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INTRODUCTION AND PRELIMINARIES

In [1] R. R. Colby has defined a ring R, as left (right) I'F if every injective left
(right) R-module is flat. In [2] R. F. Damiano has defined FC ring over which left
(right) flat and left (right) coflat modules are precisely the same. Induced by these
paper we have defined a ring R as left (right) PC if every left (right) projective
R-module is coflat. A ring R is quasi-frobenius ring if R as a right R-module is
noetherian and injective. In [3] U. Chase characterised a left perfect ring R as a ring
over which every left flat R-module is projective.

Through-out this paper R will be understood a ring with unity, and every module
over R will be unitary. Every right (left) R-module M is denoted by Mg (g M)
and dual of M is denoted by gk M* (My), ie. M* = Homgr(M,R). S is the R-

endomorphisms ring of M, i.e.
S = Homg(M, M) = Endr(M).
Trace of an R-module M on M is denoted by Tp(M) and defined as
TM(M) = {YImf: f € Homg(M, M)}.

Definition. A ring R is right (left) PC ring if every right (left) projective R-
module is coflat. A ring R is PC ring if it is both right as well as left PC ring.

Obvioulsy every FC ring and every QF ring is PC ring.
Theorem 1. For a ring R following statements are equivalent.
1. R is right PC ring.

2. Every right free module over R is coflat.
3. For every right free R module M, trace of M on M is coflat.
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Proof. 1= 2Let R is right PC ring and M is a free module over R. Then
obviousely it is coflat, since every free module is projective and over right PC ring
every right projective module is coflat.

2 = 3 Let every free right R-module M is coflat. But M is a flat module [
Free => Projective = flat] hence M @ R = ,M is a flat module. Therefore by

R
[4, Lemma 1.3(2)] M generates all kernels of homomorphism M®™ — M, n € N,
which implies by [4, Lemma 1.3(1)] that the mapping 0'(M): Homp(M,M)@ M —

Tm(M) is an isomorphism or

S® Mg is isomorphhic to Ty (M)

i.e. Mg is isomrphic to Tpr(M) and so Ty (M) is coflat.

3 = 1 Let for every free right R-module M, T)(M) is coflat. Since M is also
flat, by the same argument as in 2 => 3 we have Ty (M) is isomorphic to M. Which
implies very free right R-module M is coflat. Now let P be any projective right R
module. Then P is a direct summand of a free module, say M. But M is coflat so
by [2, Theorem 1.8] every direct summand of M is coflat i.e. P is coflat. Hence R is
right PC ring. a

This theorem is true for left PC' ring R and left free R-module M also.
Example 1. [2, R. F. Damiano, example 2.7]

Let R =Z @ Q/Z with multiplication defined by (ny,q1) - (n2q2) = (n1na, nyq2 +
n2q1), ni € Z, ¢; € Q/Z. Then R is a commutative ring with Jacobson radical

J(R) = {(n.q) [ n=o}.

More-over it is clear that every finitely generated ideal of R is principal. Hence R
is PC ring, but R/J(R) = Z is not PC ring, as the homomorphism f: nZ — Z via
nv — v can not extend over Z, which implies Z over Z is not coflat.

Example 2. A left PC ring which is not ring PC.
(R. F. Damiano [2, Example 2.8]). Let R be an algebra over a field F with basis-

{1,e0,€1,€2,...,21,Z2,...} where for all ¢, j
eiej = 6; je;,
rie; = 6; j41%i,
eixj = bi;z;,

z;z; = 0.
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It is easy to see that R is left coherent and that every R-homomorphism
f:rI - RR

extends to one over R. Then R is left coflat, and hence R is left PC ring.

However R is not right coflat since the homomorphism z; R — ¢, R.

Via z;r — e,r can not be extended over R. Thus every projective right R-module
is not coflat. Therefore R is not right PC ring.

Theorem 2. If R is right PC ring for a finitely generated projective rfgbt R-
module P following are true.

1. S = Homg(P, P) is coflat.

2. P* = Hompg(P, R) is coflat.

Proof. (1) Let o — I — S be an exact sequence with I finitely generated right

ideal of S. Now Pg is projective so Pg is flat. Hence ;P@Q R = ,P is flat. So we
R

have an exact sequence 0 —» I @Q P — S @ P with I @ P finitely generated. Again

Pg is coflat module [.* R is right PC ring]. So consider the following commutative

diagram

Homr(S@®P,P) —  Homg(I®QP,P) — 0

L~ [~

Hom, (S, Hom(P, P)) — Hom,(I,Hom(P,P)) — 0

The exactness of bottem row implies that Hompg(P, P) is coflat.
(2) Similar to the proof of (1). a

Above theorem is true for the left PC ring also.

Theorem 3. If R is any right PC ring, the ring of endomorphisms of a finitely
generated projective right R-module P is also PC ring.

