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1. INTRODUCTION

In this paper we study to what extent the mean value theorems in a Riemannian
manifold (M, g) characterize the structure of the manifold itself. The mean value
theorems stand for various relations about the first, the second mean values and the
stochastic mean values for small geodesic spheres at center m € M with radius € > 0.
The works on this subject are recently studied by many authors ([6], [9], [10], [12],
[17], [22]), characterizing the harmonic, the Einstein and the super-Einstein spaces
by expanding up to order 400, 4 and 6 the above three mean values respectively
(Theorem A below).

Our results are stated as follows. We first obtain a higher order precision of Theo-
rem A, i.e., by expanding the above three mean values up to order 8, we characterize
the particular classes of 2-stein spaces which should be located between the har-
monic and the super-Einstein spaces (Theorem 1). In particular for 3 < dimM < 6,
the manifolds (M, g) are spaces satisfying simpler curvature conditions (Theorem 2).
Theorems 1 and 2 give a partial answer to Kowalski’s conjecture given in [10] and
[11]. We also introduce three new conditions (S2)r—(S4)r (see Section 2 for the def-
initions) stated on the mean value theorems and prove: (1) for each k = 3, 4, the
condition (S3) is equivalent to (M3),_;; (2) each of the conditions (S2)3 and (S4)3
characterizes the space of constant scalar curvature, and each of the conditions (52)4
and (S4)4 characterizes the quasi-super-Einstein space (Theorem 4). We further
show that the condition (S2); is closely related to the independence of the first exit
time and the first exit position of a Brownian motion from a geodesic ball at center m
with radius € > 0 (Theorem 3). This independence property is only recently studied
by M. Kozaki and Y. Ogura [13], M. Liao [15] and M. Pinsky [19].
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In Section 2, we state our results precisely. Our main results are stated in Theo-
rems 1, 2, 3 and 4. We denote by Mp, i f(m) and Ly, ; f(m) the coefficients of order
€% in the asymptotic expansions for the first mean value M, (¢, f) and the second one
Lo (e, f) respectively. In Section 3, we calculate the difference M, 4f(m)—Lm 4 f(m)
for the super-Einstein space and give the proof of Theorem 1 in part. Sections 4
and 5 are for preparation of the proof of the rest of Theorem 1. Section 5 is also
for preparation of the proof of Theorem 4. In Section 4, we calculate L,, 4 f(m)
for the super-Einstein space. In Section 5, we calculate the stochastic mean value
Emf(X(T,)) and the mean exit time E,,T, up to order 8 for the manifold. In
Sections 6 and 7, we will prove the rest of Theorem 1 and Theorem 2 respectively.
In the final Section 8, we will prove Theorems 3 and 4.

2. STATEMENT OF RESULTS

Let (M, g) be an n-dimensional connected C* Riemannian manifold with n > 2
and By, (€) be the geodesic ball in M at center m € M with small radius ¢ > 0. The
first mean value My, (¢, f) for a real valued continuous function f is defined by

Mpn(e, f) = (vol (0B (e))) ™" / f(w)do(w),
OB (e)

where do stands for the volume element on the geodesic sphere 3By, (¢). Similarly,
the second mean value Ly (¢, f) for an f is defined by

L (e, f) = (vol (.S'"‘l(l)))_] / (f o exp,,(cu)) du,
sn=1(1)

where exp,, is the exponential map at m € M and du is the usual volume element
on the (n — 1)-dimensional unit sphere S"~!(1).
In [10] and [11], O. Kowalski conjectured the next

Conjecture. For an analytic Riemannian manifold (M, g), the following condi-
tions are mutually equivalent:
(1) for each m € M, the mean value formula

Mm(ey f) = f("") + 0(52k+2) (6 - 0)

holds for all harmonic functions f near m;
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(ii) for each m € M, the mean value formula
Lm(e, f) = f(m) + O(e™*?) (€ —0)

holds for all harmonic functions f near m;
(ii1)x for each m € M, the estimate

Mp(e, f) = Lim(e, f) + O(e**?) (e = 0)

holds for all harmonic functions f near m;
(iv)ix for each m € M, the estimate

Mmn(e, f) = Lm(e, f) + O(e**?) (¢ —0)

holds for all functions f of class C***+2 near m.

In the above, k is a natural number or +00 and, in the case of k = 400, the
formulae are understood to hold without remainder terms.

Let X = (X(t), Pm) (m € M) be a Brownian motion on (M, g), i.e., the diffusion
process on (M, g) whose infinitesimal operator is the Laplacian A on (M,g). Let
also T, be the first exit time from the geodesic ball B, (¢), i.e., T, = inf {t > 0:
X(t) & Bm(c)}. The stochastic mean value for an f and the mean ezit time from
Byn(€) are defined by E,, f(X(T:)) and E,,T. respectively, where E,, denotes the
expectation with respect to the probability measure Pp,.

Also we set Ap(g) = vol (8Bm(€)) the volume of the geodesic sphere dB,,(¢) and

®n(c) = /0‘ A;,‘(s)/oa Am(t)dtds.

Finally a function f is called bi-harmonic near m if it is defined and smooth in a
neighbourhood of m and A f is harmonic there.

In [12], we also introduced the following conditions:

(M1); for each m € M, the estimate

Mu(e, f) = Enf(X(T:)) + O(e**+?) (e —0)

holds for all functions f of class C**2? near m;
(M2), for each m € M, the mean value formula

Mm(e, f) = f(m) + (EnT:)Af(m) + O(e***?) (e —0)
holds for all bi-harmonic functions f near m;
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(M3)x for each m € M, the mean value formula
Mm(e, f) = f(m) + ®m(e)Af(m) + O(e®*+?) (¢ —0)

holds for all bi-harmonic functions f near m;
(M4),, there exists a sequence of polynomials pj, j =1, 2, ..., k without constant
lerms such that, for each m € M, the ezpansion

k
Mn(e, f) = f(m) + ) _ pi(B)f(m)e¥ + O(e*+?) (e —0)
j=1

holds for all functions f of class C***2 near m.

The conditions (L1)z—(L4); are defined in the same way as (M1);—(M4); are done
respectively with the first mean value My, (¢, f) replaced by the second one L, (¢, f).
The conditions (M4)s and (L4)s are understood to hold for all analytic functions
f at m.

For an m € M, let (U; z',z2%,...,z") be a normal coordinate system around
m, and denote by (gi;) and (R;jr¢) the metric tensor and the curvature tensor with
respect to the normal frame (5%, 5%;, .. .,:.,,%;), respectively. Throughout we exploit

Einstein’s convention as well as the extended one, i.e., the summation convention for
repeated indices. The Ricci tensor and the scalar curvature are denoted by (g;;) and
7T respectively; g;; = R%;yj, 7 = pii. We also denote the length of a tensor T' = (Tj;)
by |T|, i.e., |T|? = T;;T". Finally, we denote the covariant derivative by V; and set
A = VPV,.

