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SOME OBSERVATIONS ON LOCAL UNIFORM 

BOUNDEDNESS PRINCIPLES II 

J. D. STEIN, JR. , Long Beach 

(Received February 28, 1991) 

The field of automatic continuity has for more than a quarter of a century been 

a rich one, generating results that are not only interesting, but sometimes deep and 

surprising, as well as having practical applications. Because of the fundamental 

result that a linear map between normed linear spaces is continuous if and only if it 

is bounded, many results that are described as being results concerning automatic 

continuity are proved by arriving at contradictions involving boundedness. 

Boundedness and continuity are not inextricably intertwined. Especially when 

the operators considered are nonlinear, there is no a priori reason to suppose that 

the phenomena are related. Additionally, when one is considering applications of the 

theory to signal processors, for example, there are important practical interpretations 

of both continuity and boundedness. 

Since the ampli tude of a signal (its norm in the appropriate space) can be intu­

itively described as soft (small norm) or loud (large norm), the following descriptions 

of continuity and boundedness properties are quite natural. Continuity at 0, for in­

stance, can be described as follows: as the input signal becomes softer (its amplitude 

converges to 0), so does the output signal. Boundedness, however, can be described 

by saying that the output signals generated by soft input signals are soft. 

Of the two properties, boundedness and continuity, it would appear that bounded­

ness is the more important from an applications standpoint. One is often interested 

in the maximum stress to which a system can be subjected, and this maximum stress 

is described in terms of the loudness of the signals the system will generate. Interest 

in this dichotomy is heightened by the importance of nonlinear phenomena in many 

disparate fields of science and engineering. 

Several of the results presented in this paper deal with automatic boundedness 

specifically, rather than automatic continuity, and involve non-linear operators. The 
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paper is divided into several sections. The first deals with non-linear operators 

between linear spaces which preserve some vestigial remnants of linear properties. 

The remaining sections prove some local uniform boundedness theorems for com­

plete metric spaces under some weaker-than-usual hypotheses which involve both 

the functions and the hypothesis of pointwise-boundedness. 

1. N O N L I N E A R MAPS B E T W E E N LINEAR SPACES 

A proof originally given by Ptak ([9]) enabled the following extension of the 

Banach-Steinhaus Theorem to be proved ([10]). 

T h e o r e m 1. Let X be a Ilanach space, and Y a normed space. Let {l\x : a E A} 

be a pointwise-l)ounded collection of linear maps of X into Y, and assume that for 

each a E A, there is a closed sul)space Sa of X such that Ta \Sa is continuous, llicn 

there is a finite subset ci\, . . ., a^ G A such that {Ta: a £ A] is uniformly bounded 
N 

on f| Sak. 
k = \ 

It has been known for some time that this result can be obtained as a consequence 

of the Gliding Hump Theorem in automatic continuity ([7]). Recently, Mate has 

shown that the Gliding Hump Theorem can actually be obtained from a o~-convex 

version of the above result ([6]), and that Theorem 1 can also be used to obtain 

automatic continuity results concerning causal operators ([5], [7]). 

An example given in [11] shows that it is not possible to obtain a general nonlinear 

local uniform boundedness extension of Theorem 1, even in the case when A' — ) ' — 

R, the real line, and the maps in question are 0 on their respective rr-convex subsets. 

However, one way to strengthen Theorem l is by enlarging the class of functions to 

which the theorem applies. 

A sublinear map T between normed spaces satisfies the following inequality 

Пz> 
k = \ 

Š E \\Tx>> 
k = \ 

and a homogeneous map T between normed spaces satisfies the following equality 

(where c is a scalar) 

||r(«)|| = |c|||7','||. 

We shall show that Theorem 1 can be proved when the maps T satisfy growth 

rate conditions generalizing sublinearity and homogeneity. 

The following condition will replace sublinearity. 
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Def in i t ion 1. Let IR+ denote the non-negative reals, and let g: R+ —• R + be 

a continuous monotonic function such that lim g(u) = 0. This function g will be 
u—»0 

fixed throughout this section. An operator T between normed spaces is said to be 

additively bounded if 

^k=i ' k=\ 

It is multiplicatively bounded if 

т( >) 
Klc = l 7 

^ П » ( H T ; C - I 
Aг = 1 

While additive boundedness is basically a generalization of sublinearity, multi­

plicative boundedness is a charactreristic of the growth rate of either a real-valued 

polynomial of a real variable or an exponential function. 

The following condition will replace homogeneity. 

Def in i t ion 2. Let h and II be monotonic non-negative real-valued functions on 

the real numbers R. T is said to be nearly homogeneous if 

l,(c)\\Tx\\ < \\T(cx)\\ ^ //(c) | |T .r | | . 

The functions h and 11 will be fixed throughout this section. 

Near homogeneity is also a growth rate condition, and it is most naturally exhibited 

by monomials of the form f(x) = xr, where r ^> 1. 

We now prove Theorem 1 for maps with the above properties. The proof is an 

adaptat ion of Ptak ' s original idea ([9]). 

