Czechoslovak Mathematical Journal

A. Krapež; Mark Adrian Taylor

Irreducible Belousov equations on quasigroups

Czechoslovak Mathematical Journal, Vol. 43 (1993), No. 1, 157-175

Persistent URL:
http://dml.cz/dmlcz/128378

Terms of use:

© Institute of Mathematics AS CR, 1993

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

IRREDUCIBLE BELOUSOV EQUATIONS ON QUASIGROUPS

A. Krapež, Beograd, M. A. Taylor, Wolfville

(Received September 2, 1991)

Introduction

Among the many quasigroup equations that have been investigated (see for example the work by Denes and Keedwell [3]), of particular interest are those that are balanced. A balanced equation is one in which each variable appears precisely once on both sides. The general study of balanced equations on quasigroups was initiated by Belousov [1] and he was who defined those balanced equations [2] which were named after him in [4] by the present authors.

In [2], it was proved that every Belousov equation is equivalent to a system of equations of a certain type (Theorem 2 below). This result was extended in [4] (Theorem 3 below) where it was shown that any finite set of Belousov equations is equivalent to a single equation again of restricted type.

The thrust of both papers is to replace a single Belousov equation or a set of Belousov equations by equations which are of lesser length. In [4] an example is given of a single equation of the restricted type which is itself equivalent to a shorter equation. The question then arises "which Belousov equations are not equivalent to a shorter Belousov equation?" In this paper we show that such irreducible Belousov equations correspond to polynomials from $1+x \mathbb{Z}_{2}[x]$. These polynomials also play a major role in determining the irreducible Belousov equations equivalent to a set of Belousov equations.

In the final section of the paper, it is shown that the lattice of Belousov varieties of equational quasigroups is isomorphic to the lattice of polynomials from $1+x \boldsymbol{Z}_{2}[x]$, together with the zero polynomial, under divisibility.

Although the present work is motivated by our previous paper [4], it is essentially independent of it.

Preliminaries

We start by reviewing some key definitions and result from [2] and [4].
The set of variables which appear in a term u is called the content of u, and is denoted by $\langle u\rangle$.

An equation $w_{1}=w_{2}$ is balanced if $\left\langle w_{1}\right\rangle=\left\langle w_{2}\right\rangle$ and every variable from $\left\langle w_{1}\right\rangle$ appears exactly once in w_{1} and w_{2}.

A balanced equation $w_{1}=w_{2}$ is Belousov if for every subterm u of w_{1} there exists a subterm v of w_{2} such that $\langle u\rangle=\langle v\rangle$.

For completeness we include:
Theorem 1. (Krapež [5], Belousov [2]). A quasigroup satisfying a balanced but not Belousov equation is isotopic to a group.

A Belousov equation $u_{1} \cdot u_{2}=v_{1} \cdot v_{2}$ is said to be separable if $\left\langle u_{1}\right\rangle=\left\langle v_{1}\right\rangle$ (and consequently $\left\langle u_{2}\right\rangle=\left\langle v_{2}\right\rangle$).

Lemma 1. (Belousov [2]). The separable Belousov equation $u_{1} \cdot u_{2}=v_{1} \cdot v_{2}$ is equivalent to the pair of equations $u_{1}=v_{1}$ and $u_{2}=v_{2}$.

Let $u v$ be a binary product. Then u is said to be a left companion in $u v$ and v a right companion. Also u and v are said to be companions of each other.

A variable x appearing in an equation is said to be an isolated variable if none of its companions is a variable.

The following two theorems are mentioned in the introduction.
Theorem 2. (Belousov [2]). Every Belousov equation is equivalent to a system of inseparable Belousov equations with no isolated variables.

In [4] we strengthened Theorem 2 to:

Theorem 3. Any (finite) set of Belousov cruations is equivalent to a single inseparable Belousov equation with no isolated variables.

However, in the same paper we showed that there are inseparable Belousov equations with no isolated variables which are equivalent to shorter Belousov equations, for example

$$
(x y \cdot u v)(s t \cdot z w)=(t s \cdot w z)(v u \cdot y x)
$$

is equivalent to $x y=y x$.
We define an irreducible Belousov equation to be one which is not equivalent to a shorter Belousov equation, with the understanding that one equation is shorter than another if it contains fewer variables.

The aim of this paper is to characterize irreducible Belousov equations.

Correspondences

The use of trees to represent equations is a valuable heuristic device. In [4] a system was introduced in an attempt to formalize the manipulation of equations via trees. We have subsequently modified this system in such a way as to reduce the technical results associated with it while maintaining its applicability to Belousov equations.

The basis for the formal system is best illustrated by considering a particular example.

The equation $x y \cdot(u v \cdot w)=(v u \cdot w) \cdot y x$ has the following tree representation:

diagram 1
In addition to the variables x, y, u, v, w the term $t=x y \cdot(u v \cdot w)$ has subterms $x y,(u v \cdot w)$ and $u v$. The subterm $t_{1}=u v \cdot w$ is a right companion in t, the subterm $t_{2}=u v$ is a left companion in t, and the subterm u is a left companion in t_{2}. Using R to denote a right companion and L a left companion, the position of any subterm in a term can be described by means of a word in these two letters. Thus the position of u is given by $R L L(u)$. The position of the other subterms is easily obtained when the tree is appropriately labelled (diagram 2).

diagram 2

Thus we have $L(x y), L L(x), L R(y), R(u v \cdot w), R L(u v), R L L(u), R L R(v)$ and $R R(w)$.

The position of the term $x y \cdot(u v \cdot w)$ is described by the empty word $\Lambda: \Lambda(x y$. $(u v \cdot w))$.

The word which describes the position of a subterm in a given term is a path to that subterm. A branch is path to a variable.

In general, for any term $w=t_{1} t_{2}$ define L to be the path to t_{1} and R the path to t_{2}, and recursively if p is the path to the subterm $u=u_{1} u_{2}$ of w then $p L$ is the path to u_{1} and $p R$ is the path to u_{2}.

For a subterm u of w with path p the word $p(u)$ is called a vector in w.
The letters S and T, possibly subscripted, will be used to denote either L or R.
We define the length $\left|S_{1} \ldots S_{m}\right|$ of the path $S_{1} \ldots S_{m}$ to be $m(|\Lambda|=0)$ and the length $|t|$ of the term t as $|x|=0$ if $t \equiv x$ and $|u \cdot v|=\max (|u|,|v|)+1$ if $t \equiv u \cdot v$. The length of the vector $S_{1} \ldots S_{m}(t)$ is defined by $\left|S_{1} \ldots S_{m} t\right|=m+|t|$.