We call an Einstein space super-Einstein if | R|? is constant and R,-j = Ripyr R;’"" =
1A

——9ij. We also call an Einstein space 2-stein if

3n|R|? + 272

W(yxjyu + 9ik9je + Giedjk),

(Ro R)ijre=
where
(Ro R)ijke = Rij? (Ritpg + Rekpq) + Rik®'(Rjepg + Rejpq)
+ Ri® (Rjkpq + Rijpg) (Rijke = Rikje).
Further we call a 2-stein space 2*-stein if |R|? is constant (or equivalently, if the

space is super-Einsteinian). Similarly we call a space quasi-super-Einstein if 7 and
|R|? — |o|? are constants, and if

. R 2 —_ 2 3
(2.1 Rij = %%‘ — & Ripjq + 20ip €] — 5005
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Finally, we call the space (M, g) harmonic if, for each m € M, there exist an € > 0
and a function F: (0,€) — R such that the function f(n) = F(d(m,n)) is harmonic
in By (g) \ {m}, where d is the distance function defined by the Riemannian metric.

For the proof of our Theorem 1 mentioned below, we use the next theorems.

Theorem A ([6], [9], [10], [12], [17], [22]). Let (M, g) be an n-dimensional con-
nected C* Riemannian manifold with n > 3. Then the following assertions hold.

(1) Each of the conditions (1)eo—(iV)so, (M1)oo — (M4)s and (L1)e—(L4)oo is
necessary and sufficient in order that (M, g) be a harmonic space.

(2) Each of the conditions (i)3—(iv)z, (M1)2 — (M4)2 and (L1)2-(L4); is necessary
and sufficient in order that (M, g) be an Einstein space.

(3) Each of the conditions (i)3—(iv)s, (M1)3 — (M4)3 and (L1)3—(L4)3 is necessary
and sufficient in order that (M, g) be a super-Einstein space.

Theorem B ([11], [12]). Let (M, g) be an n-dimensional connected C* Rieman-
nian manifold withn > 3 and fix ak € {1, 2,..., oo}. Then the following assertions
hold.

(1) The condition (i)x is necessary and sufficient for (M1);.

(2) The condition (ii)g is necessary and sufficient for (L1)i.

(3) The condition (iii)x is necessary and sufficient for (iv).

Remark. (1) Notice that due to [12], the assertions in Theorem A are valid
for C*° Riemannian manifolds, except for the sufficiency of (M4)s, and (L4)s. (2)
In [11], O. Kowalski proved the assertion (3) of Theorem B for C* Riemannian
manifolds.

We also use the following notation.
Rij = RiuqurquR;"”, R = R:,
- — —-— . . J-k
Rij = RiuqurquR;“”, R= Rk‘
Our main objective of this paper is the following

Theorem 1. Let (M, g) be an n-dimensional connected C*™ Riemannian manifold
with n > 3. Then the following assertion holds. Each of the conditions (i)4—(iv)4,
(M1)4—(M4)4 and (L1)4 - (L4)4 is necessary and sufficient in order that (M, g) be a
2*-stein space and satisfy

(2:2) 3ViRascaV; R — 20R;; + lﬁkij = Agij,
1 5 -
(2.3) A= ;;(3|VR|2 —~ 20R + 16R) = constant.
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Remark. We divide the assertion of Theorem 1 into following three parts (a),
(b), (c) and prove (c) in Section 3 and (a)-(b) in Section 6: each of the condi-
tions, (i)4 and (M1)4—(M4)4 in (a), (ii)4 and (L1)4—(L4)4 in (b), and (iii)4—(iv)4 in
(c), is necessary and sufficient in order that (M,g) be a 2*-stein space and satisfy
(2.2)-(2.3). Note that we can also give a simple proof of the assertion (c) by using
Theorem 1 in [11], which was suggested by O. Kowalski (private communication).

A lower dimensional case of Theorem 1 is the following

Theorem 2. Let (M, g) be an n-dimensional connected C*° Riemannian manifold
with 3 < n < 6. Then each of the conditions (i)4—(iv)s, (M1)4—(M4)4 and (L1)4—
(L4)4 is necessary and sufficient in order that the following assertions hold:

(1) ifn = 3, 4, then (M, g) is locally flat or locally isometric to a symmetric space
of rank one;

(2) if n =5, then (M, g) is a 2*-stein space and, satisfies |V R|? = constant and

VR)?
(24) ViRapeaVjR* = I—n—l—g.-,-;

(3) if n = 6, then (M, g) is a 2*-stein space and satisfies (2.3)—(2.4).

In this paper, we also introduce three new conditions, i.e., the conditions (S2);—
(S4), are defined in the same way as (M2),—(M4); are done respectively with the
first mean value My, (¢, f) replaced by the stochastic mean value E,, f(X(7)). These
conditions are motivated by the fact that, if (M, g) is a harmonic space, then the
conditions (52)e—(S4)oo follow from Theorem A (1).

Now following [13], we define the following condition:

(MD) for each m € M, the asymptotically mean independence formula

(2:5) EnTe f(X(T2)) = (EnT)(Enf(X(T0))) + O(**4?) (e —0)

holds for all functions f of class C***? near m.
Then we have the following equivalence theorem, which we also use for the proof

of Theorem 4.

Theorem 3. Let (M, g) be an n-dimensional connected C*° Riemannian manifold
with n > 2. Then, for each k = 1, 2, ..., 400, the condition (S2); is equivalent to
the independence condition (MI);.

Finally we prove the following

Theorem 4. Let (M, g) be an n-dimensional connected C* Riemannian manifold
with n > 2. Then the following assertions hold.
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(1) Each of the conditions (S2)3 and (S4)s is necessary and sufficient in order that
(M, g) be of constant scalar curvature.

(2) Each of the conditions (S2)4 and (S4)4 is necessary and sufficient in order that
(M, g) be a quasi-super-Einstein space.

(8) The conditions (S3)3 and (S3)4 are necessary and sufficient in order that (M, g)
be an Einstein and a super-Einstein spaces respectively.

Corollary. Let (M,g) be an n-dimensional Einstein space with n > 3. Then
each of the conditions (S2)4 and (S4)4 is equivalent to that the space (M,g) is a
super-Einstein space.

