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BIFURCATION OF PERIODIC SOLUTIONS T O DIFFERENTIAL 

INEQUALITIES IN R3 

MIROSLAV BOSAK, MILAN KUCERA, Praha 

(Received April 30, 1991) 

1. INTRODUCTION 

Consider the inequality 

U(t) G K for < G [ 0 , T ) , 

(1) (U(t) - AxU(t) - G(A, U(t)), v - U{t)) > 0 

for all i- G / \ , a.a. t G [0,T), 

where /\ is a closed convex cone with its vertex at the origin in R3, A\ is a real 

3 x 3 matrix depending continuously on a real parameter A, G: R x R3 —> R3 is a 

continuous mapping locally lipschitzian in the variable u and satisfying the usual 

condition 

(2) lim — ; — j — = 0 uniformly on compact A-intervals. 
u—>0 IHI 

Under certain assumptions concerning the eigenvalues of A\ and a relation of the cone 

/\ to the eigenvectors of A\, we prove the existence of a bifurcation point A/ at which 

periodic solutions to the inequality (1) bifurcate from the branch of trivial solutions. 

Main results of the paper are contained in Theorems 1, 2. While Theorem 1 contains 

the basic idea of our approach, Theorem 2 is in fact its consequence and can serve as 

a tool for verifying periodic bifurcation in examples (see Section 5). Both theorems 

are proved by elementary means. We investigate the solutions of (1) and those of 

the linearized inequality 

U(t) G /\ for t G [0,+oc) , 
(3) 

(U(t) - AxU(t), v - U(t)) *£ 0 for all v G / \ , a.a. t G [0, +oo) . 
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Note that a different approach to the investigation of bifurcations of periodic 

solutions to inequalities in Rn based on degree theory is described in [3], [4]. Further, 

recall that a bifurcation of stationary solutions to variational inequalities has been 

studied by several authors during the last 15 years (see e.g. [2], [5], [6], [8] and the 

references therein). 

2. M A I N RESULTS 

Our assumptions concerning the matrix A\ and the convex cone K will be the 

following: A\ has eigenvalues o;(A)±i/?(A), — v(\) which depend continuously on A £ 

R and eigenvectors u±\v, w independent of A. Let f •: R2 —• R, i = 1, . .., N be convex 

functions continuously differentiable on R2 \ {[0,0]} and satisfying fi(rxi,rxo) — 
rfi(x\,X2), i = 1, . • ., N for all r > 0. We shall assume that the cone A' is of the 

form 

(4) A = {u £ R 3 ; * 3 £ fi(xu *2), i = 1,2, . . . , N}, 

where x = [x\,X2,x3] is the vector of the coordinates of u with respect to the basis 

{u, v, w}, i.e. u = x\u -f xov -f- x3w. Moreover, we assume that 

(5) A # { u G R 3 ; x 3 ^ 0 } , 

i.e. not all the functions /,• are zero, and also that near any point v £ A', v ^ 0 the 

cone K can be locally described in terms of at most two of the functions / i , . . ., /yv-

More precisely, we impose the following condition on A: 

for any v £ A', v / 0 there exist a pair of indices 1 ^ i, j ^ N 

(6) and an open neighbourhood W of the point v such that 

WCiK = {ueW] x3 > fi(xx,x2),x3 5> fj(xux2)}. 

R e m a r k 1. By a solution of inequality (1) on [0,T) we mean an absolutely 

continuous function satisfying (1). The following assertions are obtained by standard 

considerations from the existence results for general differential inclusions [1]. For 

any u £ A', A £ R the solution of (1) satisfying U(0) = u exists and is unique at least 

on some interval [0,T), T > 0. This solution will be denoted by U\(t,u). If T0 > 0 

and U\(t,u) is bounded on any subinterval [0,T) of [0,To) on which it exists then 

U\(t,u) exists on [0,T0). This together with simple a priori estimates (see Lemma 

2.1 in [4]) imply that for any T > 0, A > 0 there is R > 0 such that U\(t,u) exists 

on [0,T) for any u £ A', \u\ ^ H, |A| ^ A. Particularly, for any u £ A', A £ R there 

exists a unique solution of (3) satisfying U(0) = u on the whole interval [0,-foo). It 

will be denoted by U\t0(t,u). 
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The symbol (•, •) will stand for the usual inner product in R3 with the correspond

ing norm denoted by | • | . We denote by (•, •) the inner product (u,v) = (x,y), where 

x, y are the vectors of the coordinates of u, v with respect to the basis {u, v,tv}. 

We set 

S= {rw-} r G R } . 

Any continuous function U : [0, T] —• R3 \ 5 can be uniquely written as 

U(t) = g(t)[cos(<p0 - <p(t))u + s'm(<p0 - <p(t))v] + X3(t)w, 

where <po E [0, 2K) , g(t) > 0, <p(t), Xz(t) are continuous functions defined on [0,T] 

and <p satisfies <p(0) = 0. Hence, for any u E A' \ 5 , A E R we can define <p\(t,u) 

as the function <p(t) corresponding to U(t) = U\(t,u) on an interval [0,T) on which 

U\(t,u) £ S. Similarly, we define <p\o(t,u) as the function <p(t) corresponding to 

U\to(t}u) on [0,-f-oo) (see also Lemma 2,(1)). 

R e m a r k 2. Let U(t) = U\(t,u) £ S for all t E [0,T] and let X(t) be the 

vector of the coordinates of U(t) with respect to the basis {u,v,w}, i.e. U(t) = 

Xi(t)u + Xo(t)v + Xz(t)w. It follows easily from the definition of <p\(t, u) that 

(t/(.),A'2(Qt. - * ! ( . ) « ) 
A7(<) + A'|(<) <P\(t,u) = v 2 , v , 2 / j X , i £ [O,T). 

For u E A' \ S, A E R we define 

T(A, u) = inf{l > 0; <px(t, u) = 2K} 

and use the symbol Tb(A,u) in the linearized case (3). We note that T(X,u) = -f-oo 

if one of the following three cases occurs: 

<p\(t,u) < 2K for all t > 0; 

there exists T > 0 such that <px(t, u) < 2K for all t E [0,T) and U\(T, u) E 5 ; 

U\(t,u) is defined only on [0,T) and <px(t,u) < 2K for all t E [0 ,T) . 

Consider the inequality 

u E A, 
(7) 

(f.iu — A\u,v — u) ^ 0 for all v E A. 

A real number // is called an eigenvalue of the inequality (7) (for a given A E R) if 

there exists a nontrivial u satisfying (7). Any such u is called an eigenvector of (7) 

corresponding to //. 
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We define 

Xr\ 

g(u) = = for u £ S,u — x\it + xov -f x^w, 
y/x\ -f x\ 

T = max{#^); 0 ^ u G OK). 

R e m a r k 3. In any cone K of the form (4) there exists at least one vector v 

satisfying 

(8) 0 ?- v G OK, g(v) = r. 

(This i; represents the ray which is the closest one to S with respect to (•, •) among 

those lying on OK.) 

We denote by TK(U) the contingent cone to A" at a point u G A', i.e. 

