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Czechoslovak Mathemat ica l Journa l , 42 (117) 1902, Praha 

CONTRACTIVE COUPLINGS 

VLASTIMIL PTÁK AND PAVLA VRBOVÁ, Praha 

(Received May 24, 1991) 

It is the aim of the present note to introduce and investigate a generalized notion 
of coupling intended as an abstract framework for the study of functional models in a 
subsequent communication. In the first part a necessary and sufficient condition for 
the existence of couplings of Hilbert space operators with a prescribed angle between 
their domains of definition is given. The second part of the paper is devoted to the 
problem of coupling of contractions under an additional requirement concerning the 
minimal isometric dilations of these contractions; it turns out that this problem 
is closely related to the lifting problem of intertwining relations that characterize 
generalized Hankel operators [6, 7]. 

The problem to be treated may be formulated as follows. Given two bounded 
linear operators A\ and A2 acting on Hilbert spaces J?[ and Jf2 and a contraction 
X: Jf\ —• J02 what are the conditions for the existence of a Hilbert space J f and 
an operator U G B(Jf) such that 

(1) JT contains JP\ and Jff2) 

(2) U\Jt?\=Au U*\J(?2 = A21 

(3) X = P(Jt?2)\Jt?\. 

(By P(Jf) we shall denote the orthogonal projection onto Jtf.) In section three 
a proof is given of the fact that a solution exists if and only if the intertwining 
relation XA\ = A\X is satisfied. In that case a solution U exists whose norm does 
not exceed the maximum of the norms of A\ and A2. In other words, if A\ and 
A2 are contractions then the set of contractive solutions U is nonvoid. Moreover, a 
parametrization of all contractive solutions U on a certain model space can be given. 

The construction of this model space—denoted by the authors by &>(X)—is de­
scribed in section two. 
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It turns out that the space &(X) is one of the possible equivalent representations 
of a Hilbert space X with the following properties (we assume that X\, J^2

 ar*d the 
contraction X: X\ —• X2 are given) 

(i) X contains X\ and X2, 

(ii) X = Jtf[ V X2) 

(ih) x = p(je2)\jei. 
It is not difficult to realize that representations of spaces X with properties (i)-

(iii) as well as the problem of coupling as described above are closely related to the 
theory of functional models (see [4]). The authors intend to collect their results 
concerning applications of these ideas to this theory in another communication. 

The note is organized as follows. As has been already said above section one 
collects the material from dilation theory needed in the sequel. Section three is 
devoted to the existence and description of the solution and to an analysis of the 
particular case when isometric solutions exist. In section four we impose further 
restrictions on the space X. We investigate the particular case when X contains 
the minimal coisometric extensions of the contractions A\ and A2. It turns out that 
this problem is closely connected with the notion of a generalized Hankel operator 
introduced recently by the authors [6]. More precisely, in this case the necessary 
condition XA\ = A2X and boundedness of X are not sufficient for the existence 
of a solution. Boundedness has to be replaced by a stronger condition: the authors 
introduced in [6] and [7] the condition of ^-boundedness; this stronger condition 
guarantees the possibility of lifting the intertwining relation XA\ = A2X to a relation 
with required properties. 

The idea of combining two spaces in this manner appears first—in the particular 
case of semiunitary operators—in a paper of Adamyan and Arov where the suggestive 
name "couplings" was introduced for this notion. Many questions investigated in 
the theory of unitary dilations may be formulated in terms of couplings of suitable 
mappings and spaces. The ideas of Adamyan and Arov were further developed 
by a number of authors. The connections between couplings, dilation theory and 
mappings of positive type were investigated by many authors, notably by R. Arocena 
and M. Cotlar. Some of their results are related to the questions treated in the 
first part of the present paper. In distinction to their work we aim at the most 
general framework for model theory in the first part of our paper, the second part 
being devoted to couplings on which more stringent conditions are imposed; such 
conditions appear first in the authors' investigation of Hankel-like operators. 

