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OSCILLATION OF ODD ORDER NEUTRAL 

DIFFERENTIAL EQUATIONS 

K. GOPALSAMY, Adelaide, B. S. LALLI, Saskatoon, and B. G. ZHANG, Qingdao 

(Received December 18, 1990) 

Summary. A necessary and sufficient condition for the oscillation of all solutions of 

dn 

— [*(<) - cx(t - r)] + p(t)x(a(t)) = 0, 

where n is odd integer is obtained. A new sufficient condition for the oscillation of all 
solutions is derived along with some comparison results. 

A MS classification: 34K20 

1. INTRODUCTION 

Oscillation of higher order neutral differential equations of the type 

(1.1) ^ [x(t) - cx(t - T)] + p(t)x(a(t)) = 0, t^t0 

have been recently considered by several authors (Ladas and Sficas [5,6]], Wang [8], 

Zahariev and Bainov [10] and Zhang and Gopalsamy [12]). The purpose of this article 

is to discuss the asymptotic behavior of (1.1) when n is an odd positive integer. We 

recall tha t a solution of (1.1) is said to be oscillatory if it has arbitrarily large zeros on 

[lo,co) and (1.1) is said to be oscillatory if every solution his equation is oscillatory. 

First we derive necessary and sufficient conditions in section 2 for the oscillation 

of all solutions of (1.1) and discuss certain comparison results in section 3. In section 

4, we establish new results for the oscillations of all solutions of (1.1) We note tha t 

all inequalities are assumed to hold for all sufficiently large t. 
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2 . OSCILLATIONS 

We begin with the following Lemma which describes the asymptotic behavior of 

nonoscillatory solutions of (1.1). 

L e m m a 2 .1 . Assume the following: 

(i) c and r are constants with 0 ^ c < 1 and r > 0; 

(ii) <r E C(f t+, R), /t+ = [0, oo), lim or{t) = oo; 
f—»oo 

oo 

(iii) p £ C(R+} # + ) and f p(s)ds = oo, T ^ t0. 
T 

If x(t) is an eventually positive solution of (1.1), then 

(a) lim x(t) = 0 
t—••oo 

(b) (-iyZ(i) > 0 eventually and 

lim Z{i\t) = 0, i = 0, 1 ,2 , . . . , n- 1, 
t—>oo 

where 

(2.1) Z ( 0 = x ( 0 - c z ( l - T ) . 

P r o o f . Let #(/) be an eventually positive solution of (1.1); then Z^n) <J 0. 

Since p(t) ^ 0 we must have either 

(2.2) lim Z^n~l\t) = -oo 
t — oo 

or 

(2.3) lim Z^~x\t) = L 
t — oo 

It is easy to see that in the case of (2.2) we have 

(2.4) lim Z(t) = - o o . 
t —oo 

However, when c = 0, Z(t) = x(t) and so (2.4) is not possible. When 0 < c < 1, 

(2.4) implies that lim x(t) = 0; consequently lim Z(t) = 0 and thus (2.4) is again 
t—+oo 2—>-oo 

impossible. Let us then consider the only possible case namely (2.3). If £ ?- 0, then 

(2.3) implies that either 

(2.5) lim Z(t) = -foo 
t—"CO 
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(2.6) lim Z(t) = - c o . 
t—»oo 

If (2.5) holds, then we obtain 

(2.7) lim x(t) = +oo. 
v ' t-»oo 

Now integrating both sides of ( I T ) from T to oo and using (2.3) we get 

oo 

(2.8) p(s)x(a(s)) ds < oo, 

T 

which together with (2.7) leads to 

oo 

(2.9) Jp(s) ds < oo 

T 

providing a contradiction to the assumption (iii) of the Lemma. Therefore £ = 0 

which implies that Z ( n " ! ) > 0 and lim Z^n~l\t) = 0. It will follow from this tha t 
t—»oo 

( - I ) ' Z W ( O > 0, i= 1 , 2 , . . . , o - i ) , 

and 

lim Z^(t) = 0, i= 1 ,2 , . . . , ( 7 . - 1). 
t—»oo 

In particular Z'(t) < 0. Hence 

lim Z(t) = £\. 
t—»oo 

As before we can show that £\ < 0 is impossible. If £\ > 0 for some T ^ to we will 

have 

0 < £\ < Z(t) < x(t), for t ^ T. 