TK(«) = cl(U {Jh(v-u)). 

Theorem 1. Let [Ai,A2] C R be an interval and v an arbitrary fixed element 

satisfying (8). Assume 

(9) T0(X,v) < -foo f o r A i ^ A $ A 2 , 

(10) a(X) + v(X) > 0 for A i ^ A ^ A 2 , 

(11) P(X)>0 for A i ^ A ^ A 2 , 

(12) |/IA,o(7o(ATi;),t;)| < |t;| fbrA = Ai, 

(13) l ^ o ^ A . ^ v J ^ H forA = A2. 

Then for any sufficiently small r > 0 there exists X G (Ai,A2) such that U\(-,rv) 
is a periodic solution of the inequality (1). There is at least one bifurcation point 
A/ G (Ai, A2) at which periodic solutions of (1) bifurcate from the branch of trivial 
solutions. 

I d e a of t h e p r o o f of Theorem 1 (see Section 4 for details). The con
ditions (9), (10), (11) and Lemmas 2, 3 enable us to prove that the solution of 
the linearized inequality (3) starting from the particular initial condition v satisfies 
<f\)o(To(X,v), v) > 0 when A G [Ai, A2]. As a result, Lemma l,(vi) implies T(X,rv) < 
-foo for all A G [Ai,A2] and r > 0 small. Combining Lemma 3 and Remark 5 we 
conclude that U\(T(X,rv),rv) = k(A,r)v where k(X,r) is a positive function defined 
on [Ai,A2] x (0,R). The conditions (12), (13) ensure k(Ai,r) < r < fc(Ao.r). Since 
k is continuous in the variable A we obtain for any sufficiently small r > 0 a value 
A G [Ai,A2] such that fc(A,r) = r. Thus we get U\(T,rv) — rv where T — T(X,rv) 
and rv is the initial condition of a periodic solution. • 
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T h e o r e m 2 . Let [Ai, A2] C R be an arbitrary interval. Assume 

(14) «(A) + i/(A) = 0 ,c*(A)<0 for A = Ai, 

(15) «(A) + i / ( A ) > 0 for A ! < A < ^ A 2 , 

(16) 0(A) > 0 for Ai 5$ A ^ A 2 , 

(17) O^uedK => Axu<£TK(u) forA = A2, 

(18) 0 ?- t* G OK = > (-4AM, M) > 0 for A = A2 . 

In addition, assume /*» > 0 wiie/iever // is a/i eigenvalue of (7) corresponding to an 

eigenvector u G dK for some A G [Ai, A2]. 

Tiien to any sufficiently small r > 0 Mere exist A G (Ai, A2) and u G A', |w| = r 

sucii tiiafc UA(*j w) is a periodic solution of (1). 

I d e a o f t h e p r o o f of Theorem 2 (see Section 4 for details) . We shall find 

an interval [Ai,A2] C [Ai, A2] for which the assumptions (9)-(13) are fulfilled. As in 

Theorem 1 the solutions of the inequality (3) starting at v are investigated. First we 

prove by using (14) that the solution U\$(t,v) of the inequality (3) with A = Ai is 

simultaneously a solution of the linear differential equation (/(/) = A\U(t). Making 

use of the explicit form of this solution (see Remark 4) and of Lemma 1 we find 

TQ(\,V) < +oo and |UA,o(Po(A, v), i>)| < |v | for all A close to Ai . Hence Ai satisfying 

(12) is obtained. To find A2 we consider two cases: either TQ(\,V) < +oo for all 

A G [Ai,A2] or there is a 6 G (Ai ,A 2 ] such that TQ(6, V) = +oo and TQ(\,V) < +oo 

for all A G [A[,6). In the first case we use the assumptions (17), (18) and Lemma 4 

to get the inequality \U\}O(TQ(\, V), V)\ > \v\ for A = A2 and we can put A2 = A2. In 

the case of TQ(6, V) = +oo we use Lemma 2 to prove 

U*,o(t» r , .L u for t —• +oo 
| í!í,o(ť.«)l 

where u G dK is an eigenvector of (7). By our assumption, the corresponding 
eigenvalue /* is positive, which permits us to show \Us,o(t, v)\ —• + o o as t —• + o o . 
This in turn leads to the inequality (13) with some A2 < 6, A2 close to 6. • 

3. S O M E G E N E R A L R E M A R K S 

Let C C R 3 be a nonempty closed convex set and w G R 3 an arbitrary vector. 
The nearest point (with respect to the norm | • |) to w in the set C will be hereafter 
referred to as the projection of w onto C. 

We introduce some additional notation: 
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Ki = {ueH3]x3^ fi(xux2)}, 1 <:i^N, 

Ti(u) for u G Ki is the contingent cone to Ki at a point u, 

Uj(u) is the unit inner normal to dKi at a point u G dK{, 

Puw for u G A', w G R3 is the projection of w onto TK(U), 

Puw for u G A'i, iv G R3 is the projection of w onto T(u), 

L is the 3 x 3 matrix with columns u,v,w and B\ = L~XA\L is the canonical 

form of A\, i.e. 

/ a(X) p(X) 0 \ 

B\ = -0(X) a(X) 0 

\ 0 0 -u(X)J 

While points in R3 are usually denoted by u = [u\,u2,u3], vector functions with 

values in R3 are denoted for instance by U(t) = \U\(t), U2(t), U3(t)]. Throughout the 

paper the symbols U(t), U\(t,u), <f>\to(t,u) etc. denote the right derivatives of the 

corresponding functions. 

R e m a r k 4. Let U(t) = Xx(t)u + X2(t)v + X3(t)w, X(t) = [X{(t), X2(t), X3(t)] 

be the solution of the equation U(t) = A\U(t) with the initial condition ^ ( 0 ) = v. 

Then X(t) = B\X(t), t ^ 0 and 

X1(t) = ea(x^i(Xl(0) cos p(X)t+X2(0) sin/3(X)t), 

(19) X2(t) = eol(x>t(X2(0)cos/3(X)t-Xl(0)sinp(X)t), 

X3(t) = e "^ A ) t N 3 (0 ) . 

R e m a r k 5. Let v G A' satisfy (8) and let T(A, v) < -j-oo for some A G R. Then 

(i) g(U\(T(X,v),v)) ^ T implies U\(T(X, v), v) = kv with some fc > 0. 

For any u G R3 \ S 

(ii) g(u) ^ r implies u G A' and g(u) > r implies u G intIv. 

The proof of these assertions follows directly from the definitions of the function 

g and of the number T. 

R e m a r k 6. Let u G A', w G TK(U), Z G R3. Then it is easy to see that 

(20) w = Puz<=> (w- z,x-w) -£ 0 for all x G TK(u). 

Thus it follows from the definition of the cone TK(U) that Puz is the unique point 

in TK(U) with the property 

, x (Puz-z,Puz) = 0, 
(21) 

(Puz — z, v — u) ^ 0 for all v G A. 
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R e m a r k 7. An absolutely continuous function U: [0,T) —<• K is a solution of 

the inequality (1) if and only if 

(22) U{t) = Pu{t){AxU{t) + G{\, U{t))) for a. a. t e [0, T) 

(see [1]). 