The paper arose from discussions the authors held with V. M. Adamyan and D. Z. 
Arov at the 20th Seminar on functional analysis held in May 1989 in Liptovsky Jan. 
The authors wish to acknowledge a debt of gratitude to them for their stimulating 
lectures and contributions to the programme of the meeting. 
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1. NOTATION AND PRELIMINARIES 

Given a contraction T G B(J€) on a Hilbert space Jf7 we define the defect operator 
D(T) by the formula D(T) = ( 1 - T ' T ) 1 ' 2 . Then |h |2 = |D(T)/i|2 + |T/i|2 for heJf. 

Also, we define the asymptotic modulus A(T) by the formula A(T) = ( l i m T m T n ) 1 / 2 . 
The limit exists in the strong operator topology and |^4(T)/i| = l im|T n h | for h 6 Jf-

This notion was used first by R. G. Douglas [2]. In the theory of generalized Hankel 
operators, the authors defined the notion of ^-boundedness for operators X : J(f\ —• 
J^2 as follows. 

Given two contractions T\ G B(J(f\), T2 G B(Jff2), an operator X: Jf\ —• Jff2 is 
said to be ^-bounded (with respect to T\ and T2) if 

\{Xhuh2)\^ p\A{n)hx\\A{n)h2\ 

for all hi G J?\, h2 £ J^2 and a suitable constant /?. 

Since |yt(T)z| 1$ \x\ for every contraction T and every x, an ^-bounded operator 

is always bounded; the condition is stronger than boundedness, however. 

In the theory of generalized Hankel operators the construction of a symbol is 

based on a lifting theorem for ^-bounded operators [6], [7] and this theorem will 

also be used in an essential manner in the present paper. For our purposes it will be 

convenient, however, to restate it in a different form: 

The classical commutant lifting theorem may be either stated in terms of isometric 

dilations [8] or in terms of coisometric extensions [4]. The same remark applies in 

the case of the lifting theorem for ^-bounded operators; we give the coisometric 

version below. Recall first the notions of the minimal isometric dilation and the 

minimal coisometric extension. If T G B(J(?) is a contraction then there exists an 

isometry U defined on a Hilbert space containing Jf such that T n = P ( J f 7 ) [ / n | j f 

for n ^ 0. Moreover, the restriction V = U\ V UnJ(? is uniquely determined up 
n^O 

to unitary equivalence and satisfies V*\j(? = T*. The isometry V is known as 
the minimal isometric dilation of T. Considering the adjoints we may restate these 
facts in the following manner: given a contraction T G B(J4?) there exists a Hilbert 
space JT containing J f and a coisometry W G B(JC) such that T = W\jf and 
J f = y W*nJf = Inv(J^, W*). A coisometry W extending T and possessing this 

n>0 

minimal property is uniquely determined up to unitary equivalence and is called the 
minimal coisometric extension of T. 

(1, 1) Let A\ G B(Jt\) and A2 G B(Jf2) be two contractions and let U\ G B(XX) 
and U2 G B(J^2) be their minimal coisometric extensions. Suppose X : Jf\ —• Jff2 
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satisfies 

XAi = A*2X 

and 

\(Xhuh2)\<\A{A1)hl\\A{Ai)h2\ 

for all hi €Jfi,h2 €Jf2. 
Then there exists a Y: Jt\ —* Jt2 such that 

Yux = U;Y, 

p(je2)Y\jex = x, 
\Y\ ^ 1. 

The following fact will be frequently used in the sequel: the minimal isometric 
dilation of a coisometry is a unitary operator. More precisely, if V is an isometry 
and W its minimal unitary extension then the minimal isometric dilation of V* is 
the unitary operator W*. 

(1.2) The minimal isometric dilation of a coisometry is unitary. 

P r o o f . Let V € B(Jf) be a coisometry and let U 6 B(Jt) be its minimal 

isometric dilation. Thus V* = U*\Jt?, X = V Unj(? a n d U*U = 1; let us show 

that UU* = 1. For Jb ^ 1 we have (UU* - l)Ukh = 0. It suffices to prove UU*h = h 
for all h e JP. If h e Je we have h = VV*h = P(J?)UU*hy in particular \UU*h\ < 
\h\ = \P(J(P)UU*h\. Hence UU*h G J? and, consequently, h = UU*h. D 

(1.3) Suppose U is a contraction on a Hilbert space JIP. Let J^Q be a subspace of 
Jtf invariant with respect to U. Denote by J? the smallest U* invariant subspace of 
J(P containing J?b, J? = Inv(U*, Jtfo). 