This together with (2.8) leads to (2.9). Thus we must have £\ = 0, and hence 

lim Z(t) = lim [x(t) - cx(t - r)\ = 0 
t—»oo t—»oo 

from which one can derive using c G [0,1) that lim x(t) = 0. This completes the 
t—»oo 

proof. • 
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T h e o r e m 2.2. Let the hypotheses of Lemma 2.1 hold; furthermore assume that 

<r(t) <; t when 0 < c < 1 

and 

<r(t) < l, p(t) > 0 when c = 0. 

Then (VI ) is oscillatory if and only if the differential inequality 

(2.10) ^ [ x - ( / ) - c * ( / - r ) ] + p ( / ) x - ( < T ( / ) ) < . 0 

/jas* no eventually positive solution. 

P r o o f . The sufficiency is obvious. To prove the necessity we let x(t) he an 

eventually positive solution of (2.10). We shall show that (VI) has a nonoscillatory 

solution. As in the proof of Lemma 2.1, we have 

lim Z(l) = 0, / = 0, 1,2, . . . , ( w - 1) and lim x(t) = 0. 
i — o u /—>oo 

If x(t) > 0 for some T ^ /0 we let 

T 0 = inf cr(t) ^ 7; and Tx = T + max(T - T 0 , T). 

There exists a T> such that 

x(To) = rnin x(t) 
te[T,r2] 

Integrating (2.10) //-times from l to oo we have 

( „ - / , < _ _ ) 

1)! 
x(l) > __(_ -т)+ I ^ ' ' , , , /'(*) * И * ) ) l l * . ' Џ T. 

t 

If 0 < c < 1 then we define 

yo(t) = x(t) for _ ^ 7 \ 

{ 7 (*- /)"_1 

<•?/.> (' - T ) + -.—-rzrPi*) ;/<»(T(.S))<I.S, t > T 2 , 
j ( H - 1 ) ! 

. , ,(7 2 ) + . r ( 7 ' ) - . - ( 7 ' 2 ) , / e [ 7 ' , 7 ' 2 ] . 

It follows that 

0 < //i(0 <-71.(0, 12 T. 
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In general we define 

oo 
f (S - 0 n - 1 

cym(t~r)+ / — —-p(s)ym(<j(s))ds, t^>T2, 
(2.11) y m + i ( 0 = < J (n~lY 

< ym+i(T2) + x(0 - x(r2) , t e [T,T2]. 

By induction it can be found that 

o < y „ ( 0 ^ y n - i ( 0 ^ ^ yo(0> * > T-

From the fact that x(t) ^ cx(t — r) for t ^ T\ we can derive that 

x ( 0 ^ a e " " ' , 

where a = x(Ti) exp(/xTi) > 0, f.i = ( - ^ ) l n [ c ] > 0, and that 

a e " " * ^ y „ ( 0 ^ y n - i ( 0 ^ • • • ^ yo(0> * > 7i • 

By Lebesgue's convergence theorem it follows that the pointwise limit of {y„(0} 

exists as n —• oo. Thus there exists a y* such that 

lim y„ (0 = y*(0> ^ 7 i . 
t—•oo 

From (2 .H) we have 

oo 

««•" «* y*(0 = «/*(< -r) + J ' r ' L y(«)y'K»))ds, T^ T2) 
t 

which implies that y* is a positive solution of (1.1). If c = 0, we define a sequence 

{y„} as follows; 

yo(0 = *(0> ^ T > 
oo 

,-.. I / (r«rt)i'.i p(5) ^ ( f f W ) d s - ^ Tl• 
i / m +i (0 = s •/ ( " _ 1 ) ! 

, y m + i ( T i ) + * ( < ) - * ( T i ) , tG[T,T!]. 

Proceeding as before we can prove that there exists a function y* such that 

lim y„(t) = y*(t), t>Tx, 
n—*oo 
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oo 

/ ( ( ~ - 1 7 p ( 5 ) y > ( a ) ) c u ' ť^T1 

and 

v*(.) = « . 
^•(rO + artO-^T,), f€[T,T,] . 

From Lemma 2.1, x'(t) < 0 (in case c = 0) and hence 

y*(<) >. x(t) - x(T\) > 0, for t € [T, T.] 

and it follows that y*(t) > 0 for all t >. T\. Therefore y* is a positive solution of 
(1.1). 

We wish to remark that the conclusion of Theorem 2.2 can he extended to equa

tions with several delays of the form 
j n m 

(2.12) S F [ * W - c x { t - r ) l + E w W * N 0 ) = o, ^'<>• 

3. COMPARISON RESULTS 

It is sometimes possible to conclude the oscillatory nature of one equation by 
comparing it with another suitable equation. We derive results of this type here. 

Theorem 3.1. Assume that the hypotheses of Theorem 2.2 hold and that 

0 < c t $ c < 1, q(t)^p(t)^0. 