R e m a r k 8. Any solution U: [0,T) —+ A' of (1) is right differentiable, its right 

derivative is right continuous in the interval [0,T) and the equation (22) holds for 

all t e [0 ,T) . For the proof see [7]. 

R e m a r k 9. Any eigenvalue /t of the inequality (7) with the corresponding eigen

vector u satisfies 

L«|u|2 = (A\u,u). 

Further, it follows from Remark 6 that for any u G K and f.i G R the inequality (7) 

is equivalent to 

fiu = PuA\u. 

R e m a r k 10. Suppose that at a point / = t0 the solution U(t) — U\to(t,u) of 

the inequality (3) satisfies the equation U(t) -= A\U(t). Then <^A,o(̂ o, u) — (3(X) (see 

Remark 4). This occurs for instance when U\to(to,u) G intIv. More generally, it 

follows from Remark 8 that if U(t) is a solution of (1) such that U(t) £ int IV for all 

t G [*i,l2] then the equation U(t) = A\U(t) + G(X, U(t)) holds on this interval. 

R e m a r k 11 . For any solution U: [0, T) —» IV of the inequality (3) we have 

(U(t)-A\U(t),U(t)) = 0, te[0,T). 

L e m m a 1. To any T > 0, A > 0 there exists It > 0 sucij that for any sequences 

Xn —• A, |A| < A, un G A', un —• u, \u\ < R we have 

(i) U\n(,un) —> U\(-,u) uniformly on [0,T], 

(ii) ifU\(t,u) $ S forte [0,71 then <p\n(-,un) -> p\(-,u)uniformly on [0,T], 

(iii) j'f T(A, u) < T, V^A(T(A, I I ) , U) > 0 tJjeu T(Xn,un) -> T(A, u). 

Let Xn —• A G R, 0 ^ un G A, un —> 0, T^T - • uj G R3, iet T > 0 be arbitrary. 

Tbejj 

( i v ) ^ ( - i M n ) _^ ^ ^ ^ umformly Qn r0? T ] ? 

\un\ 

(v) if iv £ 5 then (p\n(-,un) —> y?A,o(-, w) uniformly on [0,T], 

(vi) jTHj £ 5 , T0(A,uj) < +oo and ^A)o(T0(A, w),w) > 0 then T ( A n , u n ) — 

T0(A,iv). 

For the proof see Theorems 2.1, 2.2 and Consequence 2.2 in [4]. 
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O b s e r v a t i o n 1. Let u = x\u-{- xnv -j- x3w G dl\ \ {0} and w G OTi(u) for some 

i, 1 $$ i; ̂  N. Then {to, x.nu — x\v) = 0 implies w = ftu, fi G R. 

O b s e r v a t i o n 2 . Let t/n G A", tin —* u. Then for any vector v G TK(U) there 

exists a sequence vn —-> v satisfying vn G F/cO-n), n = 1,2, . . . . 

The proof of this observation follows from results proved in [1]. 

O b s e r v a t i o n 3 . Let un G A, zn G R3, un —• u, zn —> z. Then the following 

implications hold: 

(i) If PUnzn —• w, Ptin-rn G c?7jc(tin), n = 1 ,2, . . . then u> G c97;(w) for so///e t, 

1 ^ e ^ N. 

(ii) If PUnzn —» iv, iv G TK(U) then w = Puz. 

(iii) If there exists j , 0 ^ j .$ N suc/i that u, i/n G dl\\ n <9/\'2 H . . . n OKj C\ 

int Kj + \ n . . . n int A'w, "• = 1,2,.'.. then PUnzn -* Puz. 

P r o o f . (i) Since PUnZn G dTK(un) we have (PUnzn, nin(un)) = 0 with some 

1 :$ in <C N, n = 1, 2, . . . . We may suppose that the sequence in is constant and 

therefore 

(PUnzn,ni(un)) = 0, ?/ = 1 ,2 , . . . . 

From the continuity of the normal rii(-) we conclude (w,7ii(u)) = 0 and therefore 

w G dTi(u). 

(ii) Take an arbitrary v G TK(U). Observation 2 implies vn —• D for some sequence 

Un G FA'(un), n = 1, 2 , . . . . We have 

\vn - zn\ ^ \PUnzn - zn\ 

and consequently |i) — z\ J> |tv — z|. This inequality, holding for all v G TK(U), 

together with w G TK(U) implies w = Puz. 

(iii) The case j = 0 is trivial. Let j ^ 1. As |PUf,-^n| ^ |~n| and zn is convergent, 

the sequence PUnzn is bounded. Therefore it is sufficient to prove the implication 

Punzn ->w=> w = Puz. 

However, for n = 1 ,2 , . . . we have 

(Punzn,ni(un)) ^ 0, i = 1,2,. . .J. 

Consequently, (iv, 7I,-(M)) ^ 0, ?' = 1 ,2 , . . . , j , and w belongs to TK(U) = T\(u)C\. . .0 

l)(u). Now we use (ii) to prove w = Puz. • 
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O b s e r v a t i o n 4. Let u G A', w G R3 he arbitrary vectors. 

If Puw G intTj + i(u) n .. .C\ int TN(U) where 1 ^ j ^ N - 1 then Puw coincides 

with the projection of w onto T\(u) C\ T^(u) n . . . D Tj(u). 

Further, Puw = w whenever Puw 6 in tT#^z). 

P r o o f . Denote by II the set T i ( i / ) n . . .C\Tj(u). We have Puw G II and therefore 

it is sufficient to prove (Puw — w, x — Puw) ^ 0 for all x G II (see Remark 6). Choose 

x e U. Then (1 - t)Puw -f tx G n , 0 ^ * ^ 1. Moreover, 

(1 -t)Puw + tx G T j + i W n . . . n T i v ( u ) for t>0,t small. 

Hence PMiv -M(.r — Puw) G TK(U) for some < > 0. Since P^v is the projection of 

w onto TK(U) we have 

(PMiv — w, x — Pt,iv) = -(PMi/J — w, Pu^ + t(x — Ptiif) — Puw) ^ 0. 

D 

4. P R O O F OF M A I N RESULTS 

L e m m a 2. Let A G R, /?(A) > 0, and let v G A \ S. Then 

( 0 Ux,o(t,v) <£S for all t > 0, 

(II) if(f>x,o(to,v) = 0 fcJjen UA,o(^o,^) is an eigenvector of (7) and <px}o(t, v) = 0 for 

allt > to, 

(III) if 

(23) lim tpx,o(t,v) = <£> 

then 

r^A\ v Ux,o(t,v) 
(24) lim , r r , f- = u G a A 
V ' <-+oo |LVA(0(<,v)| 

vv/jere /̂ is an eigenvector of (7), 

(IV) if (px,o(to, v) ^ 0 for some l0 ^ 0 fcne/j <£>A,O(*, I ;) ^ 0 for all t ^ t0} 

(V) i fT 0(A,u) < -foo then px,o(t,v) > 0 for all t G [0,To(A, v)). 

