of the above conditions is fulfilled, then also 

(iv) / is M-iutegrable 

and 

:J / = Pfj f = wPfJ f=uj f-

R e m a r k . The condition (iv) is not equivalent to the other conditions in The­

orem 2, neither is ( iv a ) equivalent to the other conditions in Theorem 1. This is 

demonstrated (after a minor routine modification) by [2], Example 1. 

3. P R O O F S 

P r o p o s i t i o n 1. If f is Pf a-integrable, then it is weakly Pf a-integrable, and the 

two integrals coincide. 

P r o o f follows directly from Definitions 3, 4. • 

P r o p o s i t i o n 2. If f is weakly Pf a-integral)le, then it is extensively a-integrable, 

and the two integrals coincide. 

We need the following lemma, proved in a more general setting as Lemma 2.11 in 

[3]. 

L e m m a 1. Let e > 0, N C / , m(N) — 0, / : / —> R. Then there exists a gauge 

So on N such that 

s\\fie)^e 

for every &o-fine system 0 in I such tha.t s £ N for a/i (s, K) € 0 . 
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P r o o f . Denote D\ = {x G N; | / ( x ) | <C 2}, Dk = {x G N ; 2k~l < \f(x)\ ^2k} 

for k = 2, 3, . . .. There exist open sets Gk D Dk with m(Gk) ^ e2~2k, k = 1,2, . . . . 

Choose So so that V(X,6Q(X)) C Cjt for x £ Dk. The proof is now completed in a 

straightforward way. • 

P r o o f of Proposition 2. Let e > 0. Set £i -= ^£ and find the corresponding 

gauge 6\ from the definition of the weak Pf cv-integral. Choose an interval L such 

that hit L D I. Without loss of generality we will assume that 

V(t,8\(t)) C In t I for t G Int I , 

V(Mi(l))C Lfor t edi. 

Find the gauge 8o from Lemma 1 corresponding to €\ and N = dl. Define a gauge 

6 on L as follows: 

( 6\(t) f o r l e l n t / , 

m i n ( 6 i ( 0 , 5 0 ( 0 ) f o r * € 9 / , í(0 
I d i s t ( l , / ) for * G L\I. 

Let A be a 6-fine o-regular partit ion of L. Define 

Ai = {(/, 7\ n / ) ; (t, A') G A, K n / nondegenerate}. 

Evidently, Ai is a 6]-fine partition of/; moreover, we will prove that it is /^a-regular . 

Indeed, let E G ^\ then xegE(K n / ) ^ regE /v since in the ratio defining the 

K-regularity the numerator does not change (the lengths of only those edges are 

included which are parallel to E and hence not cut by E), while the terms in the 

denominator either do not change or become smaller. (The case k = 0 is trivial.) 

Moreover, it is evident from (1) that reg K ^ reg£ K for any E, hence r e g j r ( / \ n / ) ^ 

regjr Iv ^ reg K ^ a since A was assumed a-regular. 

Consequently, 

W^A^-wPfaJfl^et. 
Further, we have 

\S(f,A)-S(f,Al)\^2el 

since in virtue of the definition of the gauge 6 all summands f(t)m(J) cancel except 

those with t G 01, and for them we have the estimate following from Lemma 1. 

Hence 

\S(f,A)-wPfaJf\< 

^\S(f,A)-S(f,A1)\ + \S{f,Al)-wPfa J f\^3£i = e, 

winch completes t lie proof of Proposition 2. • 
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P r o p o s i t i o n 3. If f is exa-integrahle, then it is M a-integrable, and the two 

integrals coincide. 

P r o o f , follows immediately from the fact that the M o-integral, and hence also 
excv-integral, is additive in the sense mentioned in Introduction. • 

P r o p o s i t i o n 4. If f is exa-integrahle, then it is Pf a-integrable, and the two 

integrals coincide. 

P r o o f . We shall prove: for every e > 0 and any system of planes rf = 
{Fi, F2> • • • 5 Ei\ there is a gauge b on I such that (3) holds for every <5-fiiie <frv-
regular partition A of I. Note that (3) with c = ex a f. f is equivalent to 

£ (F(J)-f(ł)m(J)) 
{t,J)ÇA 

<e, 

where F is the primitive of / (in the sense of the ex a-integral). 

Let e > 0 and £ be fixed. Without loss of generality we may and will assume 

(4) & C <?, i.e. £ includes all planes which contain a (k-dimensional, k = 0, 1, 

7i—l) face of I and have the minimal dimension possible; 

(5) if Ej H Ek± 0 then Ej n Ek E <f ( j , £ = 1 , 2 , . . . , I). 