Then the oscillation of (1.1) implies the oscillation of 

(3.1) ~ [x(t) - cx(t - T)\ + q(t)x(a(t)) = 0. 

P r o o f . Suppose that (1.1) is oscillatory and that (3A) is nut oscillatory: Ft 
x(t) be an eventually positive solution of (3.1). We set 

Z(t) = X(t) - fx(l - T) 

and obtain by Lemma 2.1 

1 - 1 

i-(0 = čx(t -т) + J ( „ _ ! ) ! Ч(«M«(*) 

(3-2) 
f (s-t)"-1 

^ f J P ( / _ r ) + / L^_i_ 7 (, :, r ( r r (.,))d.s. 

t 

By Theorem 2.2, it now follows that (1.1) has a n«.h«>s.-ill.-ii..r\ .̂ iiliii "H-II whi-ii .•<•.. 

tradicts the assumption that (1.1) is oscillatory. This c..iii|'l«t< >% tin (u-' •• •!" r. 
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E x a m p l e 3 .1 . Consider the odd order neutral equation 

( 3 - 3 ) ^ 7 N O - cx(l - T)} + (Pn + 0(O)*C - na) = 0, t 2 «o, 

where r, r , a and p are positive constants with 0 < c < 1 and q £ C(R+, It+). If 

(3.4) pea > (1 - c)» , 

then every solution of (3.3) is oscillatory. In fact, from a result to be proved be

low (see Theorem 4.2) and condition (3.4) it follows that (3.3) is oscillatory for the 

case q(t) = 0. Thus the assertion regarding (3.3) follows from the comparison Theo

rem 3.1. 

We proceed to establish a comparison result for delay differential equations of the 

form 

(3-5) f^x(t) + p(t)x(T(t)) = 0, 

(3.6) ^x(t) + q(t)x(<r(t)) = 0. 

T h e o r e m 3.2 . Let the assumptions of Theorem 2.2 hold for (3.5). Furthermore, 

suppose that 

(3.7) a(t) <C r(t) < t, p(t) <: </(/), for t J> T* ^ t0 l 

where T* is possibly sufficiently large. Then the oscillation of (3.5) implies the 

oscillation of (3.6). 

P r o o f . Suppose the contrary and let x(t) be an eventually positive solution of 

(3.6). Then by Lemma 2.1 we have x'(t) < 0 since c = 0. Hence 

x(T(t)) ^ x(a(t)) for / ^ T ^ T*. 

Now 

dnx(t) d1lx(t) 

(3.8) ~ d 7 ^ + rt'W)) = "d^ + < t ( 0 ^ ( 0 ) + [ P ( 0 ' ( r ( 0 ) - <? (0* (<T(0 ) ] 

= \p(t)x(T(t)) - q(t)x(tr(t))] <: o 

which in view of Theorem 2.2 implies that (3.5) has a nonoscillatory solution . This 

contradiction proves the assertion of the Theorem. • 

319 



For odd order neutral equations the type 

(Z.9)^-[x(t) - cx(t - т)] + p(t)x(a(t)) + F(t,x(t), x(9l{t)),..., x(gm(t))) = 0, 

t ^ t0 

the following is an immediate consequence of Theorem 2.2. 

T h e o r e m 3.3. Let the hypotheses of Theorem 2.2 hold. Furthermore let 

(i) F £ C(1t+ x I?m+l,1t), and F(t,y0,yu. ..,ym)y0 > 0 whenever y m > 0, 

2 = 1 , 2 , . . . , m; 

(ii) 9i G C(R+, H), lim gi(t) = oo, i= 1, 2, . . . , m. 
t—>oo 

Tiien the oscillation of ( I T ) implies that of (3.9). 

R e m a r k 3.L In (3.9) the arguments gi can be of delay type, advanced type or 

of mixed type. For example consider 

d n * I 

(3.10) — \x(t) - px(t- = r)] + £ > » * ( ' - rz) + £ qjX(t - ^ ) = 0, ^ lo, 

where 0 < p < 1, r , pt-, r,-, Oj and qj are positive constants, / = 1, 2, . . ., I\; j = 1, 

2, . . . , L and n is odd. Using Theorem 3.3 we can conclude that the oscillation of 

(3.H) ^[X(t)-px(l - T)]+jtPiX{t - Ti) = 0, 

implies that of (3.10). 

T h e o r e m 3.4. Assume that the hypotheses of Theorem 2.2 hold. Further assume 

that p(t) > 0 and a(t) < t. Then the oscillation of (1.1) with c = 0 implies that of 

(1.1) with 0 < c < 1. The converse is false. 