T h e o r e m 2. Let X be a Lianach space, {Ya : a £ A} be normed spaces. Let {Sa : 

a G A} be a collection of closed, bounded, ami a-convex subsets of X. Suppose that 

for each a G A, Ta : x —+ Ya is an additively bounded, nearly homogeneous function 

which is continuous on Sa. Suppose further that 

M[x] — sup{||Fax'| | : a G A} < oo for each x G X. 

Then there exist ay, . . ., a^ G A such that 

ф { | | T a x ' | | : a Є A , xЄ f] Sӣls} < 
k = \ 

49 



P r o o f . Suppose first that {Ta : a £ ^4} is unbounded on the bounded cr-convex 

set S', and that c/, M > 0. Then there exist a £ A, x £ S such that ||;r|| < J, 

||Taar|| > M. We can assume without loss of generality that d < 1 and that tliere 

exists D > 1 such that u £ S —• ||u | | < D. By assumption, choose g G 5 and a G A 

such that | |Fay|| > M/h(d/2D). Let ar = (d/2D)y. Since 5 is a-convex, a. G .!?*. Also, 

| |T a ( (d /2L ) )y) | | > h(d/2D)\\Tay\\ > M. This is, of course, a well-known property of 

linear maps. 

Since lim y(u) = 0, for each n choose <rn such that u < crn => y(u) < \/2n. Assume 
u—•O 

that the theorem is false. Then there is an x\ G A" and a\ G A with ||Taix*i|| > y(\). 

Assume now that a\y . . ., an £ A and x\} . . ., xn £ A have been chosen. Since 

the theorem has been assumed false, and Taj\Saj is continuous, for 1 ^ j <^ n 

choose Ju + i j such that x £ Sa,, ||-c|| < ^n + i j => \\Taj~\\ < Q„ + i, where Q n + 1 = 
n 

(jn + i/I/(— l / 2 n + 1 ) . Now choose .rn + i £ p | .S'd and an + i £ A such that | |xn + 1 | | < 
j' = i 

dn + u for 1 ^ j <C 71, and | |Fan+1zy i + i|| > Wn+\/h( l / 2 n + 1 ) , where lFn + 1 = r/(?i + 

i = 1 
oo oo 

Let xo = ~~] 2~1lxn. For any H, _P 2~j'j.'j £ ,S'n, since j > n => j . j £ 5 n , and 
n = 1 j = n +1 

5 n is (T-convex. Let 5 > 0; since Tan\Scln is continuous and y is continuous, choose 

N such that 

' ( 
Ta. { Ž -2-'*-) 

Vfc=n+1 7 

see that 

< </ 

Iv 

£ 
fc = n + l 

_2-fc *fc + є. 

ъ.( £ -2-*xЛ 
X fc=n+1 7 

^ £ i 7 ( | | r a „ ( - 2 - * ^ ) l l ) ^ £ g(H{-2-k)\\Tanx, 
fc=n+l fc=n+l 

But II^H < dnik => / / ( - 2 - * ) | | T a . a : t | | < trk => í / ( / / ( - 2 - * ) | | T 0 l l x t | | ) < 1/2*. 

Thus, for any e > 0, ( oo \ ;v 

£ -2-kxk) < £ 2"* + e. Cons. 
fc=n+l 7 fc=n+l 

sequently, 

i / °° 
M £ -2"* 

1 xfc=n+l 

xk š 1. 

n - 1 
Note that 2~nxn = x0 + _T̂  —2~JXj + _T̂  — 2~jXj. If we regard the expression 

j = i i = n + l 
on the right as the sum of n + 1 terms (the infinite sum being regarded as one term), 
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we have 

A ( 2 - * ) | | T a . x n | | SÍ | |T a n(2-"x- n) 

<9(\\TaHx0\\) + J29(\\Ta.(-2-ixj) 

J = I 

+я(тaJ f; -2-4)) 
n-\ 

< i7(l |7a nx 0 | | ) + Y,9(ff(-2-i)M[xj]) +g(l) 
j = i 

= g(\\Tanx0\\) + Wn-g(n). 

We therefore conclude that 

Wn < h(2-")||Tanx-n|| ^ g(\\Tanx0\\)+Wn-g(n). 

Therefore, g(||Fauxo||) > g(n) for all n. Since g is monotonic, this implies that 

| |Fa n ^o| | > n for all n, and this contradiction establishes the theorem. D 

In Theorem 2, letting the range space Va vary with the index may seem to be a 

purely technical modification, but it is precisely this extension which enables Mate 

([6]) to obtain the Gliding Hump Theorem as a consequence of the <r-convex linear 

version of Theorem 2. 

Corol lary 2 .1 . Theorem 2 holds if additive boundedness is replaced by multi­

plicative boundedness. 

P r o o f . The proof is almost identical to the proof of Theorem 2. The only dif­

ference is that the quantity Wn+\ is defined using multiplication instead of addition. 