Notice that the length of a vector is the length of the longest branch in it.
For an equation $u=v$ we define $|u=v|=\max (|u|,|v|)$. If $u=v$ is Belousov then $|u|=|v|$ and $|u=v|=|u|$.

If $E=\left\{E_{1}, \ldots, E_{n}\right\}$ is a set of equations then $|E|=\max \left(\left|E_{1}\right|, \ldots,\left|E_{n}\right|\right)$.
If $w_{1}=w_{2}$ is a Belousov equation and u_{1} is a subterm of w_{1} then w_{2} has a unique subterm u_{2} such that $\left\langle u_{1}\right\rangle=\left\langle u_{2}\right\rangle$. This establishes a correspondence between the path to u_{1}, p_{1} say, and the path p_{2} to u_{2}. We denote this correspondence by $p_{1}\left(u_{1}\right) \rightarrow p_{2}\left(u_{2}\right)$.

The equation $x y \cdot(u v \cdot w)=(v u \cdot w) \cdot y x$ has the following correspondences:

$$
\begin{aligned}
L L(x) & \rightarrow R R(x) \\
L R(y) & \rightarrow R L(y) \\
L(x y) & \rightarrow R(y x) \\
R L L(u) & \rightarrow L L R(u) \\
R L R(v) & \rightarrow L L L(v) \\
R L(u v) & \rightarrow L L(v u) \\
R R(w) & \rightarrow L R(w) \\
R(u v \cdot w) & \rightarrow L(v u \cdot w) \\
\Lambda(x y \cdot(u v \cdot w)) & \rightarrow \Lambda((v u \cdot w) \cdot y x)
\end{aligned}
$$

This list is easily obtained by labelling the trees given in diagram 1 in the manner of diagram 2 .

Notice that the subwords in L and R on both sides of the symbol \rightarrow are of the same length. This is a characteristic property of Belousov equations.

Patterns

Consider the correspondence $R R L(u) \rightarrow L L R(u)$, from the list given above. We can obtain the path on the right of \rightarrow from the path on the left by changing the first letter R to L, leaving the second letter L as it is and finally changing the third letter L to R. If we indicate the change from L to R (or vice versa) by 1 , and 0 indicates no change, then the pattern 101 describes the transformation of one path to the other. Similarly, for the correspondence $L L(x) \rightarrow R R(x)$ the resulting pattern would be 11 .

The concept of the pattern of a correspondence is central to the determination of the irreducible Belousov equations.

Assume that a quasigroup equation $w_{1}=w_{2}$ is given, with a correspondence $S_{1} \ldots S_{n}^{\prime}\left(t_{1}\right) \rightarrow T_{1} \ldots T_{n}\left(t_{2}\right)$. Then the pattern (for this correspondence) is a word $\alpha_{1} \ldots \alpha_{n}$ in 0 and 1 such that $\alpha_{i}=0$ iff $S_{i}=T_{i}$ and $\alpha_{i}=1$ iff $S_{i} \neq T_{i}$. We also say that the correspondence $S_{1} \ldots S_{n}\left(t_{1}\right) \rightarrow T_{1} \ldots T_{n}\left(t_{2}\right)$ has the pattern $\alpha_{1} \ldots \alpha_{n}$, or even that paths $S_{1} \ldots S_{n}$ and $T_{1} \ldots T_{n}$ have the pattern $\alpha_{1} \ldots \alpha_{n}$. The pattern $\alpha_{1} \ldots \alpha_{n}$ is a normal pattern iff $\alpha_{1}=\alpha_{n}=1$.

The action of a pattern $\alpha_{1}, \alpha_{2} \ldots \alpha_{n}$ on a term $t=t_{1} \cdot t_{2}$ is given by

1. $0 \alpha_{2} \ldots \alpha_{n} *\left(t_{1} \cdot t_{2}\right)=\left(\alpha_{2} \ldots \alpha_{n} *\left(t_{1}\right)\right) \cdot\left(\alpha_{2} \ldots \alpha_{n} *\left(t_{2}\right)\right)$
2. $1 \alpha_{2} \ldots \alpha_{n} *\left(t_{1} \cdot t_{2}\right)=\left(\alpha_{2} \ldots \alpha_{n} *\left(t_{2}\right)\right) \cdot\left(\alpha_{2} \ldots \alpha_{n} *\left(t_{1}\right)\right)$ when $t=t_{1} \cdot t_{2}$. When $t \equiv x$, a variable, then
3. $\alpha_{1} \alpha_{2} \ldots \alpha_{n} *(x)=\alpha_{1} \alpha_{2} \ldots \alpha_{n}(y \cdot z)$ where y and z are new variables and every other occurrence of x is also replaced by $y \cdot z$.

The action of a pattern $\alpha_{1} \alpha_{2} \ldots \alpha_{n}$ on a vector with path $S_{1} S_{2} \ldots S_{m}$ to the term t is given by
4. $\alpha_{1} \ldots \alpha_{n} *\left(S_{1} S_{2} \ldots S_{m}(t)\right)=S_{1}^{\alpha_{1}} S_{2}^{\alpha_{2}} \ldots S_{n}^{\alpha_{n}} S_{n+1} \ldots S_{m}(t)$ where $S_{i}^{0}=S_{i}$, $L^{1}=R$ and $R^{1}=L$, in the case that $m \geqslant n$, or,
5. $\alpha_{1} \ldots \alpha_{n} *\left(S_{1} S_{2} \ldots S_{m}(t)\right)=S_{1}^{\alpha_{1}} S_{2}^{\alpha_{2}} \ldots S_{m}^{\alpha_{m}} *\left(\alpha_{m+1} \ldots \alpha_{n} * t\right)$ when $m<n$.