Proof. Let S be the ring of endomorphism of P i.e. S = Homg(P, P). Let Q
be any left (right) projective module over S. Then by the dual basis lemma choose
a generating set {z;}ier for Q and {fi}ier C Hom,(Q, S) such that for each z € Q,
fi(z) = 0 for all but a finite number of i and z = Y, fi(z)z; (Z z,'f,'(z))‘ For each

i€l i€l

1 € I define g;: Q — Sz; (2;S) by gi(z) = fi(z)z; (x,-f;(a:)), z € Q. Then g; is
an endomorphism of Q. Therefore ¢;(Q) is a direct summand of Q, hence a.direct
summand of Sz; (z;S). Thus ¢;(Q) is cyclic.

Then ¢;(Q) = Se (eS) for any nonzero idempotente of S.
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But R is right PC ring so by theorem 2 S is coflat as S module. Hence Se (eS)
is coflat (*." Se(eS) is direct summand of S and (2, Theorem 1.8]).
Thus each g¢;(Q) is coflat.

But Q = Elys'(Q)-
i€
Hence by [2, Theorem 1.8] Q is coflat and S0 S is a PC ring. o

Corollary 1. If R is a right PC ring then for a non-zero idempotent e € R, eRe
is a PC ring.

Proof. For a nonzero idempotent e € R, eR is a finitely gererated projective
right R-module. Hence Endgr(eR) is a PC ring by theorem 3. But

eRe = Endg(eR).
So that eRe is a PC ring. a

Corollary 2. Let R be a right PC ring and M is an right R module having a PC
endomorphisms ring. Then every direct summand of M also has a PC endomorhism
ring.

Proof. Let S = Homg(M,M) and N a diret summand of M. Let e is the
projection onto N. Then e is an idempotent of S.

Now Hompg(N, N) = eSe, and by corollary 1 eSe isa PC ring. Hence Homg(N, N)
is a PC ring. O

Corollary 3. If R is a ring and n > o is an integer, let M,(R) denote the ring of
n x n matrices over R. Then R is a right PC ring iff M,(R) is PC ring.

Proof. Let Risright PC ring. Now R” is a finitely generated projective mod-
ule, hence Homg(R", R") is PC ring by theorem 3. But M,(R) = Hompg(R", R"),
so M, (R) is PC ring.

Converselly let M, (R) is PC ring. Then Homg(R", R") = M,(R) is PC ring.
Since Rpg is a direct summand of RY, by corollary 2 Hompg(R, R) is PC’ ring. Which
implies that R is right PC ring. a

Theorem 4. For a left perfect ring R tollowings are equivalent.
1. Risleft PC ring.

2. Rs left F(' ring.

3. Every left coflat module is projective.
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Proof. 1 = 2 Let R is left PC ring, then every projective left R-module is
coflat. But R is left perfect ring where every left flat module is projective. Hence
every left flat module is coflat, and so R is left FC ring [2, Theorem 2.4].

2 = 3 Let R is left FC ring. Then every left coflat module is flat. But R is
left perfect, so every left flat module is projective. Hence every coflat module is
projective.

3 = 1 Let every left coflat module projective.

Then every left coflat module is flat.

= Ris left FC ring [2, Theorem 2.4].

= Ris left PC ring [. Every left F'C ring is left PC ring]. a

Example. A PC ring which is not FC ring. In [5) Rosenberg and Zelinsky
gave an example of a quasi-frobenius, hence FC ring R and a nonzero idempotent
e € R such that eRe is not QF. Thus, since eRe is artinian, it is not FC ring.
But eRe is PC ring, (since, R is a PC ring and eR is a finitely generated projective
module which implies that e Re = Endg(eR) is a PC ring by theorem 3).

Theorem 5. If R is right noetherian ring following statements are equivalent.
1. R is right PC ring.

2. Ris QF ring.

3. Risright IF ring.

4. Ris FC ring.

Proof. 1= 2 Let Ris right PC ring. Then every right projective module is
coflat. Hence Rpg is coflat. But R is right noetherian hence by [2, Corollary 1.10]
Rp is injective. Thus Rpg is noetherian and coflat so that R is QF ring.

2 = 3 Let R is QF ring. Then every right injective R-module is projective or
every right injective R-module is flat. Hence R is right I F ring.

3 = 4 Let Ris right IF ring. Then every right injective R-module is flat. As R is
right noetherian every right coflat module is right injective, so every coflat module
is flat. Hence R is FC ring [2, Theorem 2.4)].

4 => | Let Ris FC ring, then every right flat module is coflat. Hence every right
projective module is right coflat and so R is right PC ring. O

Example. A PC ring which is not QF ring.

Let K is a field and for any set A

R=KA*= HK.-, Ki =K Vi€ A.
IEA

Then R is a commutative regular ring.
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Or R is a PC ring. But R is not QF ring. Since @ R;;R; = R is projective but
i€A
not injective as R is not noetherian ring.
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