3. PROOF OF THEOREM 1

Let (M, g) be an n-dimensional connected C™ Riemannian manifold and an m €
M. Let (U; z!,z2,...,z") be a normal coordinate system around m. Let V be the
Levi-Civita connection of the Riemannian manifold (M, g) and R(X,Y) its curvature
tensor, i.e., R(X,Y)Z = Vixv)Z - [Vx,Vy]Z. We set Rijee = g(R(8:,0;)0%,8),
g = (gi;)"! and g = det(gi;), where §; = ;%;. We also denote V; = Vp, and

ozt
Vi iy = Vi, ..V, Vi, (= Tif r = 0). For a tensor T = (T;

1..4,), We denote
Ty iyigrge = V5, j, Tiy.i, and VT = (T;, _,;;)- The inner product S;, i, T;
of two tensors S = (S;, ;,) and T = (T; ) is denoted by (S, T).

We also use the convention

1---8p

1---8p

ghiade = ghigla | gir i1,12,...,, = 1,2,...,n.
Lemma 3.1. It holds that

1 1
(3.1) gi; = 6,'j - :—3-R)"'hj(m):tkh - ﬁRk;h,‘;},(m)z""’

1 16
+ 5{ — 6 Rkinj;pq + ?RkihuRquu}(m)zkhpq

1
+ @{ — 8Rukinjiper + 16 Rkinu Rpjqu;r + 16 Rijhu Rpiqu;r } (m)z*HPe"

1
+ ’7“'{ - IORkihj pqrs + 34Rkihu;qurj.‘u + 34Rkjhu;qurisu

+ 55Rkihu;qujru;a - 16Rk.’huRquuR,.u’u}(m)zkhpq"‘

4
+ ‘_3 8! { - ngihj;pqraa + 46Rkihu;pqusjqu + 46Rkjhu;pqu:iau

+ gngihu;qurj:u;a + gngjhu;quri:u;a
- 55Rkihu;qujrv Rsuow - 55Rkjhu;quirv Rlucm
- 34Rkuhv;quiru Rajau}(m)zkhpq"a + 0(":'8)
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Proof. This follows from the same arguments as in [20].

Corollary 3.2. It holds that

8
(3_2) \/E =14 ZS.'“-’”_,-'(m)zixiz...i, + O(Izlg),
p=2
where
1
Skp = — gokh
1
Sknp = — 12 8hp)

1 3 1 2
Skhpe = F{ — 5 Qkhipg + 30khlpg — ﬁRkuthpuqu},
1 2 5 2
Skhyqr = :5'7{ - §9kh;pqr + sgkhqu;r - §Rku’pruqv;r}y
1 5 8
Skhpqra = Ei{ - 79kh;pqra + 3Qkh9pq;r.v - 7RkuhuRyuqu;n
5 15 5
+ §th;p9qr;t - ‘i‘iRkuhu;quuru;a - §Qkh2pq9r:
2 16
+ §Qthpuqv Rrusv - énguhuvaqw Rrwsu}y
1 3 14 21
Skhpqr:a = F{ - ngh;pqr.:a + ?Qkhgpq;r:a + 'E'Qkh;pgqr;:a
35 7 14
- Fglchgpqgu;a + §Qkh;quurv Ryuav + ?Qthpuqu Ry,
5 9
- §RkuhuRpuqv;rta - §Rkuhv;qurusu;a

8
- §Rkuhv RyquRrwsu;a}-

In the sequel, we define Zf‘:k a; = 0 whenever £ < k.

Lemma 3.3. It holds that
8
(3:3) V&S = fm) + (Vafm)s' + 3 {5(T, , 0)m)
p=2 '

+(S 0 f)itiz - ip)(m) + Sigiz._iy () f(m) 5152 4 O(2 %),

where
p-1 1
(3.4) (Sofliriz-..5p) = g msixizmirvf,.+‘.,,i,f'
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Proof. Due to [9], the expansion for f is represented as

(3.5) f=f(m)+ E (Vi i, D)z 4 O(lal?).
=
Hence (3.3) follows from (3.2) and (3.4)—(3.5). O

Let { M ; }j=1.2,.~.k’ {Lm,; }j=l,2,...,k and {Ep j }j=1,2,.,.,k denote the sequences
of linear differential operators satisfying the formulae respectively:

k
Mm(€, ) = f(m) + 3 Mm,; f(m)e™ + O(e?+%),

Jj=1

k
Lm(e,f) = f(m)+ Y _ Lm j f(m)e¥ + O(e2+?),

j=1

k
Enf(X(T.)) = f(m) + ) Em,; f(m)e¥ + O(e™+?),
j=1
for a function f of class C?¥*2 near m (see [9], [11], [17]).

In order to calculate (M ¢ — Ly i) f(m) for k = 1,2,3,4, we prepare some nota-
tions.

Due to [8], the volume A,,(¢) of the geodesic sphere 3By, () satisfies

(3.6)
Am(e) = 28 e""{l—Ls’-l-———-e‘———(—lSA +57% + 8|e|* - 3|R|?)
TR 6n 3-5In(n+2) ToT e
€s 54 8 ., 64
+fi!n(n+2)(n+4)(n+6)( 9" T"’I +7lR| *t 6
64 110 200
—_< ®2, > (Q’R) 63 IV |2 IVQ|2
+— ( )——IVR|’+6 ar+ S (Ae, )+—(V’r, )——(AR,R)
45 2 s
- Bar, )}(m)+0(s )
where

b= eijojreri, (e®e, R) = gijereRijie,
a(e) = ViejkViei;, (De o) = 0i; V5,0ij,
(AR, R) = RijueVj, Rijie.
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We further set the inverse of Ap,(€)
(3.7) Am(e)™! = 5(—%,—)51-"{ 1+ f: Cj(m)e™ } + O(e%+2).
2r3 i
Also we use the following symbol; for a natural number r,
€(iriz. . ior) = (_2{7 Zo: Bt ayinOinspioge) - - Biviarmsyiogany»

where o runs over all permutations and (2r)!!=2-4....(2r).

Lemma 3.4. It holds that, for k = 1,2,3,4,

(3.8)
(Mg = Lo £)f(m) = an s 8(iriz .. .i26)(S o f)(iiz . . .iz)(m)
k-2
+ ZC:(m){Lm,k—nf

+ an ks E(i1d2 . . - i26-25)(S o f)(i112 .. ~i2k—21)}im)
+ C;,._l(m)Lm,lf(m), (Co = 0)

where a, i = T(3){2*T(3 + k)} .