Indeed, these assumptions are justified by the evident implication rf C <^ =-> 

reg^ J ^ r^gjr J where £, .%P are any two finite systems of planes; hence the gauge 

6 corresponding to .Jf and e > 0 in the definition of the Pf o-integral can be used 

for any system rf C Jtf* (and the same e). 

Since / is ex a-integrable, we choose an interval L, Int L D 1, and find a gauge 6\ 

on L corresponding to e\ in the definition of the excv-integral (e\ will be specified 

later). Without loss of generality we will assume 

(6) V(t, 6x(t)) H Ej = 0 for t G L\E3, j = 1, 2 , . . . , t 

(note that , in particular, V(t,8\(t)) D I = 0 for t G L\ I and V(t,6\(t)) C Int 1 for 

/ E Int 1 by virtue of (4)). Further, find a gauge o~0 from Lemma 1 corresponding to 

S\ and N = Uj = i ^ r S e t 

f « i ( 0 f o r * G L \ U J = i£;, 
5(0 = < , 

[n i in(<$o(0^i (0) f o ^ ^ L n U = i Ej-

Let A be a 6-fme rfo-regular partition of / . Denote 

l 

Ai = {(/,J)GA; t$ [JEJ}) 6 = A\A1. 
i = 1 
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Then reg J ^ a for (t,J) E Ai since in this case J n Uj = i Ej = <& (cf- (6)). The 

Saks-Henstock lemma [3, Lemma 2.4] yields 

(7) Yl \E(J)-f(t)m(J)\^2eu 
( t ,J )GA 1 

where F is the primitive off (in the sense of the excv-integral). 

Further, since 6(t) <C 6g(t) for t Zz^Jj-i Ej (1 I, we have (cf. Lemma 1) 

(8) 5(|/|, eu-,. 

Hence to estimate the integral sum 

£ \F(J)-f(t)m(J)\ 
(t,j)eA 

it suffices to establish an estimate for 

£ î (-I)i = £ £ \nj)\ 
( t , J ) e e j = i ( t ,J )G© J 

where 6 , = {( l ,J) E 6 ; / E KAUi^; d imE* < dim £,-}}. (The identity 6 = 

Uj = i 9 i holds due to (5).) 
Let us fix j E { l , 2 , . . . , t } and order the coordinates so that 

Ej = {x- E Rn ; x*i = ci, x2 = c 2 , . . . , x m = c m } , 

vvliere 1 <C 77. <C n and cz- E R for i = 1, 2, . . ., 7/?. For A = (Ai, A2, . . . , Am) E A = 

{0, l } m let us denote 

Qf = {x E Un ; (-1)A« (zt- - a) > 0, t = 1, 2 , . . . , m } . 

We will first estimate £ ( M ) e 0 | F ( J H Q*)| for a fixed A, say for A = 0 E R m . (The 

other cases are quite analogous.) 

Let (t, J) E 0 j . Then ti = ci , /2 = c2, . . ., tm = cm and writing 

J = [a,b] = [a!,bi] x [a2,b2] x . . . x [an,bn] 

J C\QQ
3 = [cub\] x . . . x [c m ,b m ] x [ a m + i , 6 m + 1 ] x .. . x [an,bn] 

and, obviously, C{ E [ a ; A ) for i = V 2, . . ., m. (The case Q = b; can be omitted 

since then J n Q® is a degenerate interval.) 
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Let us denote 

(9) /i = max{bi — cii;; i = 1,2, . . . , 7?}, 

and let A' be an interval such that 

(10) K = [rfi,ei] x ... x [Jm ,em ] x [ a m + i , 6 m + i ] x . . . x [ a n ,b n ] , 

/ v c / n g j , 
0 < e,- — di <C (1 — a)h for i — 1 ,2, . . . , m 

(hence a; <C ct <C de < ez <C bt for i = 1, 2, . . ., ??i). For 1/ = (1/1, *v2, . . ., vm) G A let 

us set 

P(K,v) = [et - b,J! + i / i ( e i - J i ) ] x . . . x [em - A ,d m *+ i / m ( e m - a\„)]x 

x [ o m + i , 6 m + i ] x . . . x [ a n ,b n ] . 

Evidently, X[d..e.) = \[e t-/i,e,) — X[e1-/ild.) where \>/ is the characteristic function of 
M. Consequently, 

F(A') = 5>(i/)F(P(A>)) 

provided w(v) G { — 1,1} are properly chosen. Note that this is the point where vve 

essentially exploit the fact that the exa-integral (and not only M cv-integral) of / 

exists, since the intervals P( A', v) go beyond the interval / if Ej is a face of / . 

