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THE PERRON PRODUCT INTEGRAL IN LIE GROUPS 

PEDRO MORALES,4 Sherbrooke 

(Received December 30, 1991) 

1 . I N T R O D U C T I O N 

The product integral for matrix-valued functions, defined on a compact interval of 

the real line, was introduced by Volterra ([21] and [22]) and completed by Schlesinger 

([18] and [19]) and Rasch [17]. The main motivation for this construction was the 

study of linear differential equations with variable coefficients and the discussion of 

such systems in the complex plane. 

The possibility of an extension for more general setting was perceived by Birkhoff 

[1], and it was accomplished by Hamilton [6] for functions taking its values in the Lie 

algebra of a Lie group of finite dimension. In [16] it was presented a self-contained 

survey of this Riemann-type product integral, using all the power of the theory of 

finite-dimensional Lie groups. 

Recently, Jarnik and Kurzweil [10] in an elementary way constructed a Perron-type 

product integral for matrix-valued functions and they applied it to study systems of 

linear differential equations. The purpose of this paper is to extend the construction 

of the Perron product integral to functions taking its values in a Lie algebra asso

ciated with a finite-dimensional Lie group. Its main results are the following: 1) a 

multiplicative property (Theorem 3.6); 2) the relation with the Perron summation 

integral (Theorem 3.8); 3) an existence theorem (Corollary 3.10); and 4) a continuity 

property (Theorem 3.12). These properties extend some of the results of [10]. 

This paper is organized as follows: In the Section 2 we present some basic notions 

of manifolds, Lie algebras and Lie groups and some key results with precise references 

for the proofs. In the Section 3 we construct the Perron product integral and we 

deduce some of its fundamental properties. 

4 This research was partially supported by a grant from the Natural Sciences and Engi
neering Research Council of Canada. 
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2. P R E L I M I N A R I E S 

Write N = {0, 1, 2 , . . . } and let R denote the real line. 

Let M be a Hausdorff topological space. A chart on M is a triplet c = (U, <p, n) 

where U is an open subset of M, n G N \ {0} and <p is a homeomorphism of U onto 

the open subset <p(U) of R n . The natural number n is called dimension of c and the 

open set U is called the domain of c, and we write U = Dom(c). Let ^ be a set of 

charts on M of the same dimension ?i. We say that M = (M, <€) is a C°° manifold 

of dimension n if the following conditions are satisfied: 

(i) M = U{Dom(c): ce^} 

(ii) If c = (U, <p, n) and c' = (V, x , n) are two elements of <£ such that U C\V ^ ft, 

then the function x o ^ " 1 : <p(U n V) -> R" is C°°. 

(iii) If ^f' is a set of charts on M of the same dimension n such that <& C <€', then 

«* = %r. 
According to [2, Theorem 1.3, p. 54], a C°° manifold of dimension n is completely 

determined for any set <€ of charts on M of the same dimension n satisfying the 

conditions (i) and (ii). 

Let M be a C°° manifold of dimension 7i and let c = (U,<p,n) be a chart on M. 

For every i G {1, 2 , 3 , . . . , n}, put x% = pr,o<^: U —• R. Then the 7i-tuple of real-

valued functions ( x : ) i ^ , ^ n is called a local coordinate system on c. For each point 

y £ U, the ?i-tuple of real numbers (xl(y))\^i^.n is called the /oca/ coordinates of y 

with respect to c. 

We present three examples of C™ manifolds: 

1. Let V be a vector space over R of dimension ?i. Then V is a metrizable 

topological space. Let <p be a linear isomorphism from V onto R n . Then <& = 

{(V, <p,n)} satisfies the conditions (i) and (ii), and it determines a structure of C°° 

manifold of dimension n on V. 

2. Let M be a C°° manifold of dimension n and let N be a non-empty open 

subset of M. Consider a set <€ of charts on M of the same dimension n satisfying the 

conditions (i) and (ii). Then <€' = {(U n N, <p\U PI N, n): ([/, <p, n) G # } determines 

a s tructure of C°° manifold of dimension n on N, which is said then to be an open 

submanifold of M. 

3. Let M and M' be C°° manifolds of dimension in and n, respectively. Then, 

with the product topology, M x M' becomes a Hausdorff topological space . Consider 

a set '£ of charts on M of the same dimension m and a set <€' of charts on M' 

of the same dimension n, both satisfying the conditions (i) and (ii) . Then <£" = 

{(U x V, <p x x , rn + n ) : (U, <p, rn) G # and (V, x, w) G ^f'} determines a s tructure 

of C°° manifold of dimension m + n on M x M', and it is called the product manifold 

of M and M;. 
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Let M and M' be C°° manifolds of dimension m and n, respectively, and let / : 

M -> M'. We say tha t 

a) / is a C°° function if, for every x £ M, there exist a chart (U, >̂, ?n) on M and 

a chart (V, x , n) on M ; such that x £ U, / ( ^ ) Q V and the function X ° f ° (P~l : 

V?(U) - > R n is C°° . 

b) / is a diffeomorphism i f / is bijective and i f / and / _ 1 are C°° functions. It is 

clear tha t the composition of two C°° functions is again C°° . 

