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1 . PRELIMINARIES 

The well-known theorem of H. Werner [12] asserts that a variety V is permutable iff 
any diagonal (symmetric) subalgebra of the square ^4x A is a congruence on A, A G V. 

A similar characterization of permutable and regular varieties was obtained by means 
of regular diagonal (symmetric) subalgebras of the square, see [6]. The present 
paper shows that also coherence, see [9] for this concept, of diagonal (symmetric) 
subalgebras and some congruences on the square, gives a description of permutable 
and regular varieties. This result clarifies the relationship between coherent varieties 
and varieties with permutable and regular congruences, a question discussed in [1], 
[3], [5], [9] and [11]. Finally, we show that analogous results hold for weak coherence, 
see [2], permutability and weak regularity. 

N o t a t i o n . Let A be an algebra. The symbol u)A{tA) denotes the least (the 
greatest, resp.) congruence on A. 

Definition 1. Let A be an algebra, B a subalgebra of A x A. B is called a 

diagonal subalgebra of A x A whenever the inclusion u>A C B holds. 

Definition 2. Let A be an algebra. We say that a congruence 0 on A x A has 
factorable blocks whenever any O-block B is of the form B = C x D for some subsets 
C , D o f A. 

A congruence 0 on A x A is called factorable whenever 0 = ^ x $ for some 
congruences * , <£ on A. 

A congruence 0 on A x A is called subfactor whenever Q C U)AXLA OT Q C LAXU>A 

holds. 
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Definition 3. Let A be an algebra. We say that A is permutable whenever 
\p o $ = $ o $ holds for any congruences $, $ on A 

A variety V is called permutable whenever any K-algebra has this property. 

2. COHERENCE IN THE SQUARE OF ALGEBRAS 

Definition 4. Let A be an algebra. We say that A is regular if any two congru
ences on A coincide whenever they have a class in common. 

A variety V is called regular whenever any V-algebra has this property. 

Definition 5. Let A be an algebra. We say that a subalgebra B of A is coherent 
with a congruence 0 on A whenever the assumption [b]Q C B for some b £ B implies 
[x]Q C B for every x £ B. 

T h e o r e m 1. For a variety V, the following conditions are equivalent: 

(1) any diagonal subalgebra of A x A is coherent with congruences on Ax A having 

factorable blocks, A £ V; 

(V) any diagonal subalgebra of A x A is coherent with factorable congruences on 

AxA,AeV; 

(1") any diagonal subalgebra of A x A is coherent with subfactor congruences on 

AxA,AeV; 

(l"f) any diagonal subalgebra of Ax A is coherent with factorable subfactor con

gruences on A x A, A £ V; 

(2) any diagonal symmetric subalgebra of A x A is coherent with congruences on 

Ax A having factorable blocks, A £ V; 

(2') any diagonal symmetric subalgebra of Ax A is coherent with factorable con

gruences on A x A, A £ V: 

(2") any diagonal symmetric subalgebra of A x A is coherent with subfactor con

gruences on A x A is coherent with subfactor congruences on A x A, A £ V; 

(2'") any diagonal symmetric subalgebra of A x A is coherent with factorable sub-

factor congruences on A x A, A £ V; 

(3) V is permutable and regular. 

P r o o f . It suffices to verify the implications (2'") => (3) and (3) => (1). 
(2'") => (3) Permutability: Let tf, $ be congruences on A £ V. Then T = *&o$n$o 

\£ is evidently a diagonal symmetric subalgebra of Ax A. Since [(a, a)]ty x U>A C W C 
T the assumption of coherence yields that T is a union of ^ x u^-blocks. By the same 
argument T is a union of U>A X ^-blocks. Then T is a union of (\P x u;^) V (UJA x $ ) = 
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(tf x ^-blocks, i.e. T = \J{[(x, y)]« x $ ; (x, y) G T} = ¥ o T o $ D * o $. The 
inclusion tyo<l>n$o^ D tpo<$ establishes the permutability of the congruences ^ , $ . 

Regularity: Let *P,$ be congruences on A such that [a]^ = [a]$ for some a £ A. 
Then [(a,a)]tf x a;̂  = [a]\P x {a} = [a]<£ x {a} C $ . By coherence, the diagonal 
symmetric subalgebra $ of A x A is a union of 4> x u^-blocks, i.e. $ = U{[(x> 2/)]* x 

<*M , (x) 2/) £ $ } = * ° $ o u U 2 *• The opposite inclusion follows by a symmetrical 
argument. 