IfU*\jtr is isometric then Jf is reducing with respect to U. 

P r o o f . For k £ J?, we have 

P(JT)UU*k = (U*\X)*U*k = k. 

It follows that 

\P(JtL)UU*k\2 = \UU*k\2 - \P(Jf)UU*k\2 

^ \k\2 - |P(jr)UU*ib|2 = |ib|2 - 1 * | 2 = o. 
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In particular, UUmk = k. To prove that UJf C J? it suffices to show that 
UU*mh0 G Jt for every h0 G J?0 and every m ^ 0. If m = 0, we have Uh0 G 
Jf0 C J? by our assumption; for m > 1, 

t/(TmAo = UU*(U*m-lh0) = t / ^ - 1 ^ G JT. 

The proof is complete. • 

2. THE SPACE ^ ( K ) 

This section is devoted to the construction of a representation of a Hilbert space 
which is spanned by two of its subspaces. 

Given two Hilbert spaces Jt{ and J&i and a contraction X : JK\ —• J^, we denote 
by &*(X) the Hilbert space constructed as follows. 

Consider the direct sum J%\ 0 J&i and the subspace JC C J#\ 0 Ĵ .2 

^ = {( / i i , -K / i i ) ; / i i G kerD(X)}. 

Define on J(P\ 0 J ^ a scalar product 

(**i + h2, h\ + h'2)<p(X) = (h\, h\)jex + (/*2> ^2)jr2 

+ (/i2,K/i/
1)j^2 + (Kfti,A/

2)jf2. 

It is easy to verify that this scalar product is nonnegative definite and the corre­
sponding quadratic form is 

|Ai + A a& ( j r ) = \Xhx + A-lk + |(1 - X'Xy/'hifa. 

Its kernel turns out to be exactly Jl\ it follows that the scalar product is, in fact, a 
positive definite scalar product on J£J © J ^ / u ? . The space &*(X) is defined as the 
completion of Jf?\ 0 Jfy/^V in this scalar product. 

Since 

|A, e A2 + m\%(x) = \Xh + A-lk + l o W A ^ , 

for every rn G - ^ we have 

|A, 0 0 + m\%(x) = I.YA.13̂  + loWA,^, = \ht\%it 

|0eAa + m|^(X):=|Aa|3ft 
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In this manner the spaces X\ and X2 are isometrically imbedded in 9>(X). More 
precisely, the mappings 

Ai i--> Ai 0 0 + ^ 

and 
A2 *-+ 0 0 A2 + Ji 

realize isometric imbeddings of X\ and X2 into 9(X). 
Identifying the elements of X\ and X2 with the corresponding classes it is not 

difficult to see that the mappings P and Q defined by the relations 

(1) P(h1+h2) = Xh1+h2, 

Q(hi + h2) = {l-X)h1 

are indeed operators in (X\ © X2)/^K. It turns out that the operator P is identical 
with the orthogonal projection onto X2 in 9f(X)\ and, Q = P(X2

±). To see that, it 
suffices to observe that, for each Ai £ X\ and each A2 € X2 the sum XAi + A2 £ X2 

and the product ((1 - X)h\,h2)^{X) = 0. For the length of (1 - K)Ai in 9»(X) we 
obtain 

I ( l -*)M^ W = I-W.il3iv 
In particular, relations (1) yield X = P(X2)\X\. Summing up, we have obtained 

the following 

(2,4) Let X: X\ —• X2 be a contraction. The space 9*(X) possesses the following 
properties 

1° 9>(X) contains both X\ and X2 and is generated by their union 
2° P(X2)\X\ =X. 