Instead of Wn + \ being a sum of n -f 2 expressions, it is a product of the same n + 2 

expressions. All the estimates are the same, and the final inequality is obtained by 

division rather than subtraction. D 
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2 . F E E B L E CONTINUITY AND LOCAL UNIFORM BOUNDEDNESS 

Perhaps the most widely known result on local uniform boundedness is Osgood's 

Theorem, which states that a pointwise-boundecl family of continuous functions on 

a complete metric space must be locally uniformly bounded (it is shown in [1 1] that 

the correct phrasing of Osgood's Theorem leads to an ecpiivalence between it and 

the Baire Category Theorem). 

One way of extending this result is to widen the class of functions to which it 

applies. Consequently, one would look for a class of functions satisfying a condition 

weaker than continuity. However, this condition cannot be too much weaker. A set 

E is said to be almost open ([4], p. 211) if there exist an open set U and sets // and 

K of the first category such that E = (U \ II) U K. A function is almost continuous 

if the inverse image of an open set is almost open. 

The following example shows that Osgood's Theorem fails to hold under the as­

sumption that the functions are almost continuous. Let A' = [0, 1], and let {rn : 

n = 1,2, . . .} be an ordering of the rationals in X. For each integer 7<\ define a 

function fn by f7i(x) = 0 if x ^ rn and fn(r7l) = n. It is easy to verify that each fn 

is almost continuous, and also that {/n : 77 = 1,2,.. .} is pointwise-boundecl. Since 

fn(rn) = 77, and each open subset of A" contains infinitely many rationals, {fn : 

77 = 1,2, . . .} cannot be locally uniformly bounded. This example consists of func­

tions that are continuous at all points but one, and at first glance it appears that 

the simplicity of this example would make it difficult to extend the class of functions 

for which local uniform boundedness theorems hold. Nonetheless, one can introduce 

a class of functions for which Osgood's Theorem, and variations, can be proved. If 

E is a set in a topological space, let Int(F) denote its interior. 

The following definitions are taken from [8], in which the reader can obtain further 

references to feeble properties. 

D e f i n i t i o n 3 . A map 7': A' —> Y from one topological space into another is 

called feebly continuous (FC) if for every open subset F of Y containing points of 

the range, hit (f~l(F)) / 0. 

Feeble continuity is a rather pathological property. We present two examples 

indicative of this pathology. 

Let T: [0, 1) —• [0, 1) be a map of the half-open unit interval onto itself. If n < b 

and c < d, define 

Taiedx = c + (d- c)T((x - a)/(b - a)) 

Tabcd maps [a, b) onto [c, d) in a manner which preserves almost any interesting 

pathology T might exhibit. 
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Now let In — [(n — \)/n,n/(n -f 1)); cleary, [0, 1) is the disjoint union of these 

intervals. Let Jx = [0, 1), J2 = [0, 1/2), J3 = [1/2, 1), J4 = [0, 1/3), J5 = [1 /3 ,2 /3) , 

JG = [2/3, 1), and so on. Use the maps labcd to map In onto Jn for each integer n. It 

is clear that the mapping thus constructed is a feebly continuous map of [0, 1) onto 

itself, as any open subset of [0, 1) must contain some interval of the form Jn, and 

the inverse image of Jn clearly contains the interior of the interval In. Obviously, 

whatever pathology the maps Taicd exhibit is preserved in this construction. For 

instance, if T is not measurable, the inverse image under the constructed map of 

each open set is non-measurable. 

Now consider the real-valued functions / and g defined by 

f(x) — tan J: — 7i/2 < x < TI/2 or 

TI/2 < x < 3 K / 2 , x rational 

= tan x -f 1 TI/2 < x < 3TI /2 , X irrational 

g(x) — — tana: — TI/2 < x < 3TI /2 , X ^ 7t/2 

If U is any open interval, f~](U) Pi (—TI/2, TI/2) is open, so / is feebly continuous. 

Clearly, g is continuous. However, / -f g is 1 at irrational points in ( K / 2 , 3 K / 2 ) , and 

is 0 otherwise. It is easy to see that the inverse image under / -f g of ( 1 /2 ,3 /2 ) 

consists of irrationals only, and so has no interior. This example demonstrates that 

the sum of a feebly continuous function and a continuous function need not be a 

feebly continuous. 

It is not possible to prove a general local uniform boundeduess principle for feebly 

continuous functions. Let A' = [0, 1], and let {?*u : n = 1,2, . . .} be an ordering of the 

rationals in A'. Define 

fn(x) = n2x 0 ^ x ^ l/?i 

= 0 x > 1/??, x irrational, or x = r^ for k < n 

= n x — rf. for k j> n 

Fach /.. is feebly continuous, since if 0 <C a < b <C ??, then (a/ir, b/ir) C 

f~l ((a, b)). {/„ : 7/ = 1,2, . . .} is pointwise-bounded, since for each x, fn(x) = 0 

for all but finitely many n. However, these functions are not uniformly bounded on 

any open U. Choose N such that U\[0, 1/N] is non-empty; then it contains infinitely 

many rationals, which we shall denote {rTlk : k = 1,2, .. . } . If nv > N, fn (rn ) = np. 