P r o o f . Throughout the proof we shall write U(t) = UA,o(*, v), (p(t) = <pxto(t, v). 

(I) If the s tatement were false there would exist t0 > 0 such that U(t0) G S, U(t) £ 

S for all t G [0,*o)- Remark 11 implies 

^(|i/(0l2) = 2(i/(0, tl(0) = 2 ( ^ ( 0 . f(0) ^ -c|t/(0l2 
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with some C > 0. Thus | U ( 0 | 2 ^ e " c t | v | 2 and therefore U(t) / 0 for all t > 0. 

Now it follows from the assumption (4) that U(t0) E int. A'. Therefore U(t) is also 

a solution of the equation U(t) = A\U(t) on (t0 — e,t0 + e)) € > 0 small. However, 

one can see from Remark 4 that no solution to this equation starting from a point 

u £ S can reach S in a finite time. 

(II) Let u = U(lo), w = U(t0) and let u = xxu + x<>v + x3w. It follows from (I) 

tha t u (£ £', and Remark 2 yields 

(25) (w,X2ii — x\v) = 0. 

We have w E TK(U) by Remarks 7, 8. We shall prove w E 0TK(U). Indeed, if 

w E in tTx(w) we would obtain from Remark 8 

PuAxu = U(t0) E in tT*: (u ) , 

and Observation 4 would imply PuA\u = A\u. Hence U(t0) = A\U(t0) and Re

mark 10 would yield ip(t0) = /3(X) > 0. 

Now w E OTK(U) implies w E dT{(u) for some i, 1 ^ i ^ N and thus Observation 1 

together with (25) yields PuA\u = w = fiu with some /( E R. By Remark 9 w7e 

conclude that u is an eigenvector of (7). 

Let us set V(t) = e^u and prove that V(t) = U\j0(t,u). Indeed, using (7) we get 

(V(t) - A\V(t), z - V(t)) = (ve^u - e>ltA\u, z - e"ltu) 

= e^lt(fiu-A\u,e-^z-u) > 0 

for all z E A, t J> 0. 

Consequently, since V(0) = U(t0), we have U(t) = V(t-t0) = / * e ^ - t o ) u = e ^ " * 0 ^ 

for t ^ to and so the statement follows from (25) by Remark 2. 

(III) To prove that the limit in (24) exists we shall verify that there is exactly one 

u E R3 tha t satisfies 

(26) If/fMI ~* u f o r s o l n e / n ~* " l"°°' 

Let us prove that (26) implies u E dK. Suppose there is u E int A satisfying (26). 

Then U\)0(t, u) E int A" for all t in a small interval [0,T] and Lemma l,(i) yields 

""(' • i i !Ti ) e " U A ' ' ' e [ 0 ' T | 
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for ?i sufficiently large. Hence U(t + tn) = Ux>0(t,U(tn)) E intIv, t E [0,T] and 

therefore U(t) = AxU(t)J E [ l n , 'n + T). By Remark 10 

<p(*n+T)-<p(tn)= [ <p(tn + t)dt= [ /?(A)d* = T(3(X) > 0, 
Jo Jo 

which is a contradiction as (23) yields <p(tn +T) — v?(*n) —• 0 for ?i —• +oo . We have 

proved that (26) implies u E dK. Finally, it follows from (4) that there is exactly 

one vector u E dK with a given argument (determined by (23)) and a given norm 

|u| = 1. 

To show that u is an eigenvector of (7) we shall prove <pXto(0, u) = 0 and then use 

(II). Suppose for a moment that <pXjo(0, u) > 0. Then <pX}o(T, u) > 0 for some T > 0 

and Lemma 1 together with (24) yields 

0 < e < V?A,O (T, j ^ j = ^ , 0 ( T , 1/(0) 

for t large and some e > 0. Since <pXo(0,w) = 0 for all w E K\S we have 

<pX)o(T,U(t)) = <p(t + T) — <p(t) and so the last inequality contradicts (23). By 

excluding in a similar way the inequality <pXo(0,u) < 0 we complete the proof of 

(III). 

(IV) It follows from (I) (and Remark 8) that <p(t),<p(t) are defined for all t ^ 0. 

We set li = inf{t > lo : vKO > 0} and suppose to ^ t\ < +oo. It follows from 

Remark 8 that lirn <p(t) = <p(t\) and so (p(t\) ^ 0. On the other hand, if <p(i) = 0 

for some t E [lo, ^i] we would obtain from (II) that <p(t) = 0 for all t j> t which would 

contradict the assumption t\ < +oo. 

Thus we are left with the situation 

(27) # < i ) > 0 , 

(28) V>(0<0 , <e[*o,* i ) . 

To show that (27) and (28) contradict each other we shall prove 

(29) lim 17(0 = U(tx) 
t—tx — 

and therefore 

(30) lim # . ) = # . i ) . 
r—*t i — 

First, note that because of (6) we may suppose 

(31) K = {u E R 3 ; jc3 ^ fi(xux2),x3 > fj(xux2)} 
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where i, j are not necessarily distinct indices. Indeed, all our considerations will be 

confined to a suitable neighborhood of the point u = U(t\). Now Remark 10 and 

(28) imply U(t) G OK for all t G [lo,'i) and therefore U(t\) G OK. Moreover, we 

may suppose x-j = f(x\,X2) = fj(x\,x2). Indeed, if fj(x\,x2) < x:i then u G dK 

would imply fi(x\,X2) = #3 and we could take i = j in (31). Thus the normals 

iii(u), 7ij(u) are defined and we first consider the case where iii(u) = nj(u). We have 

TK(U) = Ti(u) = Tj(u) and therefore PuA\u = PuA\u = PlA\u. TO prove (29) it is 

sufficient to show PUnA\un —> PuA\u whenever un —> u, un G OK, n = 1,2,... (see 

Remark 8). The continuity of the normals ?i,-, iij implies 

un G dKi D int Kj -

un G int Ki D OKj -

Recalling Observation 3, (iii) vve find 

PUnA\un = Pl

UnA\un 

PUnA\un = PJ.A\un PlAyu. 

Un G dKi n OKj => PUnA\un — F)

uA\u 

and (29) is proved. 

Finally, let us deal with the case ?u(u) / iij(u). We set 

дfi . ҳ дfi 
•^—(x ) > ~ T " ( x ) ' l 

ÖX\ ÖX2 

^ ( * ) . - ^ - ( * ) , l 
öxГ äx2

к h b = 

c= [x2)-x\,0], 

where u = X\u -f X2V + x^w. (Note that a, b are normals to dKi, OKj with respect 

to (•, •).) Assume for a moment that (a, c) = (b, c). Then (a — b, c) = 0 and it follows 

from the properties of the functions /•, fj that (a — b,x) = 0, (a — b, [0,0, 1]) = 0. 