R e m a r k . Having in mind the identifications of X\ and X2 made in the pre­
vious considerations it is easy to see that the space 9(X) is the only Hilbert space 
satisfying 1° and 2°, 

Indeed, let X be such that X = X\ V X2 and such that X = P(X2)\X\. Then 
X\ + X2 is a dense set in both X and 9>(X). Moreover, for Ai, A2 € X we have 

l^i + * 2 & W = IMS* + 2Re(XAi,A2)jr2 + \h2\
2^ 

= |Ai|3r + 2Rc(.XAi>A2)jr + |A2|3r 

= lAil^ + 2He(P(JP2)Ai, A2)jr + |A2|3r = 1*1 + M V , 

thus the topology on X coincides with that on 9>(X). 
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3 . CONTRACTIVE COUPLINGS 

This section is devoted to the solution of the following problem. We are given 

two operators A\ £ B(J£\), A2 £ B(Jtf2) and an operator X: J£\ —• JP2. What are 

the conditions for the existence of a Hilbert space J f containing JfP\ and J ^ and an 

operator U E B(Jf) such that P(Jff2)\jt\ coincides with X and 

U\JFi =A\, U*\jf2 = A2. 

The following proposition shows that there is a necessary condition connecting A\, 

A2 and X. 

(3, 1) Suppose Jf?\, Jf2 are two Hilbert spaces and let operators A\ E B(J(f\) and 

A2 E B(Jt2) be given. Suppose there exists a Hilbert space J f containing both J0\ 

and Jf?2 and an operator U E B(Jt) such that 

U\J?\=AU 

U*\JP2 = A2. 

Then X = P(Jfr2)\jt\, satisfies 

XA\ = A*2X. 

Proof . Observe that 

A*2 = p(je2)u\je2-

Since Jf2 is invariant with respect to U* we have 

P(J?2)U = P(je2)UP(JfP2) = A*2P(J(?2). 

It follows that 

XA\ = P(JF2)U\jei = A*2P(je2)\jt>\ = A*2X. 

The proof is complete. • 

It is to be expected that U or U* will be uniquely determined, at least on J!P\ +Jf2, 

if more information is available. We have seen that alone the existence of a U implies 
an assertion about the position of Jt?\ and JiP2 in JT. The following remark shows 
that, for a given JT, uniqueness of U or of U* may be proved under additional 
conditions on the imbedding of Jtf\ and Jfy in JT. 

663 



(3.2) Suppose A\, A2, U satisfy the assumptions of the preceding lemma. If, 
in addition, Jf?2 is reducing with respect to U then U is uniquely determined on 
Jt[ V JfP2, 

U(h\ + h2) = A\h\+A*2h2. 

In the case that Jf\ is reducing with respect to U the operator U* is uniquely 
determined on Jt[ V JfP2, 

U*(h\ + h2) = A\h\+A2h2. 

The proof of this statement is based on the following two observations. 

If JIP2 is reducing, we have U Jlf2 C J&i so that 

u\j^ = (u*\j^y = A\. 

If Jf{ is reducing then U*Jt\ C J?\ whence 

U* \J?\ = ([/1 JP\ )* =A\. 

As the first step towards solving our problem let us impose the additional condition 
that JT be as small as possible, i.e. JT = J(f\ V J(?2. We have seen in the preceding 
section Jt can then be identified with the space &*(X). Also, if we are looking for U 
of norm not exceeding the maximum of norms of A\ and A2 we may restrict ourselves 
to the case of contractions and reformulate the problem as follows: 

let A\ G B(Jff\) and A2 G B(J^2) be contractions, let X: Jt\ —• Jf2 be a contrac­
tion satisfying XA\ = A2X. 

Does there exist a contraction U G B(&(X)) such that U\Jt?\ = J4I and U*\jf2 = 
A21 We intend to show that the answer is affirmative and we shall parametrize all 
contractive solutions. 

(3.3) Given contractions A\ G B(JfP\), A2 G B(J?2) and a contraction X: Jt\ —• 
J02 such that 

XA\ = A*2X 

denote by €€(A\,A2,X) the set of all U G B(&(X)) such that U\jf\ = A\ and 
U*\jf?2 = A2. 