Proof. We first note the following formulae given in [9] and [10] respectively;

(3.9) ALfm)= ). 818...0Lf(m) (8] =88;)
=13 -...%(21: —y €z i) VL, i f(m),
= Onk 3k - (Ak f)(m)
(310) Lm,kf(m) = kL1 Amf(m) = ok kI n(n " 2) - .(n T2k 2)

On the other hand, the same technique in [8: Lemma 3.2] yields

(3.11) Mp(e, f) = Am(e)"te™! / f\/9(exp,, eu) du.
s~=1(1)
Substituting (3.3) and (3.7) into (3.11) and using (3.10), we obtain (3.8). O
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Lemma 3.5. Let (M, g) be a super-Einstein space. Then it holds that

(3.12) (i1 iziia)(S o f)(irigizia)(m) = — 2 ;'n?‘ r(m)Af(m),

(313) %(111216)(501:)(1)12 16)("1)
_n;;4{l5 A f_5n+8 2

Af+ IRPASY(m),

(3.14) €(iriz...ig)(S o f)(iriz...ig)(m) = -5 }6!{ - 15(": 6)-r15§’,,f
3(n + 8)

+ 15(n+4)(n+6) 2A2 (3 lRI2+2T2)A2f

2n2
- = 1 9 16
- 4(Ro R),’jktv:}j“f}(nﬂ + » 7'{ (Tl +n3n + )(3

n + 6)(35n2 + 210n + 296 24(n+ 10
_( )( 3n3 )TSAf__ (n2 )TIRIZAf

9 _ ., 56, 16x
+(§|VR| - SR+ ?R)Af

mf -

nr|R|2+ 2r3)Af

+ (15V; RapcaV; Rabea — 36V RiaeVyp Rjase — 64Ri; + 224R;;) V% f

+ gv,(QIVRP +2R— 36§)Vrf}(m)-

Proof. (3.12)-(3.14) follow from (3.4). But the details of the proof of (3.14)
are too long to be written down here, and will be omitted. O

Now we set, for simplicity

3n|R|? + 272

(315) gf = 56{ (RO R):Jktvuklf'" ng(n+2)

(A"f + 3lnnsf) }

Proposition 3.6. Let (M, g) be a super-Einstein space. Then it holds that

1
8!'n(n+2)(n+4)(n+6)

(3.16) —20R;; + lﬁRij)ijf —MAf}+

(Mn,s = Ln 4)f(m) = [~ 21 + 231 RabeaV; Rases

20"V AV, f] ().



Proof. Since (M,g) is super-Einsteinian, by (3.6)-(3.7) we have

317) Ci=4
Cy = ﬁ—m(s + 121' 2+ 3IRP),
Ca= 6ln(n+2)(71+4)(n+6)(5 P4l 3*&%% ? %"RP
LIVRE - k- 20R).
Also due to [9] and (3.10), we have
(3.18) Lmaf =3 AL L””=§R$Iﬁ(2f+ rAﬂ

Now substituting (3.12)~(3.14) and (3.17)—(3.18) into (3.8) with k¥ = 4 and using
(3.19)—(3.20) in the sequel, we obtain (3.16). a

Lemma 3.7. Let (M, g) be a super-Einstein space. Then it holds that

2 =
(3.19) Vo RiabeVpRjape = -;—2'7'|Rl2y-‘j + Ri; + 4R;j,

(3.20) |VR|? = -%ruﬂ? + R+4R.

Proof. By Al'i’,-j = 0, we have

1
VpRiabeVpRjape = — 'i(ARiabchabc + RiascARjase)
= — Vi, RiaskRjabe — V3¢ Rjask Riase
2 . =
= - -';-i-rlﬁlzg.-j + R,'j + 4R.'j.

Hence (3.19)-(3.20) follow. O

Proof of Theorem 1(c). In the following proof, we assume that (M,g) is a
super-Einstein space due to Theorem A (3). Note also that (iii)4 is equivalent to
(iv)4 by Theorem B (3).

Sufficiency. Suppose that (iv)4 holds. For the normal coordinate system (U ; z!,

z2, ... ") around m, setting first f(z) = 'z/z*z¢ into

(3.21) (Mma— Lma)f(m) =0,
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it follows from (3.16) that (M,g) is a 2*-stein space. Then by (3.15), we have
2f(m) = 0. Setting further f(z) = z'z’ into (3.21), we obtain (2.2) from (3.16)
with 2f(m) = 0. Setting also f(z) = z* into (3.21), we have (2.3), completing the
proof.

Necessily. Suppose that (M, g) is a 2*-stein space and satisfies (2.2)—(2.3). Then
we have easily (3.21) from (3.16). ]

4. CALCULATION OF L, 4f(m)

Let (M, g) be an n-dimensional C*® Riemannian manifold with n > 2 and f be any
smooth function on (M, g). To calculate L, 4f(m), we use the following notation.

1 _ o4 2 _ o4
Dji = Viie,  Dji = Vija,

J
3 _ 4 4 _ o4
Dy = Ve Dje = Vi,
5 _ w4 6 _ o4
D}y = Viiin  Dje = Vg

Now due to (3.9)—(3.10), we have

(A% f)(m) _ €(iriz...8)VE,,  f(m)
24.4n(n+2)(n+4)(n+6)  8'n(n+2)(n+4)(n+6)"

(41) Lpaf(m)=

We note that the computation of €(i,i, ...ig) V3

i112...18

f(m) is reduced to that of
(4.2) C(iriz...i8)VE,, ;,fOm) = K\ + K2+ K3,
where

Ky = €(iriz...i)VE, ;. Af(m) = 15A3 A f(m),

1(2

3 6

2{ 3" D% Awf(m)+ Y DPu(Ajk + Ak + Bjx + Bij + Cjk)f(m)},
p=1 p=1

K3 = the sum of 24 remainder terins.

In the formula (4.2), the first terin K is obtained in [9]. The second one K is
computed via Lemmas 4.1-4.2 mentioned below. The third one A3 is also computed

as in Lemma 4.3 in the sequel.
Lemma 4.1 ([9]). It holds that

Ajif = Dif = VIAS + VieedVif + VS,
Bjxf = Dipf = Ajef + 0;eViof + RijeeViS.
Cjif = Djif = Bjxf + (Vieje — Veojx)VeSf + Rijee Vi
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Lemma 4.2. Let Tj; f denote Ajif, Bjrf and Cji f = Ci; f generically. Then it
holds that

D} Ak f = D Axef = D}jAerf + Vi(0iaVaArif),

Dj,Tif = D},Tei f = AV:Tiif,

D}Tjif = D}y Tjx f = D} Tief + Vileij ViTie f),

D} Te;f = D}y Ti; f = D} Teif + Vilei; ViT; f),

D} Tjef = D3Tief = DATinf + V(e Tief) + Via(Rjait Ty ),
D3Teif = D} Thj f = D3Tii f + Vi(0ieTe; ) + Via(RjaitTi; f),
D§yTjxf = D§Tij f = D3 Tinf + Vi(RjiarVaTji f).