Thus the vector a —b would be orthogonal to three independent vectors and therefore 

would equal zero. However, the assumption iii(u) ^ " j 0 0 implies a ^ b. Hence 

(a, c) ^ (b,c). We can assume (a,c) < (b,c) and write this inequality as 

Ofi дЛ 
-——sin(v? 0 -<f(t\))+ ^ c o s ^ o ~ f(t\)) 

OX\ OX2 

< - ^ - s i n ( ^ 0 - <p(ti)) + - 1 - cos(v?o - <f(t{)), 
UX\ UX2 

where x.\ = gcos(ipo — p((\)),X2 = Osin(y?o — p(t\))- Hence vve obtain 

d 

d(p~ 
•fi(cos((pQ - v?),sin(^0 ~ <f)) > 7-/ j (cos(^o - v?),sin(y?0 - <r)) 

(\.n 
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at the point p = <p(t\). Consequently, 

(32) /*(cos(v?o - <p),sin((po - p)) > fj(cos((p0 - <p),sm(<pQ - <p)) 

whenever p > p(t\) and p is sufficiently close to p(t\). It follows from (27), (28) 

that the function p(t) a t tains its strict local minimum at the point t = t\. Taking 

(4) into account we obtain from (32) an e > 0 satisfying 

(33) U(t)e'mtKj, te(t\ -e,t\)\J(t\,t\+e). 

Consequently, TK(U(t)) = T{(U(t)) and 

(34) Pu{t)AxU(t) = Pl
U{t)AxU(t) a.e. on (t\ - e,t\+e). 

By Remark 7 we conclude that the function U(t) on (t\ — e,t\ + e) is a solution of 

the inequality (3) with A' replaced by A',-. Remark 8 implies that formula (34) is 

valid everywhere on (t\ — e,t\ + e). In particular, PuAxu = P^Axu. Moreover, as 

we have noted above, U(t) belongs to OK for t e (t\ — e,t\]. Thus it follows from 

(33) that U(t) e dl<i for t e (t\ - e,t\] and therefore 

hm Pu(t)AxU(t)= lirn Pl
u(t)AxU(t) = P£ ( t l ) -4A t / (<i) 

t —• £ i — t —*t\— v ' v ' 

= PlAxu = PuAxti = Pu{u)Axll(t\). 

Thus (29) follows from from Remark 8 and the proof of (IV) is complete. 

(V) The assertion follows immediately from the definition of To(A,i;) and from 

(IV). • 

L e m m a 3. Let a(X) + i/(X) > 0 for all A e [X\, A2]. Then for any T > 0 there 

exists Ft > 0 such that the following implications hold for*any u e K \ S: 

\u\ <C R, g(u) <^T=> g(Ux(t,u)) <C r for all A e [\\, A2], t e [0,T], 

g(u) <: T=> g(UX)o(t,u)) <C r for A G [Ai,A2], lG[0,-foo). 

P r o o f . First of all we realize (see Remark 1) that if \u\ is small enough the 

solution Ux(t, u) exists on [0,T) for all [Ai, A2]. We shall prove 

\u\ <C R, g(u) <C r => Ux(t,u) $ S for all A E [Ai,A2], t e [0,T]. 

Indeed, suppose UXn(tn,un) e S, g(un) ^ r for some un —> 0, tn e [0,T], An E 

[Ai, A2]. We may suppose An —> A, tn —• t and r ^ r —> w. Then w e K \ S and by 

Lemma \, (iv) 
UXn(tn,un) 

— Kl *Uxfi{t'w)-
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Hence U\yo(t, w) G S, which contradicts Lemma 2,(1). 

Now if the first implication of the lemma were false there would necessarily exist 

sequences un G K, un —* 0, tn —+ t, \ n — A G [\[, Ao], en > 0 such that 

(35) g(U\n(tn,un)) = T, 

(3G) g(U\n(t,un)) > Tfor/ E (tn,tn+en), n = 1 ,2 , . . . 

Recalling Remark 5,(ii) we can see from (36) that U\n(t, un) G int A' for t G (tn, tn + 

£ n ) . /i = 1, 2 , . ... Therefore the equation 

UXn(t, un) = AXnU\n(t, un) + G(\n, UXn(t, un)) 

is valid on (tn,tn + en). Particularly, Remark 8 gives 

U\Atn,un) = A\nUXn(tn,un) -r G(\n,U\n(tn,un)). 

As a result of (35), (36) the right derivative of the function g(U\n(-,un)) is nonneg-

ative at the point tn. Setting vn = U\n(tn,un) we get 

0 ^ (gr&dg(U\n(tn,un)),U\n(tn,un)) = (grad g(vn), A\nvn + C(\n,vn)). 

Lemma 1,(i) implies vn —• 0 and, since vn ^ 0, we may suppose rĵ H- —̂  w. By 

passing to the limit in the inequality 

C(\n,vn) 

we obtain from (2) 

(37) 

We set 

and obtain 

\ M "ni' K| 

0 ^ (grad(/(iv),/iAiv) 

П 
X-A 

\Aí + x\ 
-, a r € R d \ 5 

gradg(u ; )L = gradg(x'), 

where Lx = w. We have g(x) = r and simple calculation yields 

TXn 1 
gradg(x-) = 

TX\ 

9 . 9 ' 9 , O i /—r. TT 

X-{ + XT, X\ + X?, y/xf + xi 

Consequently, 

(gYH,dg(w),A\w) = (gradr/(iv), LB\x) = (gradg(w)L, Bxx) 

= (grad l,(x), Bxx) = -T (o (A) + /.(A)). 

By virtue of (5) we have T > 0 and therefore by our assumption (grad g(w), A\w) < 0, 

which contradicts (37). 

The second implication of the lemma is an easy consequence of the first one. • 
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P r o o f o f T h e o r e m 1 . We shall successively prove that the following 

assertions (I)-(VII) hold with some R > 0 sufficiently small. 

(I) <px(Q,rv) > 0 for all A G [A l5A2], r G (0, R). In particular, v?A.o(0, v) > 0 for all 

A G [ A , , A 2 ] . 

The second inequality (the linearized case) follows directly from the assumption 

(9) and Lemma 2,(V). Suppose that there exist sequences An —-» A, rn —> 0 such that 

(38) ^Xn(0,rnv)^0, n= 1, 2 , . . . 

Remark 8 together with (2) and the fact that the cones TK(V), TK(rnv) coincide, 

imply 

— f'Aft(0, rnv) = —PrnV(AXnrnv + G(\n,rnv)) 

(39) Vn ln 

= PvUXnv+—G(\n,rnv)) - PvAxv = UA,o(0,<!). 
v rn / 

Now Remark 2 implies ^ n (0, rnv) — <^>A,O(0, v) and therefore (38) yields V?A,O(0, v) <J 

0, which is impossible by the second inequality. 

(II) ^A,o(70(A, v), v) > 0 for all A G [Ai, A2]. 

Since g(v) = r it follows from the assumption (10) and from Lemma 3 that 

<j(U\to(t, v)) ^ T for all / > 0. Therefore Remark 5,(i) yields 

UA(o(To(A,v),i;) = k(A)v, AG [A,, A,], 

where k(A) > 0. By (I) we get 

^A,o(Fo(A, v), v) = V^A,O(0, k(X)v) = ^A,o(0, t;) > 0. 