Then €£(A\ ,A2,X) contains at least one contraction and the set of all contractions 
in *£(A\, A2, X) consists of all operators of the form 

(2) A*2p(je2) + c(D(A*2)P(je2) + P(JP2
L)) 
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where C: 2?(X) —• Jf2
L is an arbitrary contraction such that C(D(A2)P(Jf2) + 

p(j?2*'))\jr\=p(je2
i-)A\. 

P r o o f . We observe first that each U € <€(A\,A2,X) satisfies 

PU = A*2P 

where P is the orthogonal projection of &(X) onto Jf2. Indeed, the relation 
U*\jf2 = A2 implies A*2 = PU\jf2 and U*P = PU*P. It follows that 

PU = PUP = A*2P. 

Now suppose U E *€(A\, A2, X) is a contraction. Writing Q for 1 — P, we have then, 
for each x £ &(X), 

\A*2Px? + \QUxf = |PUx|2 + \QUx\2 

= \Ux\2$\Px\2 + \Qx\2. 

Thus 

|Qvx|2^|D(^)Px|2+|g--|2 

= \(D(A*2)P + Q)x\2 

for every x G &(X). It follows that QU = CK where K = D(A*2)P + Q and C is a 
contraction mapping the closure of Ran K into Jf2

L. We have thus 

U = PU + QU = PU + CK 

= A*2P + CK. 

At the same time, the restriction CK\jf\ satisfies the relation 

CK\jf\ = QA\. 

This is obvious since 
QA\=QU\jf\=CK\jf\. 

Conversely, suppose we are given a contraction C: &(X) —• JOf" such that 

CK\JH\ = QA\. Set V = A*2P + CK and let us prove that V is a contraction 
and V € <€(A\,A2,X). To see that V is a contraction, we argue as follows. For 
every x € &(X), 

\Vx\2 =\A*2Px\2 +\CKx\2 

^ \A*2Px\2 + \Kx\2 = \A*2Px\2 + \D(A*2)Px\2 + \Qx\2 

= \Px\2+\Qx\2=\x\2. 
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For the restriction V\jXf\ we obtain 

V\jff\ = A*2P\jff\ + CK\J?\ = A*2X + QA\ 

= XA\ + QA\ = PA\ + QA\ = A\ 

To prove the identity V*\3@i = A<i we argue as follows: 

Since RanC C J ^ 1 we have PV = A*2P. Taking adjoints we obtain V*P = Pv42 

and, consequently, V*\j&i = ^42. 

It remains to show that the set of contractions C from Ran K into J^1" satisfying 

CK\jff\ = QA\ is non-empty. To this end it is sufficient to show that 

|Q,4i/ii|^|(r>Oi;)P + Q)/ii| 

for hi € Jt?\. Indeed, 

IQ^fcxI2 = \Axhx - XAxhx\
2 = l^ /u l 2 + \XAxhx\

2 

- 2Re(/l,/ii,XJ4i/n) = l^i/iil2 + \XAihx\
2 - 2\XA1hl\

2 

= I^AxI2 - \XAxhx\
2 ^ l/ul2 - \A;Xhx\

2 = IPAJI2 + IQAil2 

- I^P/nl2 = |o(^)P/n|2 + IQA1I2 = |(o(>i;)P + Q)hx\
2. 

The proof is complete. • 

We have seen in (3, 3) that the set <&(A\, J42, X) always contains contractions. It is 

not difficult to see that stronger postulates on U cannot be imposed unless additional 

assumptions are made concerning A\f A2 and X. 

Clearly a U G ^ cannot be isometric except in the case that A\ is already iso­

metric itself. Thus isometry of A\ is a trivial necessary condition for the existence 

of isometric couplings. 

The following proposition describes isometries in <£(A\,A2,X). 

(3,4) The mapping U £ <&(A\, A2, X) given by formula (2) is an isometry if and 

only if the corresponding C is isometric on the range ofK = D(A2)P(J^2) + P(^2L)-

In particular, a necessary condition for the existence of an isometry in C&(A\, A2, X) 

is the inequality dim Ran A' ^ dim Jff^. 