Proof. All formulae above can be verified using the Ricci identity. a

Lemma 4.3. It holds that

V?jklijktf = visjktijlkf = V?jkljiktf = V?jkljitkf
= D} Bit f + V3;1{00i ViraS + RakitVigef + RajitVaf),
V?jktjkitf = Visjktjkh'f = V?jktikjtf = v?jktiktjf

= D} Biif + Vi;1{0ai Vijaf + RajitViaef + RaritV3jef},

(*) = VoS = Viroif = Vijraieinf = Viintiani f
= D)Cit f + Vi;1{0ai V3jif + RajitVagef + RakitVijaf},
Viikijef = Viikeie S = Virjief = Viewjal,

= Dii Bir f + Vi1{0ak Viiaf + RakitVigef + RaritVijof},

(+%) = Vireii f = Viinenejif
= D{Citf + V31{0ak Vii; f + 2Rarit V3, f},
Viikwiinf = Virinif = ViikwiieS = Vijrunif
= (%) + 2V (Rakit V2o f) + Vi{ Vi(Rakpe V2o f) Rpiji ),
Viieeeriif = Viikewsif :

= (%*) + 2V po( Rakie V3o f) + 2Vi{Ve(RakptV3af)Rjipt }-

Proof. All formulae are deformed as in the above, using the Ricci identity.

O
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Proposition 4.4. Let (M, g) be a super-Einstein space. Then it holds that

1

8!'n(n+2)(n+ 4)( +6)
112

20

(4.3) L af(m) = {105A“f+ radf 423 588 EINT:

272
—|RI*A*f +2 (R o R)ijkeViiuef + —5m°Af
168 =
T|R|?Af — —(3ViRabchj Rabea — 20R;j + 16 Ri; )V f

+ (82¢p; — E;—gvi)‘)vif}("l)y

where p; = V;{(Rij - 27%:‘;‘ - HR- 2k)9i1}~

Proof. The formula (4.3) follows from (4.1)—-(4.2) via Lemmas 4.1-4.3 and [9:
Lemma 3.6]. But the details of the calculation are too long to be written down here,
and will be omitted. a

5. STOCHASTIC MEAN VALUE AND MEAN EXIT TIME

In this section, we review some results in [13] for computation of the stochastic
mean value E'mf(X(TE )) and the mean exit time E,, T, (Lemmas 5.1-5.2 below) and
obtain the expansion for them up to order 8 (Proposition 5.4).

Let (M, g) be an n-dimensional C* Riemannian manifold with n > 2. Note first
that the Laplacian A is given by

1 i
= 5 0(V/397%).

Following [17] and [18], we define the operator 7. by 7, f(z) = f(%) for each £ > 0,
and denote by 2, the space of all homogeneous polynomials of degree r for each

nonnegative integer 7. It then follows that for each nonnegative integer k£ and f of
class C*+!

(5.1) T AT f(z) = €72 A L f(x +Ze’Af ) + Okt

ase | 0, where A_, = Y, 82 and A, are second order elliptic differential operators
with A () C P4, for all nonnegative integers r (see [17]). We also denote as

i)y =ttt ot =12 ..n
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(= 1if r = 0), for each nonnegative integer r.

Lemma 5.1 ([13]). Let r be a nonnegative integer and k be a natural number.
Suppose further that the functions Ui¥iz-%r (= U, ifr=0), p=0,2,3,...,2k -1
(Uiria-#r(z) = 0 by convention) satisfy

(5-2) AU (2) = =g (z), 2] < L,
v=-2
DAy gUf () + AUt (2) =0, 2| <1, v=2,3,..., 2k~ L,
pu=0

Upii ) =0, Kl=1, »=0,23,...,2k-1.
Then it holds that
(5.3) E, / g (X (1) dt
0

2k-1

=€r+2ugn'g.ui,(§) + E e“*”’ZU";“"""'(%) +O(Er+2k+2)
=2

uniformly in p € Bp,(€) as e — 0.

We next consider the boundary value problem

(5.4) A_yu(z) = -f(z), |z|<1,
u(€) =0, [l=1

We denote the solution of (5.4) by Gof(z).

Lemma 5.2 ([13]). For each nonnegative integer r and polynomial p € 2,, it
holds that

(A%,p)(2)(1 = [2P*+D) + Go(AXE p)(2)
cr(0)er(1) .. .cr (k) '

(5
(55)  Gop(z) =) _(-1)*
k=0

where ¢, (k) = 2(k + 1)(n + 2r — 2k). Especially, if r (= 2s) is even, then

A,p(0)

(5.6) Gop0) = S T T n(n+2)...(n 7 25)’

and if r is odd, then

(5.7) Gop(0) = 0.
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Finally, we list A appeared in (5.1). The formulae (5.8)-(5.10) in the following
were first obtained by A. Gray and M. Pinsky (7] and (5.11) was obtained by [13].

Lemma 5.3. The following formulae hold.

1 2
(5.8) A= —R,,u.j(m)x""a;a,- - gg,,,-(m)z"a,-,

3
1 1 1

(5.9 A= ER;,.-;.,-;,(m)z""" 9:0; + (-gek:‘;h + ﬁé’kh;j) (m)z**9;,
1

(510) Az = £{6Ruinjipg + 8Reinu Rpjqu}(m)e**10;0;

1
- ﬁ{54gjk;hp - lSRkuhj;pu + 469kuthpu

+ 32Rjuku Rhupu }(m)xkhpaj )
8
(5.11) Az= a{Rkihj;pqr + 6 Rkinu Rpjquir }(m)z P97 0,0;
4
+ 5{ - SRkuthjuqu;p - 8RjuhuRpuqv;k + 6RkuhuRquu;u
— Riuno Rpuguj — 22Rijnupu;q + Rijhulpgiu — 160kuRpugj;n
+ 2Rkuhj;puq + 2Rkuhj;pqu - 69kj;hpq + Okh;jpg — Okhipjq
~ Okhipqj }(m)z*HP10;.
Further, A4 satisfies

|z[? !
5= = g7 {900knpers + 144Reuny Rpuguirs

+ 135Rkulm,r Rpuqu;; + 32Rkuhu RpquRrw:u }(m)zkhpqrs_

(5.12) A4

Proof. Due to (3.1), we obtain
ij 1 kn, 1 khp
gv = 6,'_,' + iRkihj(m)t + ':'sTRk.'hj;P(m)x