(III) There exists T > 0 such that T(\,rv) < T for all r G (0, R), A G [Ai, A2]. 

We use (II) and Lemma l,(vi) to find that F(An, rnv) —> Fo(A, v) whenever \ n —-> A, 

rri —> 0. As a result, any such sequence T(\n,rnv) is bounded . 

(IV) For any r G (0, ft) and A G [A,, A2] there exists a unique k(A, r) > 0 such that 

Ux(T(\,rv),rv) = k(\,r)v. 

We use Lemma 3 together with (III) to obtain 

<l(lfx(T(\,rv),rv))<:T, A G [ A n A 2 ] , r G (0, R). 

Since rv G OK and y(rv) — T, the statement is a direct conseciuence of Remark 5,(i). 



(V) y3A(T(A, rv), rv)) > 0 for all r G (0, R), A G [Ai, A2]. 

Suppose 

(40) ^ A r t ( T ( A n , r n v ) , r n v ) ^ 0 , n = 1,2, . . . 

where An —> A, rn --> 0. It follows from (2) that G(A,0) = 0 and therefore Ux(t,0) = 

0, t ^ 0. Lemma l,(i) together with (III) implies UXn(T(\n,rnv),rnv) —> 0. We use 

(IV) to write Uxn(T(Xn, rnv), rnv) = k(\n,rJl)v, n = 1,2, . . . and so (40) yields 

0 > ^An(7XAn ,rnv),7»nv) = ^A n (0 ,^ ' (A n , r n )v ) . 

Since k(An,7v,) —• 0, this contradicts (I). 

(VI) The function A —-> k(A, r) is continuous on [Ai, A2] for each 7' G (0, R). 

It follows from (III), (V) by Lemma l,(iii) that T(An,7-v) —* T(A,rv ) whenever 

An —* A, An G [A!,A2] and r G (0,1?) is fixed. Recalling (IV). we obtain from 

Lemma l,(i) that 

k(An,r)v = UXn(T(\n,rv),rv) — UX(T(\, rv), rv) = k(A,r)v 

and consequently, k(An,r) —* k(A,r). 

(VII) We have k(\ur) < r < k(A2,r) for all re (0, R). 

Suppose k(Ai,7*ri) ^ 7n > 0, r n —- 0. As in (III) we find T(Ai,?>
nv) — To(Ai,-v) 

and therefore by Lemma l,(iv) 

k(\\,rn)v Uxl(T(XurnV),rnv) 
= • tlAt,o(1o(Ai, v), v). 

rn rn 

Finally, 
I - , k(\urn)\v\ 
\v\ ^ K /A1,o(7o(A],v),t')|, 

rn 

which contradicts (12). 

Analogously, the assumption &'(A2,rn) ^ r n , rn —+ 0 leads to a contradiction with 

(1.3). 

It follows from (IV), (VI) and (VII) that for any v satisfying (8) and for each 

r G (0,R) there exists a value A G [Ai,A2] satisfying Ux(T(X, rv), rv) = rv, which 

completes the proof. • 

L e m m a 4. Let 0 / v G c)I\ and let A G R he such that 

0 ^uedK = > Axu £TK{u). 

Then 0 ^ ^A,O( / , v) G OK for t J> 0. 
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P r o o f . Set (/(/) = U\to(t,v). Since v (£ S we obtain from Lemma 2,(1) that 

/ / ( / ) zfi 0 for all / ^ 0. Now if the statement were false there would exist t0 ^ 0 and 

a sequence tn —-> / 0 + satisfying 

0 ^ U ( / o ) G d K , 

U(/n) G i n t A ' , n = 1 ,2 , . . . 

We get TK(U(tn)) = R3 and by Remark 8 we obtain U(tn) = A\U(tn). By the same 

remark we get PU{t )A\U(t0) = U(t0) = lini AAU(^n) = A\U(t0) and therefore 
y n-^-foo 

A\U(t0) G T A ( [ / ( / 0 ) ) . This contradicts our assumption. D 

P r o o f o f T h e o r e m 2 is based on Theorem 1. We take an arbitrary fixed 

element v satisfying (8) (see Remark 3) and verify the assumptions of Theorem 1 for 

an interval [Ai,A2] C [Ai.Ao]. 

We set 

(41) 6 = sup{A G [A!, A 2 ] ; T0(A,U) < +oo for all A G [Ai,A]} 

and prove successively the following assertions (i)-(vii). 

(i) We have Ax < 6. 

Let (/(/) = Xi(t)u+X2(t)v+X3(t)w be the solution of the equation U(t) = A\U(t) 

with the initial condition U(0) = v for A = Ai . Using the formulas (19) we get 

(AU{I}) =
 X*M = e - («(A) + , ( A ) ) t = {v)e-W) + *W)t t ^ 0 

x/A'?(0) + A\](0) 

where A = Aj . By virtue of (8) and (14) the last relation becomes g(U(t)) = T, 

/ J> 0 and from Remark 5,(ii) we conclude that U(t) G A' for all / ^ 0. Therefore 

U(t) = UX)U(t, i'), / ^ 0 and we have 

(42) '>A,o(/, v) = A\U\>Q(tyv) for A = Aut £ 0. 

Remark 10 implies 

(43) Vx,o(t,v) = /3(A) for A = A,, t> 0-

('onsequently, 

(44) 7b(A, .y) < + o o , ^A1)o(70(A1 , v), r) > 0. 

Lemma V(iii) implies 7o(An, v) —* 7o(Ai, ?;) whenever An —> Ai .Therefore T0(A,v) < 

+oo for all A sufficiently close to Ai and (41) implies (i). 
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(ii) |UA,o(To(A, v), v)\ < \v\ for all A sufficiently close to Ai. 

We use (43) to obtain T 0 (Ai , v) = 2TI//?(AI) and (14) together with Remark 4 to 
2 i - o ( A ) 

find UA,o(To(A,i>),-v) = e "(*) v for A = A i . By t h e a s s u m p t i o n s (14), (16) we get 
2-to(A) 

\U\)o(T0(X,v),v)\ — e ^A> |'v| < \v\ provided A = Ai. The statement now follows 

from (44) and from Lemma 1, (i), (iii). 

(iii) If T0(6, v) < + o o then \U6)0(t, v)\ > \v\ for / > 0. 

We shall first prove 6 — Ao. 

Because of (i) and (15) we have a(6) + v(6) > 0 and Lemma 3 implies g(U,^0(t< v)) <J 

T for t ^> 0. Consequently, by Remark 5,(i) 

Uf,,0(T0(6,v),v) = lev with some k > 0. 

Hence 

<P6,O(TQ(6, v), v) - <psto(Q, kv) = <^<5,o(0, v). 

According to Lemma 2,(V) the assumption T0(6,v) < -foo implies ^^,o(0,v) > 0. 

Thus ips)0(T0(6,v),v) > 0 and from Lemma l,(iii) we obtain that To(A, v) < -foo for 

all A sufficiently close to 6. Thus (41) implies 6 = Ao. 

Furthermore, by virtue of (17) we can use Lemma 4 to obtain 

(45) 0 ^ lh,o(t,v) G OK for t S> 0. 