Parts 1, 2 and 3 also define the action of patterns on terms and equations. For example the equation $z=101 * z$, where z is a variable may be written successively as

$$
\begin{aligned}
z_{1} z_{2} & =\left(01 * z_{2}\right) \cdot\left(01 * z_{1}\right) \\
z_{3} z_{4} \cdot z_{5} z_{6} & =\left(\left(1 * z_{5}\right) \cdot\left(1 * z_{6}\right)\right)\left(\left(1 * z_{3}\right) \cdot\left(1 * z_{4}\right)\right), \\
\left(x_{3} y_{3} \cdot x_{4} y_{4}\right)\left(x_{5} y_{5} \cdot x_{6} y_{6}\right) & =\left(y_{5} x_{5} \cdot y_{6} x_{6}\right)\left(y_{3} x_{3} \cdot y_{4} x_{4}\right)
\end{aligned}
$$

where $z_{1}=z_{3} z_{4}, z_{2}=z_{5} z_{6}$, and $z_{i}=x_{i} y_{i}, i=3,4,5,6$.

Note also that

$$
\begin{gathered}
z_{1} \cdot z_{2}=0 * z \\
z_{3} z_{4} \cdot z_{5} z_{6}=00 * z=0^{2} * z \\
\left(x_{3} y_{3} \cdot x_{4} y_{4}\right)\left(x_{5} y_{5} \cdot x_{6} y_{6}\right)=0^{3} * z .
\end{gathered}
$$

Consider the equation $x \cdot y z=z y \cdot x$. Replace y on both sides by $u v$. We get a new equation $x(u v \cdot z)=(z \cdot u v) x$, also Belousov and evidently equivalent to the previous one. We call it an inflation of the equation $x \cdot y z=z y \cdot x$.

In general, we get an inflation of an equation E by replacing all occurrences of a variable x by $y \cdot z$ where y and z are new variables, and defining an inflation of an inflation of E to be also an inflation of E. An equation $u=v$ is a deflation of the equation $s=t$ if $s=t$ is an inflation of $u=v$.

Notice that every inflation of an equation E is equivalent to E.
If $w_{1}=w_{2}$ is an equation of length $k \leqslant n$ then there is an inflation which extends all branches in $w_{1}=w_{2}$ to be of length n. This is achieved by the action of the pattern 0^{n} (0 repeated n times) on both w_{1} and w_{2}. As an illustration, the effect of applying the pattern 0^{3} to the equation $x y \cdot z=z \cdot y x$ is shown at the beginning of the next section.

In general the action of 0^{n} to one (or both) sides of $w_{1}=w_{2}$ is to increase the length of any branches with length less than n by inflating variables. If no branch in $w_{1}=w_{2}$ has length less that n, the equations $w_{1}=w_{2}$ and $0^{n} * w_{1}=0^{n} * w_{2}$ are identical. Whatever the value of n, the equations $w_{1}=w_{2}$ and $0^{n} * w_{1}=0^{n} * w_{2}$ are equivalent. This is noted by Lemma 2.

Lemma 2. $0^{n} * w_{1}=0^{n} * w_{2}$ iff $w_{1}=w_{2}$.
Consider now the equation

$$
w_{1} \equiv x_{1} x_{2} \cdot x_{3} x_{4}=x_{4} x_{3} \cdot x_{2} x_{1} \equiv w_{2}
$$

and the term t given by

$$
\left(y_{1} y_{2} \cdot y_{3} y_{4}\right) \cdot z
$$

The tree representations are given by diagrams 3 and 4. In w_{1} and w_{2} the branches are all of length 2. The term t has four branches of length 3 and one branch of length 1. The term $0^{2} * t$ has the tree representation given by diagram 5 , where $z=z_{1} \cdot z_{2}$.

Notice that $0^{2} * t$ is of the form w_{1} where $x_{1}=y_{1} y_{2}, x_{2}=y_{3} y_{4}, x_{3}=z_{1}$ and $x_{4}=z_{2}$. Consequently $\left(y_{1} y_{2} \cdot y_{3} y_{4}\right) \cdot z_{1} z_{2}=z_{2} z_{1} \cdot\left(y_{3} y_{4} \cdot y_{1} y_{2}\right)$.

We have applied the equation $w_{1}=w_{2}$ to the term t. For the tree representation see diagram 6 .

diagram 3

diagram 4

diagram 5

The process of applying an equation to a term may be extended to applying an equation $w_{1}=w_{2}$ to an equation $u_{1}=u_{2}$. In the latter case $w_{1}=w_{2}$ may be applied to any subterm of u_{1} or u_{2}.

This is illustrated by the following simple example:
We will apply $x y=y x$ first to the subterm $u v$

$$
u v \cdot w=w \cdot v u
$$

to get

$$
v u \cdot w=w \cdot v u .
$$

We now apply $x y=y x$ to $v u \cdot w$ which results in,

$$
w \cdot v u=w \cdot v u
$$

The structure of irreducible belousov equations

In this section we show that all branch correspondences of an irreducible Belousov equation have the same pattern.

Consider the pair of equations

$$
\begin{aligned}
x y \cdot z & =z \cdot y x \\
(r s \cdot u v) \cdot t w & =w t \cdot(v u \cdot s r)
\end{aligned}
$$

Then $0^{3} *(x y \cdot z)=0^{3} *(z \cdot y x)$ becomes successively

$$
\begin{aligned}
\left(0^{2} * x y\right) \cdot\left(0^{2} * z\right) & =\left(0^{2} * z\right) \cdot\left(0^{2} * x y\right) \\
\left.((0 * x) \cdot(0 * y))\left(\left(0 * z_{1}\right) \cdot 0 * z_{2}\right)\right) & =\left(\left(0 * z_{1}\right) \cdot\left(0 * z_{2}\right)\right)((0 * y) \cdot(0 * x)) \\
w_{1} \equiv\left(x_{1} x_{2} \cdot y_{1} y_{2}\right)\left(z_{3} z_{4} \cdot z_{5} z_{6}\right) & =\left(z_{3} z_{4} \cdot z_{5} z_{6}\right)\left(y_{1} y_{2} \cdot x_{1} x_{2}\right) \equiv w_{2}
\end{aligned}
$$

Similarly $(r s \cdot u v) \cdot t w=w t \cdot(v u \cdot s r)$ under the action of 0^{3} becomes

$$
w_{3} \equiv(r s \cdot u v)\left(t_{1} t_{2} \cdot w_{5} w_{6}\right)=\left(w_{5} w_{6} \cdot t_{1} t_{2}\right)(v u \cdot s r) \equiv w_{4} .
$$