It, is possible to prove a local uniform boundeduess principle for real-valued feebly 

continuous functions under some highly restrictive conditions. The following defini­

tion is motivated by a basic definition, which can be found in [1], from the theory of 

function algebras. 

D e f i n i t i o n 4 . Let A be a set of real or complex-valued functions on a topological 

space A', and let K > 0. A point p £ A' is an independent point of height A" for A 
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if every closed subset F of A' not containing p and every e > 0, there exists / G A 

such that \f(p)\ > K and \f(x)\ < e for x G F. 

We first present a combinatorial-type lemma which will be needed in the next 

theorem . A' denotes a topological space. 

l e m m a 1. Let {En : n = 1, 2 , . ..} be a sequence of subsets of X with the following 

property: if n > k, then either En is a subset of Ek or is disjoint from Ek- Then 

there exists either a subsequence {Erlj: j = 1,2,. . .} whose closures are pair wise 

disjoint, or a subsequence {EUj : j = 1, 2 , . . .} such tlmt E1lj+1 C EUj for aii j . 

P r o o f . Let S = {n : there are infinitely many Ek which are subsets of En}. 

Suppose first that there is an integer N such that, if n ^> N, then n G S. Let 711 = N, 

and choose 7*2 > n\ such that Frl2 C Eni. Having chosen n\ < ... < np, observe 

that np G S, and choose nP+\ > np such that ETlp+l C EUp. The subsequence {EUp : 

p = 1, 2, . . .} satisfies E1lp+l C EUp. 

The other possibility is that there exists a subsequence of integers Ni < N-j < . . . 

which do not belong to ,5'. Since each of the integers Np does not belong to S, for 

each integer p there is an integer kp such that, if k > kp, then Ek is disjoint from 

FTVp- Let j \ = 1, q\ = Njl. Having chosen j \ < . . . < j p , choose jp+\ > jp such that 

Njp+1 > nmx(kjl,...,kjp). Let qp = Njp] {Eqp: p = 1,2, . . .} is pairwise-disjoint. 

D 

The following local uniform boundedness principle is reminiscent of theorems in 

function algebras. 

T h e o r e m 3. Let X be either a complete metric space or a locally compact Haus-

dorff space, and let A be a collection of feebly continuous bounded complex-valued 

functions on X. Suppose that A is pointwise-bounded, a-convex, and closed un­

der multiplication. Assume further that there exists a K > 0 such that the set of 

independent points for A of height K is dense. Then A is locally uniformly bounded. 

P r o o f . We prove it when A' is a complete metric space, the locally compact 

Hausdorff case, as usual, being similar. Let | | / | | denote the uniform norm o f / . 

Assume the theorem is false. Then we can choose g\ G A and x\ G X such that 

,01 (-£-)! > 2- Since g\ is FC, the set g["1((2,oo)) has interior, which we can assume 

contains an open set E\ of diameter < 1. Since the set of independent points of 

height Iv is dense, choose one such point q\ G E\, and choose f\ G A such that 

| / , f a , ) | > K and | / , ( » | < l / | | 5 l | | for x 6 A' \ E,. 

Suppose that functions g\, . . ., gn and f\, . . ., fn G A have been chosen, as well as 

open sets E\, . . ., En such that diam(Fjt) < - A , and j < k ^ n. => either Ek C Ej, 
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or Ek and Ej are disjoint. Since the theorem has been assumed false, we can find 

xn + \ e X and gn + \ G A such that |^ l + 1(.rn + i ) | > M n + i = (2n+l/K)(n + 2 + 
n 

Z ) 2 ~ ; l l / j l l l l<7 j l l ) - S i n c e 1/n + i is FC, the set y~^ ( (M n + ! , oo)) = Un + i has interior. 
J = I 

n 
If In t (U n + i ) H ( (J Ej) = 0, let Fn + i be an open subset of Un + i of diameter less 

> = i 
n 

than \/(n -f 1) and disjoint from (J Ej. If that intersection is non-empty, let p be 
i = i 

the largest index such that In t (U n + i ) f) Ep is non-empty, and let Kn+i be an open 
set of diameter less than 1/(7*-f-1) such that En+\ C \nt(Un+\)C\ Ep. Let Jn + i = {j : 

j < n + 1, Ej D En + \ = 0 } . Let </n + i G Fn + i he an independent point of height A', 

and choose / n + i G /I such that | / n + i ( < 7 n + i ) | > A', and x G U Fj => | / n + i(ar)l < 
j € - / » + i 

l / | | g n + i| |. This completes the induction. 