Let us prove that 

(11) r e g P ( A » ^ «. 

We will prove that all edges of P(/\',.v) have lengths in the interval [o7?,h], which 

obviously yields the desired inequality. If/ G {1, 2 , . . . , ?7i} then the length of the 

i-th edge is either ez- — (e? — //) = h (if Vj = 1), or J2 — (ez- — //) = h — (e t — 

di) ^ h — (1 — a)h = o7i ( if Vi — 0). Now recall that J is <fa-regular. We have 

r e g ^ J = regJ if t £ Ek (cf. (6)); since (t,J) G 6 j , this occurs if Ek H P; = 0 

or if Ek H Kj 7- 0 and dimK^ < dimFy (see the definition of 0 ; ) . If Ek D Fy 

then reg£fc J <̂  reg E J (this implication holds generally, as is easily seen from (1)). 

Consequently, r e g ^ J <C reg^ J for k = 1,2, . . ., i, which implies 

reg^ J = reg£ J = — min{b2 — a\; i = m + 1, ?// -f- 2, . . ., 71} 
j /i 

and, in view of the r^a-regularity of J, we have b; — a? ^ a7i for i = m -f 1, ?»-|- 2, 

. . ., 77, which completes the proof of (11). 
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There exist nonoverlapping intervals K\, A'2, . . . , Ke such that (Ja=i ^ = JC\Qj 

and each of the intervals has the form (10), i.e. its edges [c/t-, e t], i = 1, 2, . . . , m are 

not longer than (1 — a)h. Since b( — C( ̂  6; — a, ^ h for f = 1, 2, . . ., m (cf. (9)), we 

can choose the intervals Ka so that their number g satisfies the inequality 

(12) e < [ ( l - a ) - 1 + l]m . 

Now, let us construct the intervals Ivi, I\2, . .., Adjust described for every interval 

Jf\Q°j where (l, J) £ B j ; let us denote them by Ka(J) (evidently, they can be chosen 

so tha t g is the same for all J's). Hence we have 

£ |E(jnQ°)K£ £ \F(Ka(J))\$ 

(13) $ E E E \F(P(Ka(J),v))\-
<x=l j/EA (t,J)eQj 

Let ( * , J ) , ( l ' , J ' ) E 0 j , J ^ J' and let both J n Q?, J' fl Q°j be nondegenerate 

intervals. Analogously to J =- [a, 6] let us write 

/ ' = [a',6'] = [a\,b\] x K-fc'2] x . . . x [a'n,b'n]. 

Since the intervals J, J' do not overlap, the same holds a fortiori for intervals 

Ka(J) C J, A\-(J ' ) C J', <r E { 1 , 2 , . . . , D } . Moreover, since J n Q ° , J' n Q*j 

are nondegenerate n-dimensional intervals by assumption, the inclusion 

[ci, rnin(6i, 67
x)] x . . . x [cm , min(6m , 6m)]x 

x [ m a x ( a w + i , a m + 1 ) , m i n ( 6 m + i , 6 m + 1 ) ] x . . . x [max(an , a n ) , min(6n , 6'n)] 

c J n J' n Q°j 

implies that the intervals [ a m + i , 6 m + i ] x . . . x [ a n , 6 n ] , [ a ' m + 1 , 6 m + 1 ] x . . . x [a n ,6 n ] do 

not overlap, either (in R n ~ m ) . Combining the two results, we conclude that any two 

intervals P(Ka(J), *v), P(Ka(J'), v) with <r £ {1, 2, . . . , # } , 1/ £ A are nonoverlapping 

(in R n ) . (If ?7i = n then Ej = {s} is a one-point set, Qj is an n-dimensional or thant , 

and evidently there is only one element (.s, J) such that J C\QQ- is nondegenerate.) 