We now apply the equation $w_{3}=w_{4}$ to the term w_{1}, that is rename the variables $r=x_{1}, s=x_{2}, u=y_{1}, v=y_{2}, t_{1}=z_{3}, t_{2}=z_{4}, w_{5}=z_{5}, w_{6}=z_{6}$ to get an equation

$$
\left(x_{1} x_{2} \cdot y_{1} y_{2}\right)\left(z_{3} z_{4} \cdot z_{5} z_{6}\right)=\left(z_{5} z_{6} \cdot z_{3} z_{4}\right)\left(y_{2} y_{1} \cdot x_{2} x_{1}\right)
$$

We conclude

$$
\left(z_{3} z_{4} \cdot z_{5} z_{6}\right)\left(y_{1} y_{2} \cdot x_{2} x_{1}\right)=\left(z_{5} z_{6} \cdot z_{3} z_{4}\right)\left(y_{1} y_{2} \cdot x_{2} x_{1}\right)
$$

Lemma 1 yields

$$
z_{3} z_{4} \cdot z_{5} z_{6}=z_{5} z_{6} \cdot z_{3} z_{4}
$$

and

$$
y_{1} y_{2} \cdot x_{1} x_{2}=y_{2} y_{1} \cdot x_{2} x_{1}
$$

The first of these equations deflates to $x y=y x$; the second separates and also gives the commutativity equation. This example serves to illustrate the following.

Lemma 3. Let $u=v$ and $s=t$ be Belousov equations with $|u|=n>1$ and $|s|<n$. Then provided s is not identically equal to t there exists a set E of Belousov equations with $|E|<n$ such that $E \cup\{s=t\}$ is equivalent to $\{u=v, s=t\}$.

Proof. By Lemma $2 u=v$ iff $0^{n} * u=0^{n} * v$ and $s=t$ iff $0^{n} * s=0^{n} * t$. We can assume without loss of generality that $u=v$ and $s=t$ are both nonseparable, i.e. $u \equiv u_{1} u_{2}$ and $v \equiv v_{1} v_{2}$ with $\left\langle u_{1}\right\rangle=\left\langle v_{2}\right\rangle$ as well as $s \equiv s_{1} s_{2}$ and $t \equiv t_{1} t_{2}$ with $\left\langle s_{1}\right\rangle=\left\langle t_{2}\right\rangle$. Then

$$
\left(0^{n-1} * u_{1}\right) \cdot\left(0^{n-1} * u_{2}\right)=0^{n} * u=0^{n} * v=\left(0^{n-1} * v_{1}\right) \cdot\left(0^{n-1} * v_{2}\right)
$$

and similarly

$$
\left(0^{n-1} * s_{1}\right) \cdot\left(0^{n-1} * s_{2}\right)=\left(0^{n-1} * t_{1}\right) \cdot\left(0^{n-1} * t_{2}\right)
$$

Renaming the variables we can set $0^{n} * u \equiv 0^{n} s$ which also means that $0^{n-1} * u_{1} \equiv$ $0^{n-1} * s_{1}$ and $0^{n-1} * u_{2} \equiv 0^{n-1} * s_{2}$.

The right hand sides of $0^{n} * u=0^{n} * v$ and $0^{n} * s=0^{n} * t$ become equal as well, i.e.

$$
\begin{equation*}
\left(0^{n-1} * v_{1}\right) \cdot\left(0^{n-1} * v_{2}\right)=\left(0^{n-1} * t_{1}\right) \cdot\left(0^{n-1} * t_{2}\right) \tag{1}
\end{equation*}
$$

Since

$$
\left\langle 0^{n-1} * v_{2}\right\rangle=\left\langle 0^{n-1} * u_{1}\right\rangle=\left\langle 0^{n-1} * s_{1}\right\rangle=\left\langle 0^{n-1} * t_{2}\right\rangle
$$

(1) separates into

$$
\begin{align*}
& 0^{n-1} * v_{1}=0^{n-1} * t_{1} \quad \text { and } \tag{2}\\
& 0^{n-1} * v_{2}=0^{n-1} * t_{2} \tag{3}
\end{align*}
$$

The equations $s=t$, (2) and (3) are consequences of $s=t$ and $u=v$. Moreover, $|\{s=t,(2),(3)\}|<n$.

On the other hand $s=t$, (2) and (3) imply $0^{n} * u=0^{n} * s=0^{n} * t=0^{n-1} * t_{1}$. $0^{n-1} * t_{2}=0^{n-1} * v_{1} \cdot 0^{n-1} * v_{2}=0^{n} v$. In particular $s=t$, (2) and (3) imply $u=v$.

A Belousov equation which is not equivalent to any set of Belousov equations of lesser length is said to be length irreducible.

A length irreducible equation which is not an inflation is said to be a minimal equation.

Corollary 1. Let $u=v$ be a minimal Belousov equation and let $s=t$ be a consequence which is not an inflation and such that $|u|=|s=t|$. Then either $s=t$ or $t=s$ is identical to $u=v$.

Proof. We can assume that $u=v$ is nontrivial, i.e. $|u|>1$. Lemma 3 ensures that $s=t$ is not separable because otherwise $u=v$ could be length reduced.

Let $u \equiv u_{1} u_{2}, v \equiv v_{1} v_{2}, s \equiv s_{1} s_{2}$ and $t \equiv t_{1} t_{2}$ with $\left\langle u_{1}\right\rangle=\left\langle v_{2}\right\rangle$ and $\left\langle s_{1}\right\rangle=\left\langle t_{2}\right\rangle$. Set $0^{n} * u \equiv 0^{n} * s$. Then $\left(0^{n-1} * v_{1}\right) \cdot\left(0^{n-1} * v_{2}\right)=\left(0^{n-1} * t_{1}\right) \cdot\left(0^{n-1} * t_{2}\right)$ separates into

$$
\begin{aligned}
& 0^{n-1} * v_{1}
\end{aligned}=0^{n-1} * t_{1} .
$$

If either of these equations is not equivalent to $x=x$ then it follows by Lemma 3 that $u=v$ is not irreducible. Hence $0^{n-1} * v_{1} \equiv 0^{n-1} * t_{1}$ and $0^{n-1} * v_{2} \equiv 0^{n-1} * t_{2}$ i.e. $0^{n} * t \equiv 0^{n} * v$ and the required result is obtained by deflating the equation $0^{n} * s=0^{n} * t$.