By Lemma 1, we can find a subsequence {iij : j = 1,2, . . .} such that either 

En3+X C EUj, or {F"n : j — 1,2,. . .} are pairwise disjoint. We can obtain a contra­

diction to the pointwise-boundedness of A in the former case in the usual manner, 
oo _ 

by examining the values {gUj(xo) '• j = 1,2, . . .} at a point xo G f] EUj. 
j + l 

In the latter case, since A is closed under multiplication and cr-convex, let / = 
oo 

J2 2~njfnjynj. Then, for any p, 
i = i 

; > - l 

\f(qn,)\ > 2-n>\fn,(qn,)\ \gn,(qn,)\ - £ 2"^ \fnj:(qn,)\ \gnj(qnp)\ 
i = i 

oo 

- E 2-^1/^(7^)1 |flfn,(gnF)| 
j=p+\ 

p-\ 

> *-n'\fn,(qn,)\ \9n,(qn,)\ ~ £ 2-"' | | / n .|| \\gnj\\ 
j" = l 

oo 

- E Z-^fnMnMgntW 
j-p+l 

P-\ 

> 2-n'\fn,(qn,)\ \9n,(qn,)\ - E 2 " n J H ^ I I IK-H - l > UP 
i = l 

Therefore, / is not bounded, and this contradiction completes the proof. • 

Althout the class FC does not yield general local uniform boundedness theorems, 

there is a subclass which will. Examples have already been given of feebly continuous 

functions whose restrictions to open sets are not feebly continuous . The following 

definition eliminates this pathology. 
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Def in i t ion 5. f: X —• Y is hereditarily feebly continuous (HFC) if for each 

open subset E of Ar, f|F: E -+Y is feebly continuous. 

The following lemma provides more useful characterizations of hereditarily feebly-

continuous functions. 

L e m m a 2. Let T: X —* Y. The following are equivalent. 

(\) T is HFC. 

(2) IfU is an open subset of X, V is an open subset ofY, and x G U with Tx G V, 

then there is an open subset W of U such that T(IV) C V. 

(3) For every open subset V ofY, there is an open subset U of X such that 

U CT~\V)C U. 

P r o o f , ( l) => (2): Assume that U and V are open, x G U, and Tx G V. Since 

T is HFC', T U is FC, and since T~l (V)C\U is non-empty, it has non-empty interior 

IV. Then IV C U, and T(W) C V. 

(2) => (3): Let V be a non-empty open subset of Y which contains points of the 

range. Then E = I n ^ T " 1 ^ ) ) £ 0. If x G T " ! ( V ) , then Tx G V, so if IV is a 

neighborhood of x, there is a non-empty open subset Q of IV such that T(Q) C V. 

Therefore Q C E, and so Q C E H IV. Therefore, x G E. 

(3) => (1): Let U be an open subset of A'. Assume that V is an open subset of 

Y containing points of T(U). Choose an open set E such that E C 7 , - 1 (V ) C E. 

If x G c / n T _ 1 ( V ) , then x G E. Therefore, every neighborhood of x has a non­

empty intersection with F, and so IV = (/ 0 E is non-empty. Therefore, IV C 

In t ( (T | / ; / ) - 1 (V ) ) , and so T is HFC. D 

Although HFC may not seem to be a significantly weaker condition than continuity, 

there are some interesting discontinuous functions which are HFC. If R denotes the 

real numbers, piecewise-continuous functions from R into R are HFC. Define f(x) = 

sin \/x and g(x) = ( l / x - ) s i n l / x for non-zero x. To define f,g:R —~ R, we must 

define f(0) and g(0). If f(0) lies between —1 and 1, and r/(0) has any real value, 

both f and g are HFC (to see this, use (3) of Lemma 2). 

Most uniform boundedness theorems that are proved for complete metric spaces 

make use of the fact that a decreasing sequence of closed sets whose diameters con­

verge to 0 has a non-empty intersection. As we shall see, hereditary feeble continuity 

is sufficiently robust to enable similar arguments to be constructed. 
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3. W E A K E N I N G T H E HYPOTHESIS OE P O I N T W I S E - B O U N D E D N E S S 

One hypothesis of uniform boundedness theorems which has not been subjected 

to close scrutiny is the hypothesis of pointwise-boundedness. Suppose that the maps 

under consideration are regarded as a collection of signal processors. The assumption 

that the maps are pointwise-bounded has a natural interpretation: the responses 

induced from the collection to any given input signal form a bounded set. One way 

to weaken this hypothesis is to assume that the collection is a union of sub-collections. 

One can then examine the responses of any sub-collection to a particular input signal. 

For a given input signal, the responses of some (but not all) of the sub-collections may 

form a bounded set. This situation can be termed partial pointwise-boundedness. 

The results of this section concern circumstances for which partial pointwise-

boundedness implies some sort of local uniform boundedness, and the exact form 

of boundedness that is exhibited. In the following theorem, X will be a complete 

metric space, V a topological space, and {Vn : ?.. = 1,2,. . .} an increasing closed cover 

of Y. {Ta : a G A} will denote a collection of hereditarily feebly continuous maps of 

A' into V. S denotes a set such that s £ S -=>• As C A. If x £ X and a £ A, define 

?/)[j;,.s] to be the least integer n for which Tax £ Yn for all a £ As (m[x, s] = -{-00 if 

such an integer does not exist). 