2

+ 5(3Rkih,‘;pq + 4Reinu Rpjqu)(m) kPP
8

(5-13) + .6_'{ Rh'hj;pqr + 3V (Reinu Rquu)}('")zkhpqr

5

+ ﬁ{2Rkihj;pqrs + lovz,(RkihuRquu) - 3Rl:ihu;erjqu;s
32

+ ?Rkihu Rquu Reusv }(nl)zlchpqrs + O(I.‘L‘|7)

Hence, the formulae of Lemma 5.3 follow from substitution of relations (3.2) and
(5.13) into (5.1). a
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The purpose of this section is to prove

Proposition 5.4. Let (M, g) be an n-dimensional C* Riemannian manifold with
n > 2. Then it holds that, for a function f of class C'° near m,

(5.14)

Enf(X(T2) = f(m) + 5-A0(m) + grres (

' (sarf+ %Af)(m)
SG
+ 6! n(n + 2)(n + 4)
v (Bars Do |9I2+—IR|2)Af}(m)

8 420

{15A3f+ 30 a2 4 ﬂ? (VAS, V)

€ 8
+ 8!'n(n +2)(n + 4)(n + 6)
140(5n + 12) 56(2n2 + 13n + 24)

n2(n+2) n(n+2)(n +4)
5 .
—6—3 {9(V2AF, V1) + 3(V2Af, Ap) + 2(VEAS, R) + 2Rikje0i; Vi, Af

[105A4f + —1A%f +— (VA’ f,V7)

r2Af + (GAT - |9I2 +|R))A%f

1

— 40i;0;: V2, A1) +—{6(VAf,VAr) % ViTViAS
2(5n + 6

+(VALV(RE - |ol®)) + %2—))7 (VAf,vr) }

+8!n(n+2)(n+4)(n+ 6)U5(0)Af] (m) + O(e'?),
€2 24
2n + 4'n2(n + 2) m(m)

4¢8 5 , ) y . o
+ 6!'n2(n + 2)(n + 4) (SAT+ oT - lel” + [R|* ) (m) +€°Us(0) + O(e™"),

(5.15)  EnT. =

where Ug(0) is given by

1 280(5n + 12) 4
8!'n2(n+2)(n+4)(n+6) L 3In2(n+2)
112(5n + 16)(n + 3)

(5.16) Ugs(0) =

9 1 2
r(6ar — ol +|RP?) + 2020,

In(n + 2)(n +4) 3(n+4)
4(37 120 . 16(11 3 =
- —(3(::—14—1)—)(2@, R) +3(Ag,0)) - %ﬁfz)—m(e@e, R)
48(2n + 15) (V2r, o) + 270A%r + 15(3n + 62)|V I = 30(o?

n+4
— 60a(e) + 180 (AR, R) + 135|VR|? + E-Z—QR + @R}(m
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Corollary 5.5. Let (M,g) be a super-Einstein space. Then it holds that

(5.17)

1 420
m 4f(m)

ap, 220 .3
8'n(n+2)(n+4)( To) 1008+ A

21n + 46 16(51n + 116)
71(11 + 2){ T2+ 2(2n + 7)|R|2}A2f + - —3"2—('1_'_—2)—7’3
8(21n + 56) .
ETCFDR T|Rf? ~ 5(3|VR|2 —-20R+ 16R)}Af] (m)

Proof of Proposition 5.4. We first prove (5.15). We note that, from (5.2), (5.4)
and (5.7), if r + v is odd, then

(5.18) Uiriz-ir(0) = 0.
The formula (5.3) with r = 0, k = 4, using (5.18), implies
(5.19) EnT. = €2Up(0) + €*U3(0) + €5U4(0) + €3Us(0) + O(19).

The first three U3, (0) (0 < p < 2) are obtained in [7]. These are also obtained in
the course of our computation of Us(0).

We compute Ug(0). Note first that Ui''?“r(z) (0 < r < 4) are computed in [13].
It follows from Lemmas 5.1-5.3 that

(5.20) Uos(z) = ! _21:”'2, Uo(0) =

1
'2';1
(5.21) Ua(z) = GoAolUo(z)

= ST (1= 2P

1—|z)? 1—|z|*
+r(m)— 2(n +2)
__ 1(m)
U>(0) = 12n%(n + 2)’
(5.22)  Us(z) = GoAUo(z) = m{gkhp(m 2 (1 = |2[?)

e 1= faf?
p -
+2Vpr(m)z ( n+2 2(n+4))}’



(5.23)
Uy(z) = Go(Agvo + AoUs3)(z)

r kh(_\ _ rrkhpp
_—_5'n(n+4) [10 Quv Rkuhv — 20kuOnu + anh)(m)(Uo (z) — Uy PP ()

+ (m)een(m)Us ™ (z)

20
3n(n+2)
+ {IOQkthq + (n + 4)(92kh;pq + 2Riuhv Rpuqu)}(m)Uothq(z)] ,

and

4

(5.24) UsO) = §rtn 7 9y 5 )

(sar+ 27— 1o+ 1RP) (m).
Finally, substituting (5.20)—(5.23) into the formula
Us(0) = Go(A4Uo + A2U; + A1Us + AoUs4)(0)
and using Lemmas 5.1-5.3, we obtain (5.16). Hence substituting (5.20)~(5.21), (5.24)

and (5.16) into (5.19), the formula (5.15) follows.
Next we prove (5.14). Dynkin’s formula [5] is the following:

Te
(5.25) Enf(X(T.)) = f(m) + Em./o Af(X(t)) dt
Expanding A f at m [see (3.5)] and using (5.3), (5.25) is reduced to

Enf(X(Te)) = f(m) + €*Uo(0)A f(m) + e*{U2(0)Af(m) + B:Af(m)}
€8 {U4(0)A f(m) + B4Af(m)}
+ 8{Us(0)A f(m) + BsA f(m)} + O(e'?),

where

B;jAf(m) = Z ,U;'_': #(0)(Visi,...i, Af)(m).

On the other hand, the terms B; A f(m), j = 2,4,6 are computed in [13]. Hence we
obtain (5.14). a
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6. PROOF OF THEOREM 1 (CONTINUED)
First we prepare some curvature properties of the 2*-stein space.

Lemma 6.1. Let (M, g) be an n-dimensional 2*-stein space. Then it holds that
2r x
(61) \% Rabcdvj Rabea = VpRt'achpRjabc = ‘ﬁlRlzgij + kt’j + 4R‘J
Proof. Since (M,g) is 2*-steinian, we have Vzl(l_lo R).’ju = 0. Then we obtain
(6.2) ViRapcaVjRaved + VpRiaseVp Riare = —FIRI 9ij + 2Ri; + 8R;;.
Hence (6.1) follows from (3.19) and (6.2). O
Lemma 6.2. Let (M, g) be an n-dimensional 2*-stein space. Then it holds that
= 1 =
(6.3) ¢i = Vi{(Rij - 2Ry) - c(R—2R)gii} = 0.
Proof. After calculations, we obtain

x 1 x
(6.4) Vi(VpRiaseVp Rjarc) = 6V;jRij — EV-'(R +16R - 3|VR|?),
(65)  V;(ViRaseaV; Rased) = 8Y; R — %v.-(zk +16% — 3|VR]).