Lemma 4. Let $u=v$ be a minimal Belousov equation with a correspondence $p * t_{1} \rightarrow q * t_{2}$. Then there are subterms t_{3} and t_{4} such that $q * t_{3} \rightarrow p * t_{4}$ is also a correspondence.

Proof. In $0^{n} * u=0^{n} * v$ there are paths $p^{\prime}, q^{\prime}, r$ and r^{\prime} such that

$$
p p^{\prime} * x \rightarrow q q^{\prime} * x
$$

and

$$
q q^{\prime} * y \rightarrow r r^{\prime} * y \quad(|r|=|q|)
$$

for some variables x and y.
If we apply the equation $0^{n} * u=0^{n} * v$ to $0^{n} * v$ we will get an equation $0^{n} * v=w$. Thus we have

$$
0^{n} * u=0^{n} * v=w
$$

and correspondence $p p^{\prime} * x \rightarrow q q^{\prime} * x \rightarrow r r^{\prime} * x$. In particular $0^{n} * u=w$ has a correspondence $p p^{\prime} * x \rightarrow r r^{\prime} * x$. However, as a consequence of Corollary 1 , $0^{n} * u \equiv w$ and it then follows that $r \equiv p$. So there is a term t_{3} with a path q in u and a term t_{4} with a path p in v such that $q * t_{3} \rightarrow p * t_{4}$.

Theorem 4. All the branch correspondences of a minimal Belousov equation have the same pattern

Proof. We can assume that the given minimal equation $u=v$ is nontrivial, i.e. $n=|u=v|>1$. Then by Lemma $2,0^{n} * u=0^{n} * v$ is equivalent to $u=v$.

Consider the correspondence $L_{1} L_{2} \ldots L_{n}(x) \rightarrow L^{\alpha_{1}} \ldots L^{\alpha_{n}}(x)\left(L_{i}\right.$ is L indexed for position) with the pattern $p=\alpha_{1} \ldots \alpha_{n}$. We will prove that all correspondences of $u=v$ with paths of length $k(0<k \leqslant n)$ have the pattern $\alpha_{1} \ldots \alpha_{k}$.

Since $u=v$ is irreducible and nontrivial, we have $u \equiv u_{1} u_{2}$ and $v \equiv v_{1} v_{2}$ with $\left\langle u_{1}\right\rangle=\left\langle v_{2}\right\rangle$. Then $L\left(u_{1}\right) \rightarrow R\left(v_{2}\right)$ and $R\left(u_{2}\right) \rightarrow L\left(v_{1}\right)$, so correspondences with paths L and R both have the pattern 1 .

Assume now that $S_{1} \ldots S_{m}\left(t_{1}\right) \rightarrow S_{1}^{\alpha_{1}} \ldots S_{m}^{\alpha_{m}}\left(t_{2}\right)$ for all $m \leqslant k$ and all S_{1}, \ldots, S_{m} and appropriate t_{1}, t_{2}, and that there is a correspondence with the pattern $\alpha_{1} \ldots \alpha_{k}$ $\left(1-\alpha_{k+1}\right)$. Let $L_{1} L_{2} \ldots L_{j} R T_{j+2} \ldots T_{k+1}(t)$ be a left-most such vector, i.e.

$$
\begin{gather*}
L_{1} L_{2} \ldots L_{j} R T_{j+2} \ldots T_{k} T_{k+1}(t) \rightarrow \tag{4}\\
L^{\alpha_{1}} \ldots L^{\alpha_{j}} R^{\alpha_{j+1}} T_{k}^{\alpha_{k}} T_{j+2}^{\alpha_{j+2}} \ldots T_{k}^{\alpha_{k}} T_{k+1}^{1-\alpha_{k+1}}\left(t^{\prime}\right)
\end{gather*}
$$

for some T^{\prime} s while

$$
\begin{equation*}
L_{1} L_{2} \ldots L_{j+1} S_{j+2} \ldots S_{k+1}(s) \rightarrow L^{\alpha_{1}} \ldots L^{\alpha_{j+1}} S_{j+2}^{\alpha_{j+2}} \ldots S_{k+1}^{\alpha_{k+1}}\left(s^{\prime}\right) \tag{5}
\end{equation*}
$$

for all possible S^{\prime} s.
Let t_{1} be the subterm in $0^{n} * u$ which has the path $L_{1} L_{2} \ldots L_{j}$. The term t_{1} is then inflated to the term $0^{n} * t_{1}$ which results in an inflation $u_{1}=v_{1}$ of the equation $0^{n} * u=0^{n} * v$. In essence the equation $u_{1}=v_{1}$ is obtained from $0^{n} * u=0^{n} * v$ by

replacing t_{1} in $0^{n} * u$ by $0^{n} * t_{1}$ and inflating the subterm s_{1} of $0^{n} * v$ with the same content as t_{1} accordingly (see diagram 7).

The equation $u_{1}=v_{1}$ has the property that all branches of $0^{n} * u$ with a subpath $L_{1} L_{2} \ldots L_{j}$ at the beginning have length $n+j$.

The equation $0^{n} * u=0^{n} * v$ is then applied to the subterm $0^{n} * t_{1}$ of u_{1} to give $0^{n} * t_{1}=t_{2}$. The replacement of $0^{n} * t_{1}$ in u_{1} by t_{2} constructs a term u_{2} (see diagram 8) and of course $u_{1}=u_{2}$. This leads to

$$
\begin{equation*}
u_{2}=v_{1} . \tag{6}
\end{equation*}
$$

In equation (6) there is a correspondence

$$
\begin{gathered}
L_{1} L_{2} \ldots L_{j} R^{\alpha_{1}} T_{j+2}^{\alpha_{2}} \ldots T_{k}^{\alpha_{k-j}} T_{k+1}^{\alpha_{k-j+1}}\left(t_{3}\right) \rightarrow \\
L^{\alpha_{1}} \ldots L^{\alpha_{j}} R^{\alpha_{j+1}} T_{j+2}^{\alpha_{j+2}} \ldots T_{k}^{\alpha_{k}} T_{k+1}^{1-\alpha_{k+1}}\left(t_{4}\right)
\end{gathered}
$$