Just as the hypotheses of Theorem l give rise to a "good finite intersection", the 

same can be said of an appropriate assumption of partial pointwise-boundedness. 

T lu .orc .m 4. Suppose that, for each x £ A', m[x,s] is finite for all hut finitely 

many s £ S. Then there exist s\, . . ., sp in S, a non-empty open suhsct U of X, and 
p 

an integer N such that Tax £ Vyy for x £ U and a £ f] ASk. 

k = \ 

P r o o f . The theorem is only of interest in the case where S is infinite, so 

assume that {sn : n = 1, 2, . . .} are distinct elements of ,S\ Assume that the theorem 

is false. Then there exist x\ £ A' and a\ £ ASl such that Taix\ £ Y\. Since V'I 

is closed, choose an open set IV such that TaiX\ £ IV and IV is disjoint from 

V'i. By Lemma 2, there exists an open set U\ C A' such that Tai(U\) C IV ; 

we can assume that diam(U i) < 1. Now choose an open set V\ whose closure is 

contained in U\. At the nth step of the induction, asusme we have found open sets 

Vn C Vn C Un C Vn-i C • • • C Vi C Vi C U\ - Since the theorem has been assumed 
n+\ 

false, we can find xn + \ £ Vn and an + \ £ f) ASk such that Ta_+1.rn + i g Yn + \. Since 
k-[ 

Yn + \ is closed, there is an open set lVn + i such that Tan + lxn + i £ lVn + i and \Vn + \ 

is disjoint from V'N + i. By Lemma 2, there is an open subset Un + \ of Vn, which we 

can assume has diameter less than \/(n+ 1) such that Tan+l(Un + \) C lVt + i. To 

complete the induction, choose an open Vn + \ whose closure is contained in Un + \. 
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Having constructed a decreasing sequence of closed sets wliose diameters converge 
CO 

to 0, let xo G H Vn. For any integer 77, if k > n, then ak G ASn. Note that 
n = l 

Takx0 G Tak(Uk) C Wk- Since \Vk is disjoint from VJ., m[x0,sn] > k for k > 77. 

Therefore 77i[x*o,sn] is infinite for all 77, and this contradiction yields the desired 

result. • 

The situation is slightly simpler if we start with a contable number of sub-

collections. 

Corol lary 4 .1 . Suppose that S is countahle. If we assume that, for eacli x G A', 

there is an s G S such tliat m[s,x] is finite, then the conclusion of Theorem 4 holds. 

n 
P r o o f . Let S — {sn: n = 1 /2 , . . . } , and let Bn = f] ASk. The hypotheses 

k = \ 
of Theorem 4 hold for the sub-collections {Bn : n = 1,2, . . .} , and the result follows 

since f] Bk = PI A»k- D 

k = l fc=i 

It might be wondered if it is possible to strengthen the conclusion of Theorem 4. 

In [11], it is shown that different classes of uniform boundedness theorems can be 

proved when the range space is a metric space. We shall now assume that V is a 

metric space, and that the maps {Ta: a £ A} are continuous. Fix /jo G V, and let 

m[s,x] - sup{rf(Ta£-, 1/0): a G As}. 

T h e o r e m 5. Suppose that, in addition to the above hypotheses, for each x G A', 

there is a finite suhset S(x) of S such that m[s,x] is finite for s G S \ S(x). Then 

there exists a finite suhset S* of S such that, for eacli s G S\ S*, there exists a 

non-empty open suhset Us such that 

sup{d(Tax,yo): x G Us, a G ,4,} < 00. 

P r o o f . We shall let d denote the metric in both A" and Y. Assume that the 

theorem is false. Then there exist infinitely many distinct {sn : n = 1,2, . . .} such 

that for each 77, the family {Ta: a G ASn} is unbounded on each non-empty open 

set. Let {/n : n = 1,2, . . .} = {s\ ; s i ,S2 ; ^1,^2,^3; • • •}• The key feature of {tn : 

77 = 1,2, . . .} is that each Sk appears infinitely often therein. 

Choose x\ G A', a\ G Atl such that ({(Taix\,y0) > 2. Since Tai is continuous 

at x,\, choose neighborhoods U\ and V\ of x\ such that x\ G Vi C V\ C U\ and 

diam(U i) < 1. 