Applying V; to (6.1) and using (6.4)—(6.5), we have

(6.6) Viki = Vil
(6.7) V;Ri; = %v,-(:un 16R - 3|VR}?).
Taking account of (6.6)—(6.7) and (3.20), we obtain (6.3). a

Now we are ready to prove the rest of Theorem 1. In the following proof, we
assume that (M, g) is a super-Einstein space due to Theorem A (3).

Proof of Theorem 1(b). Sufficiency. We first note that, by (4.3) and (5.17),

1
~ 8!'n(n+ 2)(n +4)(n +6)

(6.8) - 20R;; + lﬁh;j)v}’jf - MAf}+ (82«,0.- - E;-;siv.-,\) V;f] (m).

(Lm,a — Em,4)f(m)

— )
[gf - 5{(3ViRabchj Raped
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Hence the proof of the sufficiency of the condition (L1)4 is verified in a similar way to
that of the sufficiency of Theorem 1(c), because of (6.3). Since each of the conditions
(L2)4—(L4)4 implies (ii)4, the sufficiency of each of them is clear from Theorem B
(2).

Necessity. Suppose that (M, g) is a 2*-stein space and satisfies (2.2)-(2.3). The
condition (L1)4 is first shown by (6.3). This with Theorem B (2) implies (ii)4. Then
it follows from (5.14) and (5.17) that

(6.9)
2
Li(e,£) = Emf(X(T.)) + O(e'°) = f(m) + A f(m)

64

+ 4'n(n+2)
6

(3A2f + ?nIA 1) (m)

€

6!'n(n+2)(n+4)

{15A3f+ = A2f+( 3|R|2)Af}(m)

8 . 420 ., 21n + 46 2
+ 8!'n(n+2)(n+4)(n+ 6) [IOSA I+ —_TA I+ n(n + 2){

16(51n +116) ; 8(2In+56) .,
+ 2(211 + 7)|R| }A f + 3n2(n + 2) T n(n + 2) IRl

- §(3|VR|2 —20R+ 161‘2)}Af] (m) + O('9).

Now the necessity of (L4)4 is clear from (6.9). Further (5.15)-(5.16) and (6.9)
imply (L2)4. On the other hand, due to (3.6) we have

(6.10)
e? 24
() = 3o+ gy T
4€° 20 )
+ 6!n2(n+2)(n +4) (6AT+ 3n =7 - _lg' + |R| )(

+ €8 560(5n + 12) .3
8!'n2(n+2)(n+4)(n+6) L In2(n+2)
56(5n + 12)

T(18AT — 8|o|? + 3| R|?)

3n(n + 2)
~ 1—,2389 ~-96(2(e, R) +3(Ap,0)) + 128 (0 ® 0, R) — 324 (V?r, o) + 270A%r
) 220
— 270|Vr|* = 135|Vg|® — 270a(0) + 180 (AR, R) + 135|VR|* + TR

+ 4—2—01?}(,”) + 019,
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Under the assumption of the Einsteinity, it follows from (5.15)—(5.16) and (6.10) that
(6.11) EnT. = ®p(e) + O(e'°).

Hence the necessity of (L3)4 is immediate from (L2)4 and (6.11). a
Proof of Theorem 1(a). Sufficiency. By (3.16) and (6.8), we have

(6.12)
1
(Mot = Em (™) = g s oy 2
+5{(3ViRabeaV; Ravea — 20Rsj + 16Rij) V2 f — AA S}

+ (82¢; + :}%—Vu‘f\)vif] (m).

Hence we can prove all the rest in the same way as in the proof of the sufficiency of
Theorem 1(b).

Necessity. The proof of the necessity is similar to that of the necessity in Theorem
1(b) and will be omitted. o

7. PROOF oF THEOREM 2

For the proof of Theorem 2, we need the following curvature properties of the
super-Einstein space.

Lemma 7.1. Let (M, g) be an n-dimensional super-Einstein space. Then it holds
that

(7.1) R‘ - 2?2;,- = l(R— 2k)g.~,~, for n < 6,

_ Ife 12 4 3 8 \
(1.2) R-2R 4{(1 + ) +3(l—n)r|R| , forn<5.

Proof. Following [16], we define the tensor (E'g’ )) by

E:(p) = 9a15¢“ J"Rs

ii)...i2 12j1ja - - sz;-li'npjz,-xj:;!

for any natural number p, where

6“‘" Jar det(&.-,,-_) (io =1, jo = a).

13 .. !3
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Then for p = 3, we obtain;

(7.3) E'.(,s) = G(3)9ij — 48{(72 ~4|o]* + |RI*)eij; — 4Tipojp — 4T0pq Ripjq
+ 80pg0ip0jq + 80iplkt Rjkpt + 80jp 0kt Rikpt + 80pq0qr Ripjr
+ 27 Rij — 4eip Rjp — 40jp Rip — 4Riququ —4gpq RipreRjgre
— 80pq RikptRjkqt + 80pq Rprqs Rirjs + 4Rij — Sk"j}a

where G(3) denotes the integrand of the Gauss-Bonnet formula, i.e.,

Gy = E = 8{r® — 12r|0|* + 37|RI* + 165+ 24 (¢ ® o, R)
—24(g, R) + 4R - 8R).

Now note that, by definition, E',(Js) = 0 hold for n < 6. This with the super-Einsteinity
and (7.3) implies

X 1 = n-6 12 40
(7.4) Ry - 2Ry = (k- 2Rgs + 50 (1- 24 )

24n n
8
+ 3(1 - ;)r[Rlz}gi,-, for n < 6.
Hence by (7.4), we obtain (7.1)—(7.2). a

Lemma 7.2. Let (M,g) be an n-dimensional 2*-stein space with 3 < n < 6.
Then the following conditions are mutually equivalent, except for the case n = 6
in (3):

(1) (M, g) satisfies (2.2) and (2.3);

(2) (M, g) satisfies (2.4) and (2.3);

(3) (n < 5) (M, g) satisfies (2.4) and |V R|? = constant.