If A\ is an isometry then the operator Kh\ —• QA\h\ is an isometry mapping 

KJf?\ into J^1-. Then *& contains an isometry if and only if 

dim(D(X)Jt?i)- 9 D(X)AiJt*i > dim(K9>(X))- 0 KJPX 
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P r o o f . If U = A2P + CK is isometric then 

0 = |x|2 - |Ux|2 = |x|2 - \A'2Px\2 - \CKx\2 

= \Px\2 + |Qx|2 - |>i;Px|2 - \CKx\2 

= |Qx|2 + \D(A*2)Px\2 - \CKx\2 = \Kx\2 - \CKx\2 

for all x £ X. This proves the first assertion. 
For hi £ Jf\ we have 

Consequently, 

y^Ph i = A\Xh\ = XA\h\ = PA\h\. 

\Kh1\
2 = \D(A2-)Ph\\2 + \Qh\\2 

= \Ph\\2-\A*2Ph\\2 + \Qh\\2 

= \h\\2-\PA\h\\2. 

If A\ is an isometry it follows that 

\Kh\\2 = \A\h\\2 - \PA\h\\2 = \QA\h\\2; 

consequently 

Kh\ -+QA\h\ 

defines an isometric mapping of {KJ(?\)~" into Jf2
L. This isometry can be ex­

tended to an isometry of (A'^(K))~ into Jf?2
L if and only if di\mJ^2

L 0 QA\ JHP\ ^ 
d im{A'^(X))- 0 AJTi. It remains to show that 

dim jeL 0 QA\JT\ = dim{D{X)J(?\)- 0 {D{X)A\Jf\)'. 

To this end it is sufficient to observe that 

\p(je2
L)h\\%{x) = |(i-x)h\\% (x ) = ih.i2*, -|xfc,i3-, = l o w h i i ^ 

for all hi £ Jf\. • 

Using (3,4) it is easy to show that isometry of A\ alone does not guarantee the 
existence of an isometry in <€(A\, A2,X). 

E x a m p l e . Let Jt\, Jf?2 be nonzero Hilbert spaces, let J4I £ B(Jt\) be unitary, 
A2 = 0 and X = 0. Then D(X) = ljex, D(A*2) = l.*>., Jf\LJf2 and 3»(X) = 
Jf\®Jf2- Further, X = D(A*2)P(Jf2) + P(Jf2

L) = Ije^je, whence (K&(X))~ 6 
KJf\ = Jt?2. On the other hand, (D(X)Jt7\)- e D(X)A\Jf\ =J(fieJ(f\ = (0). 
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4. PARTIALLY COISOMETRIC COUPLINGS 

(4,1) Let U be a contraction on a Hilbert space Jf. Suppose JfJ is a subspace of 
Jt invariant with respect to U and je2 a subspace of Jt invariant with respect to 
U\ 

Then the operator X = P(je2)\je\ satisfies 

x(u\jex) = (u*\je2yx. 

Set 

Jt\ = Inv(Jfi, U*) and X2 = Inv(^2, U) 

and suppose that the restrictions U*\jt\ and U\jf2 are isometric. Then 

(i) the spaces Jt\ and Jt2 are reducing with respect to U, 

(ii) the operator X satisfies the estimate 

\(Xhuh2)\ < \A(u\je\)hx\\A(u*\je2)h2\ 

for ail h\ ejelf h2 £je2. 
Moreovert ifU\je\ is an isometry then U\jt\ V Jf2 is an isometry. UU*\je2 is an 

isometry then U*\Jt[ V Jt2 is an isometry. If both U\jf\ and U*\je2 are isometric 
then U is unitary on Jt\V Jf2. 

P r o o f . The first assertion is an immediate consequence of lemma (1,3). If 
X = P(je2)\j#\, the relation 

x(u\jex) = (u*\je2yx 

can be obtained applying lemma (3,1). 

Choose natural numbers n, m and set 

Px=UmU*m and P2 = U*nUn. 