(3) => (1): Let 0 be a diagonal subalgebra of A x A. Then the congruence 
permutability of V yields that 0 is a congruence on A, see [12]. Further, let ^ be 
a congruence on A x A having factorable blocks. Suppose that [(a, 6)]^ C 0 . By 
hypothesis, [(a, b)]ty = C x D for some subsets C, D of A, and thus the assumption 
(c, d) G [(a, 6)]^ implies (c, 6) G C x D C 0 . Using the transitivity of 0 we get that 
(c,a) G 0 . Analogously (d, 6) G 0 can be obtained. In this way we have verified the 
inclusion [(a, 6)]* C [a]0 x [6]0 = [(a,6)]0 x 0 . Now * C 0 x 0 follows from the 
regularity and so 0 is a union of ^-blocks. • 

For transitive subalgebras of the square we have 

Theorem 2. For a variety V, the following conditions are equivalent: 

(1) any diagonal transitive subalgebra of Ax A is coherent with congruences on 

Ax A having factorable blocks, A G V; 

(V) any diagonal transitive subalgebra of A x A is coherent with factorable con

gruences on A x A, A G V; 

(1") any diagonal transitive subalgebra of A x A is coherent with subfactor con

gruences on A x A, AG V; 

(1"') any diagonal transitive subalgebra of Ax A is coherent with factorable sub-

factor congruences on A x A, A G V; 

(2) any congruence on A is coherent with congruences on Ax A having factorable 

blocks, AeV; 
(2') any congruence on A is coherent with factorable congruences on A x A, A G V; 

(2") any congruence on A is coherent with subfactor congruences on Ax A, A G V; 

(2'") any congruence on A is coherent with factorable subfactor congruences on 

Ax A, AeV; 

(3) V is regular. 

P r o o f . (2"') =f> (3): See part (2'") =t> (3) from the proof of Theorem 1. 
(3) => (1): By [10], regular varieties are n-permutable for some integer n > 1. Then 

any diagonal transitive subalgebra of the square is a congruence, see [10] again. The 
rest of our proof is the same as in part (3) => (1) from the proof of Theorem 1. D 
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3 . WEAK COHERENCE IN THE SQUARE OF ALGEBRAS 

Definition 6. Let A be an algebra with a miliary operation 0. We say that A 
is weakly regular if any two congruences \P, 4> on A coincide whenever [0]ty = [0]$. 

A variety V with a miliary operation 0 is called weakly regular whenever any 
V-algebra has this property. 

Definition 7. Let A be an algebra with a miliary operation 0. We say that 
a subalgebra B of A is weakly coherent with a congruence 0 on A whenever the 
assumption [0]G C B implies [x]Q C B for every x G B. 

Theorem 3 . Let V be a variety with a nullary operation 0. The following condi

tions are equivalent: 

(1) any diagonal subalgebra of Ax A is weakly coherent with congruences on Ax A 

having factorable blocks, A G V; 

(V) any diagonal subalgebra of A x A is weakly coherent with factorable congru

ences on A x A, A G V; 

(1") any diagonal subalgebra of A x A is weakly coherent with subfactor congru

ences on A x A, A G V; 

(l / ; /) any diagonal subalgebra of Ax A is weakly coherent with factorable subfac

tory congruences on A x A, A G V; 

(2) any diagonal symmetric subalgebra of Ax A is weakly coherent with congru

ences on A x A having factorable blocks, A G V; 

(2/) any diagonal symmetric subalgebra of A x A is weakly coherent with factorable 

congruences on A x A, A G V; 

{2") any diagonal symmetric subalgebra of A x A is weakly coherent with subfactor 

congruences on A x A, A G V; 

(2/;/) any diagonal symmetric subalgebra of A x A is weakly coherent with fac

torable subfactor congruences on A x A, A G V; 

(3) V is permutable and weakly regular. 

P r o o f . (2'") => (3): Put a = 0 and replace the word "coherence" ("regularity") 
by the term "weak coherence" ("weak regularity", resp.) in part (2/;/) => (3) of the 
proof of Theorem 1. 

(3) =-> (1): Put a = b = 0 and replace the word "regularity" by the term "weak 
regularity" in part (3) => (1) of the proof of Theorem 1. • 

Theorem 4. Let V be a variety with a nullary operation 0. The following condi

tions are equivalent: 
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(1) any diagonal transitive subalgebra of Ax A is weakly coherent with congruences 

on A x A having factorable blocks, A G V; 

(1') any diagonal transitive subalgebra of A x A is weakly coherent with factorable 

congruences on A x A, A G V; 

(1") any diagonal transitive subalgebra of A x A is weakly coherent with subfactor 

congruences on A x A, A G V; 

(1"') any diagonal transitive subalgebra of A x A is weakly coherent with factorable 

subfactor congruences on A x A, A G V; 

(2) any congruence on A is weakly coherent with congruences on A x A having 

factorable blocks, A € V; 

(2') any congruence on A is weakly coherent with factorable congruences on Ax A, 

AeV; 

(2") any congruence on A is weakly coherent with subfactor congruences on Ax A, 

A£V; 

{2"') any congruence on A is weakly coherent with factorable subfactor congruences 

on A x A, A e V; 

(3) V is weakly regular. 

P r o o f . (2'") => (3): Put a = 0 and replace the word "coherence" ("regularity") 

by the term "weak coherence" ("weak regularity", resp.) in the second part of the 

implication (2) -=> (3) from the proof of Theorem 1. 

(3) .=> (1): By [10], weakly regular varieties are n-permutable for some integer 

n > 1. Hence any diagonal transitive subalgebra of the square is a congruence and 

so it remains to put a == 0 and replace the word "coherence" ("regularity") by the 

term "weak coherence" ("weak regularity", resp.) in the implication (3) => (1) from 

the proof of Theorem 1. D 
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