Thus we can use (18) together with Remark 11 to obtain 

WsAL,v)\- - M 2 = \Us,0(t,v)\2 - | fAo(0,u) | 2 

= / 2 ( i / M ( s , j ; ) , v M ( * , t ; ) ) d s 
Jo 

rt 

'2{At(rt.o(s,v),Utt0(s,v))ds > 0, / > 0. / 
J0 /o 

(iv) There exists a real constant B such that 

(UA,o(U'M\o( t , tO) 
Ф\,o(t,v) 

žB\Ux,o{t,v)\2 

for all A G [A[,6), t G [0,To(\,v)). 

Assume that , on the contrary, there exist sequences An G [Ai,<$), tn G [0,To(An , v)) 

satisfying 

,Ar\ (U\n,o(tn,v),U\n]o(tmv)) 2 

(46) • : ^ -n\U\nto(1n,v)\ , 7 1 = 1 , 2 , . . . 
V ? A n , o ( ' n , *') 
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Since UXnjo(tn, v) ^ 0 (see Lemma 2,(1)) we can rewrite (46) as 

(47) (¥y-^-M-i,2,... 

where 
Uxn,o(tn,l<) 

\Ux„,o(tn,v)\' 

We may assume un —* u G A', Au —• A £ [Ai,<*>] and, since |PU nAAn t /n | ^ 

|AAnt/n| ^ C\ also 

(48) l>Anio(0,«„) = PunAXnun - iv £ R3 

(see Remark 8). Moreover, Remark 11 yields 

(49) (UXnto(0,un),un) = (AXnuniun)-+ (Axuyu). 

On the other hand, considering (41) vve obtain from Lemma 2,(V) 

(50) PA.otM) > 0 for all A G [Au6), t G [0,To(A, v)). 

Hence 

(51) V^An)o(0,H„) = pXn)Q(tn,v) > 0 . 

On the other hand, (47), (49) imply 

(52) ^AT , ,O(0, un) —• 0 as n —• +oo. 

Using Remark 2 we get 

(^An,o(0, un),xn2u -xnXv) = (xnl + J-n2)^An)o(0,H„) -» 0, 

where Lxn = ?/n, Lx = u, and consequently, (48) yields 

(53) (tv, xou — x\v) — 0. 

Furthermore, we have 

(54) PunAXnun G dT^(un) for all n sufficiently large. 

Indeed, if PUnAAn G intP/«;(u.n) we would get by Observation 4 that (jAn,o(0,un) = 

PUnAXnun = AXrutl and by Remark 10 </?An,o(0,uu) = fi(Xn). But (52) would 
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imply j3(\) = 0 for some A in [Ai, Ao], which contradicts (16). By Observation 3,(i) 

we conclude that (54), (48) imply w G 01}(u) for some i,\ <C i <J N. Recalling 

Observation 1 vve obtain from (53) w = fiu,fi G R. Remark 8 and (48) yield 

0 ^ (UA,,,o(0, un) - A\nun,v - un) — (fiu - A\u, v - u) for all v G K 

and therefore u is an eigenvector of (7). Moreover, u G OK because u G int I\ would 

imply <^An,o(0,wn) = fi(\n) —+ P{\) > 0 (see Remark 10), which would contradict 

(52). By the assumption of Theorem 2 the eigenvalue ft is positive. Finally, recalling 

Remark 9 we have (A\u, u) = f(\u\2 > 0 and therefore (49) yields (UAn,o(0, un), un) > 

0 for 7/ large. This inequality together with (51) contradicts (47). 

(v) The function (psfo(t,v) is nondecreasing on [Q,TQ(6, v)). 

Assume there exist 0 ^ t{ < t2 < T0(S,v) such that (ps,o(t\,v) > <ps,o(h,v)- By 

Lemma 1 

(•r)5) ^A,O(<I ,V) > ^ A , O ( < 2 , V ) , O ^ l , < / 2 < F 0 ( A , v ) 

for all A sufficiently close to 6. As we have proved in (i) the interval [Ai, 5) is 

nonempty and therefore vve conclude from (55) that <p\0to(to,v) ^ 0 for some Ao G 

[Ai, O") and to G [0, Fo(Ao, v)). This contradicts (50) and (v) is proved, 

(vi) UT0(6,v) = +oo then lim | t \ 0 ( t , v)\ = +oo. 

Lemma 2,(1) implies Usto(t,v) (£ S for all / > 0. Thus vve get from the definition 

of To(6, v) that (psyo(t,v) < 2TI for all t > 0. It follows from (v) that the function 

<P6,o(t,v) has a proper limit as t —• +00 . Set U(t) = Us,o(t,v). Then Lemma 2,(111) 

yields 

(56) - £ $ . -> « as / -> +00, 

where u G OK is an eigenvector of (7). By Remark 11 we have 

jt\V{t)? = 2(0(1), (/(/)) = 2(AxU(t), ('(<)) 

and by (56) 

(58) {A^\'m\)^{Axu'u)aat^+0°-
Let // be the eigenvalue of (7) corresponding to u. By the last assumption of Theo

rem 2, fi is positive and Remark 9 yields (A\u,u) = fi\u\2 > 0. Consequently, (vi) 

follows from (57) and (58). 
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(vii) If T0(o,?>) = -foo then |UAn,o(T0(An, v), v)\ —> -foo for a sequence An — d-. 

Since T0(o~, v) — -foo we use Lemma l,(i),(ii) to conclude from (i) and (vi) that 

there exist sequences An —• 6 - , trl G [0,To(An , v)) satisfying 

(59) Wxn,o(tniv)\ -v -foo, n -> -foo. 

To prove \U\nio(To(\n,v),v)\ —-> -foo we define for each A G [Ai,6) a function 

VA: [0,2TI] -r K as follows: 

V\(v) = UA,o(', i') for cp = cpA)0(l, t,), l G [0, T0(A, v)}. 

It follows from (50) that V\(p) is correctly defined. Moreover, V\(ip) is absolutely 

continuous and right differentiable on [0,2TI) (see Remark 8). Thus we obtain from 

( I V ) 

^ l ^ ) | 2 = 2 ( A ^ ) , V / A ( , V 

(60) = 2 (Ux'0{!;V\,lhfi{t,v)\ > 2BK/A ,o(. ,«) |2 = 2B|l/A(V ?) |2 

\VA,o( t , f ) y 

for some B < 0 and all y> £ [0,2it). Now C.ronwall's lemma yields 

\V,(2n)\2 > | V ^ ) | 2 e 2 f l ( 2 * - * \ <p £ [ 0 , 2 K ) . 

We set (fn — <p\nio(tn,v) G [0,27i) and obtain 

|UA„,o(T0(A,l,tO,tOI2 = |VA„(2K)|2 

^ e 2 " ^ - ^ ) | V A n ( ^ ) | 2 ^ e - ^ B ' | U A „ , o ( t n , t O I 2 -

The s ta tement now follows from (59). 