Since Jt\ and Jt^ are (/-reducing it follows that both Pi and P2 map Jt\ into Jt2. 
This implies that 

P\P2\jf\ = P2\Jf\> 

Since U*\jf\ and U\Jt2 are isometric operators and JfXi Jt2 are reducing it follows 
that 

UU*\X\ = \Xx and U*t/|j*2 = ljr2. 
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As a consequence of these facts, we get, for h\ G Jt\, h2 6 Jfi, 

(Xh\, h2) = (ft,, h2) = (ft,, P2h2) = (P2h\, h2) 

= (PiP2h\,h2) = (P2h\,P\h2) = (U*nUnh\,UmU*mh2) 

= (u*n(u\je\)nh\,um(v*\je2)
mh2). 

Thus 
\(xhuh2)\ ^ |(v|je!)nfti||(tl*|jr2rft2| 

so that, passing to the limit, we obtain the estimate 

|(Xft,,ft2)| ^ \A(V\je\)h\\\A(V*\je2)h2\. 

Further, for k\ 6 Jf\, k2 E Jf2, we have 

|U(ibi + * 2 ) | 2 = |U*i|2 + |U*2|2 + 2Re(U*i, U*2) 

= (V*Uk\, kx) + (U*Uk2, k2) + 2 Re(*,, U*Uk2) 

= IJbil2 + N 2 - 1(1 " t!*tl)1/2*i|2 + 2Re(*,,k2) 

= |Jbi + Jk2|2-|(l-tl*v)1/2Jbi|2. 

If U\jf\ is an isometry its minimal coisometric extension U| Inv(Jf\, U*) is a unitary 
operator according to (1,2). In other words, U*U\jf\ = ljg-x and, consequently, 
U\jf\ \/ Jt2 is an isometry. Similarly, 

|U*(*i + * 2 ) | 2 = |tl**i|2 + KI**2|
2 + 2 Re(tTibi, U*Jb2) 

= (UU*k\, k\) + (UU*k2, k2) + 2 Re(vtTifci, *2) 

= |iti + Jfc2 |2- |(l-t lU*)1 / 2Jb2 |2 . 

If U* \jf2 is an isometry then U* \ lnv(J(f2, U) is again a unitary operator according 
to (1,2), in other words, UU*\jt2 = ljr2. Consequently, U*\jf\ V Jf2 is an isometry. 

(4,2) Let Jtf\, J&i be two Hilbert spaces and suppose A\ £ B(Jti), A2 £ B(Jff2) 
are contractions. Let X: JfP\ —• J^2 he a bounded linear operator. Then the following 
assertions are equivalent. 

1° There exists a Hilbert space Jf containing Jf{ and Jft and a contraction 
U £ B(Jt) with the following properties: 

Jf\ is U invariant and U\j%\ = A\, 

J&i is U* invariant and U*\jf2 = A2, 
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x = p(je2)\jex. 

The restrictions U*\ \x\\(J%>\, U*) and U\\n\(Jtf2,U) are isometric operators and 
JT = Inv(Jfi, U*) V Inv(JT2, U). 

2° The operator X satisfies the intertwining relation 

XA\ = A*2X 

and the estimate 
\(Xh\,h2)\^\A(A\)h\\\A(A2)h2\ 

for all h\ eJf\,h2 £ Jf2. 

P r o o f . The implication 1° —• 2° is a part of the preceding proposition. The 
proof of the converse will proceed in several steps. 

According to (1,1) there exist spaces Jt[, Jt2, coisometries U\ G B(Jt\), U2 E 

B(Jf2) such that Jt\ = \nv(J#\, U*), Jt2 = \nv(JP2, f/2) and an operator X: Jf\ —• 
JC2 with the following properties: 

XU\ =U*2X, 

U\\JT\=A\, 

U2\Jt2=A2, 

|XK1 

and 
x = p(je2)x\je\. 

Set Jt = £?(X) so that JT = Jt\ V JC2 contains Jt[ and Jf2 and, consequently, 

contains Jft and Jf2. Also, X = P(X2)\X\ in JT whence X = P(Jf2)X\jt{ = 

P(Jf2)\jf\. We have then, for k\ G Jt\, k2 E J^2 

IUi*i + u; *2|2 = |Ui*i |2 + |U2**2|
2 + 2 Re(U\k\, u;k2) 

^ |*i|2 + |*2|
2 + 2 Re(XU\k\, U;k2) 

= \k\\2 + \k2f + 2Re(U2*Xkl,U2*k2) 

= |*i I2 + |*2|
2 + 2 Re(Xk\, k2) = \k\ + Jfc2|

2. 