Proof. The equivalence of (1) and (2) follows from (2.2), (6.1) and (7.1). The
equivalence of (2) and (3) follows from (2.3), (3.20) and (7.2). a

Proof of Theorem 2. The assertions (2)-(3) follow immediately from Lemma
7.2. We prove the assertion (1). But we only show the sufficiency of the assertion in
the case n = 4, because the other assertions are clear. Assume one of the conditions
(1)a—(iv)4, (M1)4—(M4)4 and (L1)4—(L4)4. Then by Theorem | and Lemma 7.2, it
follows that |[VR|? is constant. Consequently we can trace the arguments in [21:
pp- 218-220], to obtain that the eigenvalues of W € C*°(End A2M) are constants,
where W is the Weyl curvature tensor of (M, g). Hence by an unpublished result of
A. Derdzinski (reported in [21: Proposition 5] and see 3] for the proof), (M, g) is
locally symmetric. The required result follows as in [2]. a
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8. PROOF OF THEOREMS 3 AND 4

Proof of Theorem 3. Suppose that the condition (MI); holds and choose a
bi-harmonic function f near m. Due to a generalization of Dynkin’s formula [1]:

T,
Emf(X(T.)) = f(m) + EnT.Af(X(T)) - Em [ tA25(X(®) a1
we have

Enf(X(T.)) = f(m) + EnT.Af(X(T2))
= f(m) + (EmT) (EmAf(X(T))) + O(e%*+?)
= f(m) + (EmT:)Af(m) + O(e?**?),

by applying (2.5) and Dynkin’s formula. Hence the condition (S2); follows.
Conversely, suppose that the condition (S2); holds and choose a harmonic function
h near m. We consider the boundary value problem

(8.1) Au,(z) = h(z), z € Bp(e),
ue(§) = h(§), & €IBm(e).

The solution u, of (8.1) is bi-harmonic in Bn,(¢). By a generalization of Dynkin’s
formula [1] again, we have

(8.2) Emuc(X(T})) = u(m) + EnT h(X(T:))
for all r € (0,¢). But, from the condition (S2); and (8.1), we have
(8:3)  |Emuc(X(T7)) ~ {ue(m) + (EmT)h(m)H < Kr***?|uc|cansa(poey)

for all r € (0,¢), where

2k+42
l“th’H"(B...(t)) = E E sup ) !6."3,'2 cee a."»ut(p)l.
J

j=0 iy,i3,...,i; PEBmle
(8.2)—(8.3) imply
|EmTrh(X(T;)) = (EmTr)h(m)| € Kr***?|u|cansas,.(cy)
for all r € (0,¢). Letting r T €, we have
(8.4) |EmTeh(X(T)) = (EmTe)h(m)] < Ke®* 2 u,|casa g, (ey)-
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In the case of & = +00, we have
EnT.h(X(T})) = (EmT,)h(m), r€ (0,¢)

first and then
EnTh(X(TY)) = (EnT.)h(m)

in place of (8.4). These facts show that the independence formula (2.5) holds for a
harmonic function h near m. Hence due to [13], (MI); holds. a

Proof of Theorem 4.

Proof of the assertion for (S2); and (S2)4. This is a direct consequence of
Theorem 3 and the following

Theorem C ([13]). Let (M, g) be an n-dimensional connected C*° Riemannian
manifold with n > 2. Then the following assertions hold.

(1) The condition (MI)3 is necessary and sufficient in order that (M,g) be of
constant scalar curvature.

(2) The condition (MI)4 is necessary and sufficient in order that (M, g) be a quasi-
super-Einstein space.

O

Remark. In [15], M. Liao also proved the sufficiency of the assertion (1) in
Theorem C by a different method from [13].

Proof of the assertion for (S4); and (S4)4. Suppose first that (S4)3 holds. Then
by (5.14) for each m € M, we have

(8.5) Epm3f(m) = pa(A)f(m)

for all functions f of class C® near m. For the normal coordinate (z!,z2,...,z") at
m, choosing functions f so that Af = z',i=1,2, ... nin (8.5), we obtain that the
scalar curvature 7 is constant.

Suppose next that (S4)4 holds. Then by (5.14) for each m € M, we have

(8.6) Epnaf(m) = pa(8)f(m)

for all functions f of class C'° near m. Similarly, choosing functions f so that
Af=1z'i=1,2,..., nin (8.6), we obtain |R|? — |¢|? = constant. Further choosing
functions f so that Af = z'z7, i,j =1, 2, ..., n in (8.6), we obtain (2.1). Hence
(M, g) is a quasi-super-Einstein space.

The necessity of each of (S4)3 and (S4)4 is clear from (5.14). a
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The assertions (1)-(2) are proved.

Proof of Corollary. Notice that the relations |R|2 — |g|? = constant and (2.1)
are reduced to

. i R 2
|R|> = constant and R;; = l—l—gij
n

respectively, provided (M, g) is an Einstein space. Then the assertions of Corollary
are clear from those of Theorem 4 (2). a

Proof of the assertion for (S3)3 and (S3)4. Suppose first that (S3)3 holds. Then
by (5.14) and (6.10) for each m € M, we have

(8.7) 9(VAS, V) (m) +2n +2) (o - %)(m)A fm)=0

for all bi-harmonic functions f near m. But due to [4], we can take a harmonic
coordinate system (U; z!,z2,...,z"). Choosing functions f so that Af = z*,i =1,
2, ..., n in (8.7), we obtain that 7 is constant, and that (|g|? - ’n—z)(m)Af(m) =0.
Thus (M, g) is an Einstein space.

Suppose next that (S3)4 holds. Since (M, g) is Einsteinian, by (6.3) the condition
(S2)4 holds. Hence by Corollary, (M, g) is a super-Einstein space.

The necessity of each of (S3)3 and (S3)4 is clear. a

The assertion (3) is proved. a
Remark. There are quasi-super-Einstein spaces which are not Einsteinian.
Indeed due to [14], the following spaces are in that category;

SP(k) x HP(—=k), S*(k)xRP and H3(-k) xRP (p > 2),

where S"(k), H"(—k) and R" denote n-dimensional spaces of constant sectional
curvature k > 0, —k < 0 and 0, respectively.

Remark. Let M be a 4-dimensional compact orientable C*® manifold. Let .#
be the set of all Riemannian metrics ¢ on M such that volM = 1. We define the
mapping /: .4 — R by

Ig) = /Mum? o) dM.

We then obtain that a metric ¢ € .# is a critical point of I, if and only if (M, g)
satisfies

. R 2 _ 2 3
Rij = U4—|g|g:‘j — & Ripjq + 20ip 0} — §Aeij

1 1
+7(An)gi; + 5

In particular, if (M, go) is a quasi-super-Einstein space, then gy € .# is a critical

2
V,-J- T.

point of I.
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