For <T, v fixed let us estimate as follows: 

(14) £ |F (P(A ' f f ( J ) , i / ) ) | < 
(<,-/)€e, 

^ £ |F(P(/C(J)^))-/(0'»(I5(A'.(i),^))| 

+ £ |/(0MP(A'-(./),i')). 
( - , ^ ) € 0 i 
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The gauge 6 lias been chosen so small that by Lemma 1 the second sum on the 

right-hand side is not greater than £1. Further, we liave (since (l, J) £ Qj implies 

t £ Ej H J ) 

tCP(K(J(J),is)cV(t1h)cV(tJ(t))) 

vegP(K(T(J),iy)^a(see (11) ) , 

and the intervals P(Ka(J),v) do not overlap as proved above. Hence they form a 

8-fine o-regular system, which justifies tlie application of tlie Saks-Henstock lemma 

to tlie first sum on the right-hand side of the inequality (14), hence 

£ |F(P(K4J),^))K3^. 
(t,J)eej 

Taking into account the estimate (12) for g and the fact that Card A = 2 m we find 

from (13): 

] T | F ( J n Q 0 ) K 2 - [ ( i - a ) - 1 + i ] m 3 . 1 . 

(t,J)eey 

Here Q°- can be replaced per analogiam by any Qj with AG A, hence 

E W K E E \F(JnQ})\$2*m[(l-a)-l + l]mSe1 
(t,J)£®j AGA(t ,J)G©j 

and, finally summing over all planes Ej we obtain (using tlie obvious inequality 

m = m(j) ^ n) 

E if('')KE E i ^ ^ K ^ ^ i - a r ' + ir-k,. 
(t,J)ee j = \ (t,j)e&j 

Combining this estimate with (7), (8) we conclude 

] T |F (J ) - f(t)m(J)\ <$ 3(1 + 22ne[(\ - a )" 1 + 1]")*- = qex. 
(t,J)eA 

If we start the proof with S\ = q~[£, vve arrive at an estimate proving that tlie 

Pf o-integral off over I exists and coincides with the ex a-integral. • 
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4. CONCLUDING REMARKS 

1. In [3], Theorem 2.5 it was proved (in a more general axiomatic setting) that 

the M cv-primitive function is continuous in the interior of the interval / of the M c\-

integrability. (That is, if L C Int / and e > 0 then there is // > 0 such that 

| F ( L ) — F(A')| ^ e for every interval K C I with m(L -f- K) <C 7/, where -f- denotes 

the symmetric difference.) This evidently implies that the ex cv-primitive function is 

continuous everywhere in / (including the boundary), and consequently, the Pf cv-

prirnitive has the same property. 

2. Note that for every cv,0 < cv < 1, there is a function / = fa which is M c*\-

integrable for every cvi,cv < cvi < 1, and is not M cv2-integrable for every cv2,0 < 

cv2 < cv, see [4]. It is even true that for every 0 < cv < 1 there are functions g, h such 

that g is M cvi-integrable iff cv < c\\ < 1 and h is M cv2-integrable iff a <C cv2 < 1. 

3. Specifying Theorem 4.2 of [3] to comply with our setting of the problem, we 

obtain 

T h e o r e m . A function f: I —> R is M cv-integrable with a primitive F iff 

(i) F is additive, 

(ii) F is a-regularly different!able to f(t) at almost every t G I, 

(iii) F is a-variationally normal on I. 

The last property is also called "good behavior on sets of zero measure", meaning 

the following: for every N G I with m(N) = 0 and every e > 0 there is 8: / —• (0, oo) 

such that (A) ^ |A(-I)| ^ e f ° r every cvfine cv-regular system A such that t G N for 

every (/, J) G A. (The sum is taken over all J such that (l, J) G A for some t.) 

The above theorem represents a descriptive definition of the M cv-integral, and 

by easy modification also of the ex cv-integral and ex-integral. Since the latter two 

integrals coincide with the Pf cv and Pf-integral, respectively, we have solved the 

first part of Problem 6.6 posed by W. F. Pfeffer in [6], namely to give a descriptive 

definition of his concept of integral. 

4. Let us mention here T.S. Chew's paper [1] in which the author claims to 

have solved the same problem. However, the relevant part of Chew's definition 

of the (allegedly Pfeffer's) integral reads "for every e > 0 there is a gauge 6 and a 

regularity Q . . .", while Pfeffer's definition starts "for every e > 0 and every regularity 

Q there is a gauge 6 . . .". The order of the quantifiers certainly affects the notion 

of the integral substantially. Indeed, the function / = fQ mentioned in point 2 of 

this section provides an example of a function that is not Pf-integrable but is Pf cvi-

integrable for cv < cv} < 1, thus being 4ntegrable in the sense of T. S. Chew. (In [4] 

only M cvi-integrability is claimed, but it is immediately seen from the construction of 
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f t h a t i t is a l so ex c*i- integrable a n d hence Pf c t i - in tegrable as wel l . ) T h u s , T h e o r e m 

3 in [1] solves a p r o b l e m different from P r o b l e m 6.6 in [6]. 
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