It follows that the mapping 

U0: k\ + *2 — U\k\ + U2*2 

is well-defined and contractive. Denote by U the extension by continuity of U0 to 
the whole of Jf'. 
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We shall need an explicit expression for U*. Consider fixed elements *i, *i € <%i, 
*2, *2 € JC2. Using the definition of the scalar product in &(X) and the relation 
XUi = U^X we obtain 

(U (* i+ *2) ,*2) = (£ / i* i+£/ '* 2 ,* 2 ) 

= (XUlk1,k'2) + (k2,U2k'2) 

= (U;Xki,k'2) + (k2,U2k'2) 

= (XkuU2k'2) + (k2,U2k'2) 

= (*i + *2, £!2*2)-

Since Ui and U2 are coisometries we also have the relation XU\ = U2X; we shall 
use it to compute £/**',. 

(£!(*! + * 2 ) , *i) = (£ll*l + U2*2, *i) 

= (*l,£ll**i) + (El2*2,^*i) 
= (*l,£ll**i) + (*2,£l2X*i) 

= (*i,tlr*i)+(*2,^flr*i) 

= (*i + *2, £!i**i). 

The expression for [/* is thus 

U*(k; + k2) = U;k; + U2k2. 

It follows that both J^i and J ^ are reducing with respect to U and 

U\X\ = UU U*\Jt2 = U2. 

Consequently, 

Jfi =Inv( j r 1 ,U*) = Inv(jr!,(7*), U\JPX =U\\jf\ = A\ 

and 
X2 = Inv(JT2,U*) = Inv(JT2,(7), U*|jf2 = U2|JT2 = A2. 

(4, 3) Corollary. Suppose A\ G B(Jf\) is an isometry, Ai G -^(J^) a contraction. 

Suppose further that the bounded operator X: Jf{ —• J ^ satisfies 

XA\ =A 2 X , 

|X*/i2 | ^ |-4(^2)/i2 | for h2 G JT2. 

671 



Then there exists a Hilbert space Jf containing Jf\ and Jf2 and an isometry U G 
B(Jf) such that 

U\jf\ = A\, 

U*\Jd2 = A2, 

X = P(Jf2)\jfx. 

P r o o f . Since A(A\) = 1, we have 

\(Xhuh2)\^\A(A\)h\\\A(A2)h2\. 

It follows from the preceding theorem that there exists a Hilbert space J f containing 

Jf\ and Jf2 and a contraction U G B(Jf) with the following properties (we write, 

for brevity, X\ = lm(Jf[,U*), Jt2 = Inv(Jf2, U)): 

U\jf\=A\, 

U*\jf2 = A2, 

X = P(Jf2)\Jf\, 

the restrictions U* \jf[ and U\jf2 are isometries and Jf = Jt\yjff2. Since A\ = U\jf\ 

is an isometry it follows, according to (4,1), that U is also an isometry. • 

Similarly we argue to obtain the following. 

(4.4) Corollary. Suppose A\ G B(Jf\) is a contraction, A2 G B(Jf2) an isometry. 
Suppose that X: J(f\ —• Jf2 satisfies 

XA\ = A\X, 

\Xh\\^\A(A\)h\\ forh\€J(f\. 

Then there exists a Hilbert space J? containing Jf\ and Jf2 and a coisometry U G 
B(Jf) such that 

U\jf\ = A\, 

U*\jf2 = A2, 

X = P(Jf2)\jf\. 

(4.5) Corollary. Suppose A\ G B(Jf\), A2 G B(Jf2) are isometries, X: Jf\ — 
Jf2 satisfies 

XA\ = A\X-
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Then there exists a Hilbert space J? containing 3%\ and J&i and a unitary operator 
U e B(X) such that 

U\j%=Au 

U*\JT2 = A2} 

x = p(jr2)\j?i. 
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