P r o o f . Suppose the contrary and let (1.1) with c = 0 be oscillatory and when 

0 < c < 1, there is an eventually positive solution x(t) of ( I T ) . By Lemma 2.1 we 

know that Z(t) < x(t). Hence 

(3.12) ^Z(t) + p(t)Z(<r(t))^0, 

which by Theorem 2.2 implies that 

(3+3) ^y(t) + P(t)y(<r(t)) = 0 

has a nonoscillatory solution, and this contradicts our assumption that ( I T ) with 

c = 0 is oscillatory. 

To establish the second part of our proof we consider 

(3.14) ~[x(t) - cx(t - T)] + x (^t - ^j =0. 

It is known that when c = 0, (3.14) has a nonoscillatory solution; however (3.14) is 

oscillatory for 0 < c < 1 (for details see [11]). The proof is complete. • 
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4. OSCILLATIONS OF (1.1) 

In the following we are concerned with the investigation of oscillations of a special 

case of (1.1); that is we shall assume that a(t) — t — a* where cr* is a positive 

constant. 

T h e o r e m 4 . 1 . In addition to the assumptions of Theorem 2.2, if 

t 

(4.1) liminf / p(s) (s - t)n~lds > (1 - c) (n - 1)!, 
t^oo J 

t-o* 

then (1.1) is oscillatory. 

P r o o f . Suppose that there exists an eventually positive solution x(t) of (1.1). 

Then 

Z^(t) = -p(t)x(t-<T*) 

= ~p(t)Z(t -<r*)- cp(t)x(t -<T*-T) 

= -p(t)Z(t-<T*)-Cp(t)Z(t-<T* -T) 

- c2p(t)x(t -a* - 2T), 

and so on. By Lemma 2.1, Z(t) < x(t), and Z'(t) < 0. Hence (4.2) implies that 

(4.3) Zin\t) < -p(t)Z(t - a*)[l +c+c2 + ... + cm] 

where m is an arbitrary large positive integer. From (4.1) it follows that we can 

choose an arbitrarily large positive integer m such that 

t 

(4.4) limsup J p(s) (s - t)n-'ds > ( j ^ ) [(» - !)!]• 
t-O* 

In view of Lemma 2.1, for t > s we have 

Z(t -<T*) + Z'(t - <T*)(S - < ) + . . . + Z ^ ^ t - <T*)(S - • ) " - ' 
Z (s — a 1 = ; 

' (n-iy. 
(4-5) + z ( n ) U C - ^ ) ( s _ 0 n 

7t! 

z < " - l » ( . - * * ) , . _„ ,_ , 
* ( • • - • ) • " - " 
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where £ £ (s,t). Substituting (4.5) in (4.3) where we first change / to s, one can 

derive that 

(4.6) Z(n)(s) Ç --
1 - c " 

; i _ f ) [ ( „ - l ) ! ] 

Integrating (4.6) from t — a* to t we get 

P ( S ) ( « - 0 " " I £ , П " 1 ) ( Í - O . 

Z(n-l)(i)-Z{n-l}(t-(т* <J 
1 - c " 

; I - C ) ( » - I ; 
Z ( n - i ) { l -O/ P ( - ) ( - - 0 K 

T h a t is 

(4.7) Z^-'^l) + Z(n-l\t - a*)[{i _l~{"'"_ ^ J p(s)(s-t)n-\\s-l] <$0-
t - < 7 * 

By Lemma 2.1, Z^n~x\l) is eventually positive and therefore in view of (4.4), in

equality (4.7) provides a contradiction. The proof is now complete. • 

For (1.1) with constant parameters we have the following result: 

(4.8) 

T h e o r e m 4.2. If p(t) = p > 0, a(t) = t - a\ a* > 0, 0 < c < 1 and 

P 
n a* 1 

— > - , 
— c I n e 

then ( I T ) is oscillatory. 

P r o o f . Since 0 < c < 1, it follows from (4.8) tht there exists a sufficintly large 

integer in such that 

(4.9) 

Since (4.3) becomes 

(4.10) 

p(ì -c" " 67 1 
> - . 

n e 

1 — cm 

zW(t) + p- Z ( ť - O í * o 1 
1 — c 

which implies that (4TO) has an eventually positive solution, we arrive at a contra
diction to a known result (see [6], Lemma 3(ii)). This completes the proof. • 

R e m a r k 4.L The condition (4.8) improves the condition of Theorem 3 in [5] 
since the parameter of the neutral term appears in (4.8) whereas such parametes do 
not appear in the condition used in Theorem 3 in [5]. 
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