We shall complete the proof of Theorem 2 by finding values Ai < Ao in the interval 

[Aj,Av] such that the conditions (9)-(13) are valid. To do this we need to consider 

two cases: TQ(6, v) < -foe and T0((Vv) = +oc>. 

When 70(<$, v) = -foo we use (i), (ii) and (vii) to conclude that the conditions 

(12), (13) hold for some Ai < \{ < \>2 < 6. In addition, (41) implies (9) and the 

conditions (10), (11) are guaranteed by (15), (10). 

In the case 70(<*>, v) < -foo we find X{ G (A i, <5) satisfying (12) by (i), (ii). Further, 

we set AL> = S to obtain (13) from (iii). The conditions (9), (10), (11) are obtained 

as above. • 
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5. E X A M P L E 

L e m m a 5. Suppose that O / i / G OK, \ £ R am/ there is j such that 

(62) PuA\u = PlA\u. 

Set x = L~lu,y = L*iij(u) (the inner normal to L~l Kj), z = L~lnj(u). If 

(63) * 3 > 0 . x » 3 > 0 , ^ ( A ) - | i / ( A ) | - ^ ? + i / ^ g ? + 222 > 0 , (3(\)>0 
2/3-3 

aiu/ u is an eigenvector of (7) then the corresponding eigenvalue ft of (7) is positive. 

P r o o f . We can suppose without loss of generality that x\ + x\ = 1 and we 

shall write n instead of iij(u). Realize that 0 = (u,n) = (x, L*n) = (x,y), i.e. 

(64) -^32/3 = x\y{ +x2y2. 

We have A\u £ Tj(u) because otherwise (62) would yield PuA\u = A\u and there

fore u would be an eigenvector of A\ by Remark 9. However, A\ has no eigenvectors 

on OK under the assumption (4). Hence, formula (62) yields 

(65) PuA\u — A\u - (A\u,n)n 

and by Remark 9 

jiu — A\u — (A\u, n)n, 

which is equivalent to 

fix - B\x - (Bxx,y)z. 

Multiplying this equation successively by [^1,^2,0], [x2,— x\,0] and using (64) we 

obtain 

(66) /i = a - [(a + u)(x\yx + x2y2) + (3(x2y\ - x\y2)}(x\Z\ + x2z2), 

(67) 0 = j3 - [(a + v)(xvy\ + x2y2) + f3(x2yx - xxy2)](x2z\ -x\z2), 

where we write ex, j3, v instead of cv(A), f3(\), /'(A). Set a = x\ij\ + x2y2, b = 

x2y\ — x\y2, c — x2z\ — x\z2, d — x\Z\ -\- x2z2. 

Let us show that 

(68) c < 0 , g3>0, — < 0 . 
2/3 

The first inequality can be obtained from (67) by using the inequalities (3 > 0, 

(cv + v)a + (3b = (B\x, y) — (A\u, n) < 0 (because A\u £ Tj(u)). The second follows 

360 



from the assumption (4) and from the fact that y is the normal to the cone L~l I\j 

at the point x. Finally, formulas (63), (64) imply a/y3 = — x3 < 0. Calculating c\ 

from (67) and substituting in (66) we get 

j3 — vac — j3bc 
a = , 

ac 
. ^ ,-. 1 — be — ad 
69 // = p v. 

ac 

Also, (g, z) = (L*n, L~ln) = ( n , n ) = 1 and by a simple calculation we get 

1 - 6c - ad = 1 - giz! - y2z2 = 1 - (g, z) + y3z3 = y3~3-

Hence, we use (68), (63) to obtain from (69) 
2/3*3 y*za,,_ ac ^ 

/£ = /? i/ = (/i 1/) 
ac ac y3z3 

>*--.( t-^}/K±A^K±R) >o. 
ac \ y_z_ / 

D 

E x a m p l e . Consider the matrix A\ and the cone K in R3 defined by 

/ 5 A + 17 - A + 17 - A - 19 \ 

Ax = -W -2A - 50 4A - 14 -2A + 22 ) , 

V-3A + 27 - 3 A - 9 3A - 9 / 

K = { t i e R 3 ; uj £ 0 , j = 1,2,3}. 

The eigenvalues cv(A) ± i/3(A) = A ± 6i, -v(\) = - 1 clearly satisfy (14), (15), (16) 

with Ai = —1, A2 > —1 arbitrary. The corresponding eigenvectors are u ± iv = 

[ l , - 3 , 2 ] ± i [ 2 , - l , - l ] , w= [1,2,3]. Hence, 

L=[-3 -1 2)> L~1 = h[13 ' -")• 
V 2 - 1 3 / \ 5 5 5 / 

Our cone can be described as 

K = {u= Lx\ (Lx)j ^ 0 , j = 1,2,3} 

= {u = xiu + x2v + x3iv] x3 ^ fj(xux2)J = 1,2,3}, 

where fj are defined by x3 — fj(x\,x2) = (Lx) 
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Suppose that u G OK is an eigenvector of (7) with some A ^ — 1. We shall prove 

that then the corresponding eigenvalue must be positive. Consider successively points 

u G dK of two types (see the notation from Section 3): 

(a) u G dl\3 n int A'i n int A'2, i.e. u = [u\, t/2, 0], u\ > 0, un > 0. Then TK(U) = 

T3(u) = Iv'a and therefore (62) holds with j = 3. We have n:i(u) = [0,0, 1], y = 

[ 2 , - 1 , 3 ] , ^ = £ [ 1 , - 1 , 1 ] , x = ^ [ - i / i - 7 u 2 , 1 3 i / i - r - u 2 , 5 u 1 + 5 u 2 ] and (63) is fulfilled. 

Lemma 5 implies j.i > 0. 

(b) u G (9IV3 n dK\; we can suppose u = [0,1,0]. Then TK(U) = A'3 D K\, 

Axu = \[-\ + 17, 4A - 14, -3A - 9]. If A ^ 17 then PuAxu = P*Axu and the 

same argument as in (a) can be used to prove /J > 0. On the other hand, we 

use Remark 9 to obtain /t = (Axu,u) = |[4A — 14] > 0 when A > 17. The cases 

u G dA' in in t A'2 n int A'3, it G <9A'2nint A'inint A'3 and u G <9A'in<9I\2, u G dA'ondA'3 

can be treated as (a) and (b), respectively. Summarizing all possible cases we can 

see tha t (7) can have only positive eigenvalues corresponding to eigenvectors u G dK 

if A >̂ — 1 = A j . Furthermore, considering as above the separate regions of the cone 

I\, we find that the condition (17) is fulfilled with A2 = 20. For instance, in the 

region (a) we have A2ryu = £[117wi — 3u2, —90ui +66i / 2 , —33ui — 69u2] and therefore 

A20U £ TK(U) — A'3 because —33ui — 69u2 < 0 for points under consideration. For 

the points u belonging to the region (b) the condition (17) for any A > —3 follows 

from the expression for Ax written above. The other cases can be treated similarly. 

The assumption (18) with A2 = 20 is also satisfied. For instance in the case (a) we 

obtain (A20U, u) = |[117wf + 66ul — 93i/iu2] > 0 for all ui 7̂  0, t/2 7- 0. 
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