Suppose x\, . . ., xp G A, ax G Atl, . . ., ap G Atp and open sets Vn C \\t C 

Un C Vu-i C . . . C Vi C Vi C Ui have been chosen with x\ G Vi, . . ., xp G \'P-
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Because the maps T a j , . .., T a p are continuous at xp, choose a neighborhood Up+i of 

xp of diameter < l / ( p + 1), Up+1 C VP, and x G UP+i => d(Tajx,Tajxp) < l / 2 ' , + 1 

for 1 <J j <J D. Now choose a point xp+i G e/p+i and ap+i E Atp+1 sucli that 

</(Tflp+1 *-,+ ,, i/0) > P + 2. Note that rf(Tfljxp+i, T ^ y ) < 1/2*'*1 for 1 <C j <C p. Let 

Vp+i be an oj)en neighborhood of .rp+i with Vp+i C VP+i C UP+i-
CO 

As in Theorem 4, choose x0 G f| Vfc. If n > p, we have d(Tapxp,yo) ^ 
fc = i 

n - l 
d(Tapxp+!,go) + d(Tapxp+l,Tapxp) <: <: d(Tapxn,y0) + £ d(Tap£*.+!, T a p ^ ) < 

&--.p 

d(7apa-n,g0) + E 1 l / 2 * + 1 < J(Tapa:n,t/o) + V 
k=P 

Therefore n > p => d(TapxU)yo) > d(Tapxp,yo) — 1 > p. Since Ta is continuous 

and x*n —• x*o, for each p we have d(Tapxo,yo) ^ P- But ap G Atp, and so infinitely 

many ap G ^45n for each n. Therefore, ?/i[.sn,x'0] is infinite for all n, a contradiction 

which proves the theorem. • 

This result is best possible, in that the dependence of the open set U(s) on the 

choice of s G .$' \ .$'* cannot be eliminated. Let A' denote the interval [0,1], and let 

{rn : ?i = 1,2, . . .} be an ordering of the rationals in (0,1). Let A be the set of pairs of 

positive integers. If 7i,k are positive integers, let /„*. be a continuous function which 

isOon [0 , r n ]U[r n + ( l - r n ) / ( k + l ) , l ] and peaks up to k on ( r n , r n + (l - r n ) / ( k + 1)). 

For each integer 71, let An index the functions {fnk '• k -= 1 ,2 , . . . } . The family of 

functions {/a : a G An] is pointwise-bounded for each x in the interval [0,1], but fails 

to be uniformly bounded in any neighborhood of rn. Since each open subset of [0,1] 

contains infinitely many rationals, for any open subset U of [0,1] the family {fa : 

a G An] will fail to be uniformly bounded on U for infinitely many n. 

In the s tatement of Theorem 5, each of the maps Ta takes values in Y. An 

examination of the proof shows that it is possible for each map Ta to take values in a 

separate metric space Ya. As we noted previously, this modification may be of more 

than technical interest. 

4 . DOUBLY-INDEXED BOUNDEDNESS AND CATEGORY THEOREMS 

The following definition describes a type of cover which plays an interesting role 

in the construction of Baire Category Theorems and local uniform boundedness 

principles. 

De f in i t ion 6. Let A' be a topological space. An infinite collection of subsets of 

A' is called a thorough cover of A if each point of A' belongs to all but finitely many 

members of the cover. 
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Fogelgren and McCoy ([3]) initially showed that complete metric space possess 

the following property: given any thorough closed cover of the space, there exists a 

non-empty open set contained in all but finitely many members of the cover. In an 

attractive note, Fletcher and Lindgren ([2]) have shown that this property holds in 

any second category space, and is equivalent to one of the well-known formulations of 

the Baire Category Theorem, that the space cannot be a countable union of closed, 

nowhere dense sets. 

In this section, we prove a local uniform boundedness theorem using a doubly-

indexed collection of sets which has as a corollary both the standard and Fogelgren-

McCoy formulations of the Baire Category Theorem. 

T h e o r e m G. Let X be a complete metric space, Y a topological space, and let A 

and S be sets. For each a G A, let Ta be a continuous map of X into Y. For each 

.s £ S and each positive integer n, let Ysn be a closed subset of Y. Suppose that, 

for each x G A\ there exists a jyositive integer n = n(x) and a finite subset S(x) of 

S such that Tax G Ysn for s G S \ S(x) and a G A. Then there exist an integer A\ 

a non-empty open subset U of X, and a finite subset S* of S such that, if x G U, 
N 

a G A, and s G S \ 5*, then Tax G \J Ysn. 
7 1 = 1 

P r o o f . Suppose the theorem is false. Then there exist elements a\ G A and 

•sq G S, and a point x\ G A\ such that Tdlx\ 0 Y\ Sl. Since Ta . is continuous, choose 

an open set U\ of diameter < 1 such that x G U\ => Taix £ Y\tSl. Now choose an 

open set V\ such that V\ C U\. 

Assume that $\, . . ., sn G S, elements a\, . . ., an G A, and open Vn C V\, C Un C 

l \ _ i C . • • C Vi C Vi C U\ have been chosen. Since the theorem has been assumed 

false, there exist sn + \ G S \ {.sq , . . . , sn}, an + \ G A, and a point xn + \ G Vn such that 
n+\ 

Tan+lxn + i $. U Vx,.i5n + 1. Since this set is closed and Tan + l is continuous, choose an 
k = \ ' 

n + \ 
open set Un + \ with diameter < 1/(77 + 1) such that x G Un + \ => Ta?i + 1x £ \J U, , , i + 1 • 

A: = 1 

We can assume that xn + \ G Un + \ C V„. Now choose an open set Vn + \ such that 

Vn + \ C Un + \. 
OU 

Let j»0 G f| Vn. Note that , if n ^ k, TQnx0 (£ Yk Sn. Fix an integer />. and let 
n = [ 

S* be a finite subset of ,S\ (Choose an integer 7/ such that 7/ ^ p and sn ^ S*. Then 

Tanx0 £ YP)Sn. Consequently, there exists no integer p for which there exists a finite 

subset 5* of S such that Ta.r0 G V';v, for all a G A and ,s G S \ S*, a contradiction 

which establishes the theorem. • 
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A consequence of this theorem is the following corollary, which gives both the stan­

dard and Fogelgren-McCoy formulation of the Baire Category Theorem for complete 

metric spaces. 