Form equation (6) we derive two more equations. First by applying the equation $0^{n} * u=0^{n} * v$ to u_{2} we obtain

diagram 9

$$
\begin{equation*}
u_{2}=u_{3} \tag{7}
\end{equation*}
$$

Notice that (7) is an inflation of a non trivial equation $v_{2}=v_{3}$ of length n. The second equation derived from (6) is

$$
\begin{equation*}
u_{3}=v_{1} . \tag{8}
\end{equation*}
$$

Equation (8) has a correspondence

$$
\begin{gather*}
L^{\alpha_{1}} \ldots L^{\alpha_{j}}\left(R^{\alpha_{1}}\right)^{\alpha_{j+1}}\left(T_{j+2}^{\alpha_{2}}\right)^{\alpha_{j+2}} \ldots\left(T_{k}^{\alpha_{k-1}}\right)^{\alpha_{k}}\left(T_{k+1}^{\alpha_{k-\jmath+1}}\right)^{\beta}\left(t_{5}\right) \rightarrow \tag{9}\\
L^{\alpha_{1}} \ldots L^{\alpha_{j}} R^{\alpha_{j+1}} T_{j+2}^{\alpha_{j+2}} \ldots T_{k}^{\alpha_{k}} T_{k+1}^{1-\alpha_{k+1}}\left(t_{4}\right)
\end{gather*}
$$

where $\beta \in\{0,1\}$.

As suggested by (9), equation (8) is exactly j times separable so we get an equation $\left(s_{2}=0^{n} * s_{1}\right)$ with a correspondence

$$
\begin{gathered}
\left(R^{\alpha_{1}}\right)^{\alpha_{j+1}}\left(T_{j+2}^{\alpha_{2}}\right)^{\alpha_{j+2}} \ldots\left(T_{k}^{\alpha_{k-j}}\right)^{\alpha_{k}}\left(T_{k+1}^{\alpha_{k-j+1}}\right)^{\beta}\left(t_{5}\right) \rightarrow \\
R^{\alpha_{j+1}} T_{j+2}^{\alpha_{j+2}} \ldots T_{k}^{\alpha_{k}} T_{k+1}^{1-\alpha_{k+1}}\left(t_{4}\right) .
\end{gathered}
$$

The equation $s_{2}=0^{n} * s_{1}$ is a consequence of $0^{n} * u=0^{n} * v$ and of the length n. Therefore it is identical to either $0^{n} * u=0^{n} * v$ or $0^{n} * v=0^{n} * u$. By our induction hypothesis a correspondence with a path of length $k-j+1(<k)$ has to be $\alpha_{1} \ldots \alpha_{k-j+1}$. So $\left(T_{k+1}^{\beta}\right)^{\alpha_{k-j+1}}$ transforms into $T_{k+1}^{1-\alpha_{k+1}}$ which is possible only if $\beta \neq \alpha_{k+1}$. But then (7) yields the correspondence

$$
\begin{gathered}
L_{1} \ldots L_{j} R^{\alpha_{1}} T_{j+2}^{\alpha_{2}} \ldots T_{k}^{\alpha_{k}-\jmath} T_{k+1}^{\alpha_{k}-j+1}\left(t_{3}\right) \rightarrow \\
L^{\alpha_{1}} \ldots L^{\alpha_{j}}\left(R^{\alpha_{1}}\right)^{\alpha_{j+1}}\left(T_{j+2}^{\alpha_{2}}\right)^{\alpha_{j+2}} \ldots\left(T_{k}^{\alpha_{k-\jmath}}\right)^{\alpha_{k}}\left(T_{k+1}^{\alpha_{k-j+1}}\right)^{\beta}\left(t_{5}\right) .
\end{gathered}
$$

As noted before, (8) can be deflated to $v_{2}=v_{3}$ of length n and we have the correspondence $\left(\alpha_{1}=1\right.$ so $\left.R^{\alpha_{1}}=L\right)$

$$
\begin{gather*}
L_{1} \ldots L_{j} L T_{j+2}^{\alpha_{2}} \ldots T_{k}^{\alpha_{k-j}} T_{k+1}^{\alpha_{k-\jmath+1}}\left(t_{6}\right) \rightarrow \tag{10}\\
L^{\alpha_{1}} \ldots L^{\alpha_{j}} L^{\alpha_{j+1}}\left(T_{j+2}^{\alpha_{2}}\right)^{\alpha_{j+2}} \ldots\left(T_{k}^{\alpha_{k-3}}\right)^{\alpha_{k}}\left(T_{k+1}^{\alpha_{k-\jmath+1}}\right)^{\beta}\left(t_{7}\right)
\end{gather*}
$$

with the pattern $\alpha_{1} \ldots \alpha_{k} \beta\left(\beta \neq \alpha_{k+1}\right)$. Since $v_{2}=v_{3}$ is a consequence of $u=v$ of the same length, by Corollary 1 , either $v_{2}=v_{3}$ or $v_{3}=v_{2}$ is identical to $0^{n} * u=$ $0^{n} * v$. By Lemma 4 we have that in any case the correspondence (10) belongs to $0^{n} * u=0^{n} * v$, contradicting (5). This means that our assumption about the existence of a correspondence (4) with the pattern $\alpha_{1} \ldots \alpha_{k}\left(1-\alpha_{k+1}\right)$ is not sound and hence all correspondences with a path of length $k+1$ have the pattern $\alpha_{1} \ldots \alpha_{k} \alpha_{k+1}$.

The statement of the theorem follows by induction.
A length reducible Belousov equation is equivalent to a finite set of length irreducible Belousov equations, which by Lemma 3 and Corollary 1 are either the same or can be further reduced one by another until a single length irreducible equation remains. Thus we have

Theorem 5. Every finite set of non trivial Belousov equations is equivalent to a single Belousov equation of the form $v=p * v$, for some normal pattern p and variable v.

An equation of the form $w=p * w$ is called a pattern equation. If p is a normal pattern and w a term with all variables occurring precisely once and with all branches
of length $|p|$ then the equation is a normal equation. Using actions of patterns on vectors, we see that $w=p * w$ iff $0^{|p|} * z=p * z$. Also $0^{|p|} * z=p * z$ is a normal equation iff p is a normal pattern.