Coro l lary 6 .1 . Let X be a complete metric space, and S a set. For each positive 

integer n and each s G S, let Xns he a closed subset of S. Suppose that for each 

x G A', there exists an integer n — n(x) and a finite subset S(x) of S such that 

x G Xns for each s £ S \ S(x). Then there exists an integer N, a finite subset S* of 
N 

S, and a non-empty open suliset U of X such that, if s G S \ S*, then U C (J A'n5 . 
n-\ 

P r o o f . Let Y — X, Y1ls = A'U5, and let {Ta: a G A} consist of the identity 

map /': A' —• V, and apply Theorem 6. • 

Corollary 6.1 implies both versions of the Baire Category Theorem. If a complete 

metric space A' is the union of a countable collection {Fn: n = 1,2,. . .} of closed 

sets, for each pair of positive integers n and k, let XTlk = Fn. If {F5: s G .S'} is a 

collection of closed sets such that each point of x belongs to all but finitely many 

members of the collection, for each positive integer n and each s G S\ let Xns = F5. 

In each instance, application of Corollary 6.1 yields the desired result. 

5. C O L L E C T I V E P R O P E R T I E S AND LOCAL UNIFORM BOUNDEDNESS 

Consider the following statement of Osgood's Theorem: a pointwise-bounded fam­

ily of continuous functions on a complete metric space is locally uniformly bounded. 

The hypotheses placed on the functions themselves are of two types. The requirement 

of continuity constrains each function separately; pointwise-boundedness, however, 

is a restriction on the entire collection, and local uniform boundedness is a collective 

property. 

It, is possible to define collective extensions of the properties of continuity and feeble 

continuity in such a way that Osgood's Theorem holds for collections of functions 

satisfying these properties . 

D e f i n i t i o n 7. Let A' and Y be topological spaces, {Ta: a G A} a family of maps 

from A' to Y. The family is said to be collectively continuous if, given open subsets U 

of X and V of V, a point x G U, and an index ci G A such that Tax G V, there exists 

an index b G A and an open set IV C U such that x G IV and Th(W) C V. The 

family is collectively hereditarily feebly continuous if, with the above hypotheses, 

there exists an index b G A and an open set IV C U such that T^(W) C V. 



Note that a family of (hereditarily feebly) continuous functions is collectively 

(hereditarily feebly) continuous; in this case, the index b is the same as the given 

index a. 

We present a simple version of Osgood's Theorem for collectively hereditarily 

feebly continuous families. It is not clear whether this theorem is anything more 

than a curiosity. 

T h e o r e m 7. Let X be a complete metric space, Y a topological space, {Yn : 

n — 1,2,. . .} an increasing closed cover of Y. Let {Ta: a G A} be a collectively 

hereditarily feebly continuous family of maps from X to Y. Assume that, for each 

x G A", there is an integer n — n(x) such that a G A => Tax G Yn. Then {Ta : a G A] 

is locally unifomly bounded. 

P r o o f . The proof is familiar and straightforward. Suppose the theorem is 

false. Choose x\ G A' and a\ G A such that Taix\ £ Y\. Let W\ be an open set 

disjoint from V\ containing Taix\. Choose an open set U\ of diameter less than 1 

and an index b\ E A such that 7i.((7i) C IV'i. Now choose an open set V\ such that 

V\ C V\ CU\. 

Assume inductively that bi, . .., bn G /t, and open sets Vn C Vn C Un C Vn-i C 

. . . C Vi C Vi C U\ have been chosen. Since the theorem has been assumed false, we 

can find an xn + \ G Vn and an index an + \ G A such that Tau + lxn + \ 0 Y'n + i • Let lVn + i 

be an open set disjoint from Yn + \ containing Tan+lxn + \. Choose an index bn+\ G A 

and an open subset Un + \ of Vn which has diameter less than l/(n -f- 1), such that 

Tbn + l(Un + \) C Wn + \. Now choose an open set Vn + \ such that V„+1 C Vn + \ C Un + \. 
CO 

To conclude the proof, let XQ G f] Vn. Then, for each n, TbnXQ G Tt,n(Vn) C 
71 = 1 

Wn. Since Wn is disjoint from Yn and the {Yn: n = 1 ,2 , . . .} cover V, this is a 

contradiction. D 
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