Normal equations and $\mathbb{Z}_{2}[x]$

A finite set of Belousov equations is equivalent to a finite set of minimal equations which in turn is equivalent to a single minimal Belousov equation. This single minimal equation may be obtained by applying the techniques and results of the previous section either on an ad hoc basis or by devising an appropriate algorithm. In either case the process can prove to be very complex when equations with a large number of variables are involved. However, we now show that the canonical bijection between the set of pattern equations and polynomials over \mathbb{Z}_{2} leads to the determination of the irreducible equation equivalent to a set of Belousov equations through the division properties of $\mathbb{Z}_{2}[x]$.

The bijection mentioned in the preceding paragraph maps the pattern equation $z=p * z$ with the pattern $p=\alpha_{0} \ldots \alpha_{n}$ to the polynomial $p(x)=\sum_{i=0}^{n} \alpha_{i} x^{i} \in \mathbb{Z}_{2}[x]$.

It is clear that if $p=\alpha_{0} \ldots \alpha_{n}$ is a pattern of length n then $0 p=0 \alpha_{0} \ldots \alpha_{n}$ and $p 0=\alpha_{0} \ldots \alpha_{n} 0$ are patterns of length $n+1$ and further $z=0 p * z$ iff $z=p * z$ iff $z=p 0 * z$.

The equations $z=0^{n} * z$ are trivial equations for all $n \in \mathbb{N}$, thus we refer to 0^{n} as a trivial pattern. The pattern $p=010101100$ is non trivial and it is easily checked that $z=p * z$ iff $z=q * z$ where $q=101011$.

This illustrates

Lemma 5. For every non-trivial pattern p there is a normal pattern q such that $z=p * z$ iff $z=q * z$.

Lemmas 6-10 follow from the properties of patterns acting on terms and the correspondence between patterned equations and polynomials over \mathbb{Z}_{2}.

Lemma 6. The pattern equation $z=p * z$ is normal iff $p(x) \in 1+x \mathbb{Z}_{2}[x]$ (i.e. $p(x) \equiv 1(\bmod x)$ in $\left.\mathbb{Z}_{2}[x]\right)$.

Lemma 7. If $p(x)=x^{m} q(x)$ for $m \in \mathbb{N}$ then $z=p * z$ iff $z=q * z$.

Lemma 8. If p, q, r are patterns and $p * z=q *(r * z)$ then $p(x)=q(x)+r(x)$.
The above lemmas lead to

Lemma 9. Let $z=p * z$ and $z=q * z$ be two normal equations. Then $z=r * z$, where $r(x)=a(x) p(x)+b(x) q(x)$, is a consequence of $z=p * z$ and $z=q * \tilde{\sim}$ for every $a(x), b(x) \in \mathbb{Z}_{2}[x]$.

Lemma 10. If $p(x)$ is a divisor of $q(x)$ in $\mathbb{Z}_{2}[x]$ then $z=p * z$ implies $z=q * z$.
As corollary to this lemma we have

Theorem 6. Let $z=p * z$ and $z=q * z$ be two normal equations. Then this pair of equations is equivalent to the single equation $z=r * z$, where $r(x)$ is the gratest common divisor of $p(x)$ and $q(x)$.

Proof. It is well known that the g.c.d. of $p(x)$ and $q(x)$ is of the form $a(x) p(x)+$ $b(x) q(x)$ for some $a(x), b(x) \in \mathbb{Z}_{2}[x]$ so $z=r * z$ is a consequence of the two given equations.

On the other hand, $p(x)=c(x) r(x)$ for some $c(x) \in \mathbb{Z}_{2}[x]$ since $r(x)$ is a divisor of $p(x)$. So, by Lemma 11, $z=p * z$ follows from $z=r * z$.

Similarly $z=q * z$ is implied as well.
Using the division algorithm for $\mathbf{Z}_{2}[x]$ we obtain

Corollary 2. Let $z=p * z$ and $z=q * z$ be two normal equations. Then $z=p * z$ implies $z=q * z$ iff $p(x)$ divides $q(x)$ in $\mathbb{Z}_{2}[x]$.

Lemma 12. Let $S_{0} \ldots S_{n}(x) \rightarrow T_{0} \ldots T_{n}(x)$ with $p=\alpha_{0} \ldots \alpha_{n}$ be a branch correspondence of a Belousov equation $u=v$. Then the equation $z=p * z$ is implied by $u=v$.

Proof. Without loss of generality we may assume that $S_{0} \ldots S_{n}(x) \rightarrow T_{0} \ldots$ $T_{n}(x)$ is a correspondence of $w \equiv 0^{|u|} * u=v$ and that this equation is non-separable.

Theorem 5 ensures the existence of a normal pattern q such that $u=v$ iff $z=q * z$. Let $q=\beta_{0} \ldots \beta_{m}$ then $m \leqslant n+1$.

Applying $z=q * z$ to $w=v$ gives as a consequence an equation $w=v^{\prime}$ with a correspondence

$$
S_{0} \ldots S_{m} S_{m+1} \ldots S_{n}(x) \rightarrow T_{0}^{\beta_{0}} T_{1}^{\beta_{1}} \ldots T_{m}^{\beta_{m}} T_{m+1} \ldots T_{n}(x)
$$

$w=v^{\prime}$ is separable because $\beta_{0}=1$ and $S_{0}=T_{0}^{1}$. Assuming the equation to be k_{1} times separable, one of the consequences will be an equation $u_{1}=v_{1}$ with the correspondence

$$
S_{k_{1}} \ldots S_{n}(x) \rightarrow T_{k_{1}}^{b_{k_{1}}} \ldots T_{m}^{b_{m}} T_{m+1} \ldots T_{n}(x)
$$

Denoting the pattern for this correspondence by q_{1}, the polynomial relationship describing the action of the patterns is given by

$$
p(x)-q(x)=x^{k_{1}} q_{1}(x)
$$

the process is repeated to obtain a sequence of equations $u_{i}=v_{i}$ each of which is a consequence of $u=v$, and a sequence of polynomial equations

$$
\begin{gathered}
q_{1}(x)-q(x)=x^{k_{2}} q_{2}(x) \\
\cdots \cdots \cdots \cdots \\
\cdots \cdots \cdots \\
q_{i-1}(x)-q(x)=x^{k_{1}} q_{i}(x)
\end{gathered}
$$

where $q_{i}=\gamma_{1} \gamma_{2} \ldots \gamma_{e}$ is the pattern of the correspondence

$$
S_{k} \ldots S_{n}(x) \rightarrow S_{k}^{\gamma_{1}} \ldots S_{k+e}^{\gamma_{e}} T_{k+e+1} \ldots T_{n}(x)
$$

in the equation $u_{i}=v_{i}$.
The process terminates with $\left|q_{j}\right|<m+1$. However, if $\left|u_{j}=v_{j}\right|<m+1$ then because $u_{j}=v_{j}$ is a consequence of $z=q * z$, it must be a trivial equation $u_{j} \equiv v_{j}$. Consequently $q_{j}(x)=0$. It then follows that $q(x)$ is a factor of all the $q_{i}(x)$ and therefore a factor of $p(x)$.

The required result that $z=p * z$ is implied by $u=v$ follows by applying $z=q * z$ appropriately to $x=0^{|r|} * x$.

Theorem 6 and Lemma 12 then give us

Theorem 7. Let $u=v$ be a Belousov equation and let $\left\{p_{i}\right\}$ be the set of patterns of all branch correspondences of $u=v$. Then $u=v$ iff $z=p * z$, where $p(x)$ is the g.c.d. of $\left\{p_{i}(x)\right\}$.

We illustrate Theorem 7 by means of an example.
The equation

$$
(x y \cdot u v)(s t \cdot z w)=(t s \cdot w z)(v u \cdot y x)
$$

was mentioned earlier. The patterns of correspondences to branches of variables which are companions of each other are the same, e.g.

$$
\begin{aligned}
L L L(x) & \rightarrow R R R(x) \\
\text { and } \quad L L R(y) & \rightarrow R R L(y)
\end{aligned}
$$

have the same pattern 111.
The other patterns are given by the branch correspondences

$$
\begin{aligned}
L R L(u) \rightarrow R L R(u) & \text { pattern } 111 \\
R L L(s) \rightarrow L L R(s) & \text { pattern } 101 \\
R R L(z) \rightarrow L R R(z) & \text { pattern } 101 .
\end{aligned}
$$

There are only two distinct patterns, 111 and 101 . These have polynomial representations $1+x+x^{2}$ and $1+x^{2}$ and their g.c.d. is 1 . Hence the original equation is equivalent to $z=1 * z$, i.e. $x y=y x$.

As mentioned in the introduction, the aim of this paper is to characterize irreducible Belousov equations, that is characterize those Belousov equations which are not equivalent to a Belousov equation with fewer variables. It is now a simple exercise to show

Theorem 8. The irreducible Belousov equations are precisely the normal Belousov equations.

The lattice of Belousov varieties

Theorem 7 shows us that any (set of) Belousov equation(s) is equivalent to a single normal Belousov equation. We define $b p$ to be the normal Belousov equation $z=p * z$ and denote by $B p$ the class of quasigroups defined by it. For example $B 1, B 11, B 101$ are those classes of quasigroups defined respectively be the laws

$$
\begin{align*}
& \forall x y(x y=y x) \tag{bl}\\
& \forall x y u v(x y \cdot u v=v u \cdot y z) \tag{bll}\\
& \forall x y z s u v w t((x y \cdot z s)(u v \cdot w t)=(v u \cdot t w)(y x \cdot s z)) . \tag{b101}
\end{align*}
$$

Further, we define

$$
\begin{equation*}
\forall x(x=x) \tag{b0}
\end{equation*}
$$

so that $B 0$ is the class of all quasigroups. However, despite being equationally defined (within the class of all quasigroups) neither $B 0$ nor any of the $B p$ (p-normal pattern) are varieties.

This is because a quasigroup (Q, \cdot) defined by a single binary operation may have a subalgebra which is not necessarily a quasigroup. However, every quasigroup (Q, \cdot)
with a single operation may be represented as an algebra $(Q, \cdot, /, \backslash)$ with three binary operations for which
(Q1)
(Q2)
(Q3)
(Q4)

$$
\begin{aligned}
& (x / y) y=x \\
& (x y) / y=x \\
& x(x \backslash y)=y \\
& x \backslash(x y)=y .
\end{aligned}
$$

Conversely, if $(Q, \cdot, /, \backslash)$ is an algebra with three binary operations in which ($Q 1$), $\ldots,(Q 4)$ hold (i.e. an equational quasigroup) then (Q, \cdot) is a quasigroup in the usual sense. Equational quasigroups do form a variety and clearly there is a one-toone correspondence between quasigroups and equational quasigroups [6]. Moreover, there is a one-to-one correspondence between the classes $B p$ (p-normal pattern) and Belousov varieties $E B p$ i.e. classes of all equational quasigroups satisfying the law $b p$.

If we define $B L$ to be the lattice of all classes $B p$ (p-normal equation) including $B 0, E B L$ to be the lattice of all Belousov varieties and L the lattice of polynomials from $1+x \mathbb{Z}_{2}[x]$, together with the zero polynomial, under divisibility, then from Corollary 2 we easily derive

Theorem 9. $B L \simeq E B L \simeq L$.
This work was supported in part by R.F.N. Srbije through the Matematički Institut and by N.S.E.R.C. grant A8144.

References

[1] Belousov, V. D.: Balanced identities in quasigroups, (Russian) Mat. Sb. (N.S.) 70 (112) (1966), 55-97.
[2] Belousov, V. D.: Quasigroups with completely reducible balanced equations, (Russian), Issledovaniya po teorii binarnykh i n-arnykh kvazigrupp, Matematicheskie Issledovaniya, Shtiinca, Kishinev tome 83 (1985), 11-25.
[3] Dénes, J. and Keedwell, A. D.: Latin squares and their applications, Academic Press, New York-London, 1974.
[4] Krapez̈, A. and Taylor, M. A.: Belousov equations on quasigroups, Aequationes Math. 34 (1987), 174-185.
[5] Krapeż, A.: On solving a system of balanced functional equations on quasigroups III, Publ. Inst. Math. (Beograd) 26 (40) (1979), 145-156.
[6] Mal'cev, A. I.: Algebraic Systems, Springer-Verlag, New York, Heidelberg, Berlin, 1973.
Authors' addresses: A. Krapež, Matematički institut, Knez Mihailova 35, 11000 Beograd, Yugoslavia, M. A. Taylor, Department of Mathematics, Acadia University, Wolfville, N.S. B0P 1X0, Canada.