Let M be a C°° manifold of dimension n and let U be a non-empty open subset 

of M . We denote by C°°(U) the set of all C°° functions / : U -> R. It is clear tha t 

C°°(U) is an associative algebra over R with unity. Let x £ M . We consider the 

set ^ ( x ) of all real-valued C°° functions, each defined on some open neighbourhood 

of x. If / i , / 2 £ &(%) we write / i ~ fi if they agree on some open subset of M 

containing x. Then ~ is an equivalence relation on &(x) and each element of the 

quotient set C°°(x) = &(x)j^ is called a germ of C°° functions at x. If / E ^ ( # ) , 

its corresponding germ will be denoted by fx. It is easy to verify that C°°(x) is an 

associative algebra over R with unity. We define the tangent space TX(M) to M at 

x to be the set of all linear forms vx on C°°(x) satisfying the Leibniz rule: 

Vx(fx.gx) = Vx(fx)g(x) + f(x)vx(gx) for all / , g £ ^(x). 

Every element of TX(M) is called a tangent vector to M at x. It is easy to see that 

TX(M) is a vector space over R. 

2.1 L e m m a . If M is a C°° manifold of dimension n and x £ M , then the tangent 

space TX(M) is also of dimension n. 

For a proof see [14, Theorem, pp. 41-42]. 

Let M be a C°° manifold of dimension n. A C°° vector field on M is a linear 

function X: C^(M) — C°°(M) such that X(f-g) = (Xf) • g + f (Xg). We denote 

by x ( M ) the set of all C°° vector fields on M . It is clear that x ( M ) is a vector space 

over R such tha t XoY-YoX e , \ (M) for all X, Y € x ( M ) . 

Let Iv be a field of characteristic 0. A Lie algebra over K is a vector space &/ 

over 1v endowed with a bilinear function from s/ x stf to .x/, usually denoted by 

(A', Y) —> [K, y ] , which satisfies the following two identities: 

(i) [X,A'] = 0; 

(ii) [N, [V, Z]] + [Y, [Z, X]] + [Z, [K, V]] = 0 for any elements X, Y, Z in stf. 

We note that if s/ is an associative algebra over Iv", then the vector space s/ over 

Iv endowed with the bilinear function (Ar, Y) —> XY - YX is a Lie algebra over Iv. 

For example, if n 6 N \ {0}, the set M n (R) of all n x n real matrices is a Lie algebra 

over R. 
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2.2 Lemma. If M is a C°° manifold of dimension n, then ,\(Af) endowed with 
the Lie product [,Y, Y] = X o Y — Y o X is a Lie algebra over R. 

For a proof see [2, Theorem 7.4, p. 153]. 
A Lie group of dimension n is a C°° manifold G of dimension n which is also 

endowed with a group structure such that the function (<7i,<72) —• tfiyj1 from the 
product manifold G x G to G is C'°°. For example, if n G N \ {0}, the set GL(ny R) 
of all invertible elements of AIri(R) is a Lie group of dimension n2 under matrix 
multiplication (see [2, Example 1.6, pp. 56-57]). 

2.3 Lemma. Let G be a Lie group of dimension n. Then G is a complete metriz-
able topological group with a left invariant metric Q. 

The proof follows from [4, Proposition 1, p. 97] and [15, Theorem, p. 34] taking 
into account Property 2.3.3 of [3, p. 18] in the proof of [4, Lemrne 1, p. 96]. 

Let G be a Lie group of dimension n and let g G G. Define the function Lg : 
G —i• G by the formula: Lg(x) = gx. It is easy to see that Lg is a diffeomorphism 
and the proof of the following lemma is straightforward: 

2.4 Lemma. Let G be a Lie group of dimension n, let g £ G and let X G x(G)-
Define ((Lg)mX)(f)(x) = X(f o Lg-i )(gx) for all f G C°°(6f) and all x G G. Then 

(L,).xex(G). 
Let G be a Lie group of dimension n and let X G x(G)- We say that X is a left 

invariant C°° vector field on G if (Lg)+X = X for all g G G. We denote by L(G) 
the set of all left invariant C°° vector fields on G. It is clear that X G L(G) if and 
only if Xf o Lg = X(f o Lg) for all / G C°°(G) and all g G G. From this observation 
we can deduce the following 

2.5 Lemma. Let G be a Lie group of dimension n. Then L(G) is a Lie subalgebra 

ofx(G). 

The Lie algebra L(G) is called the Lie algebra of the Lie group G. For example, 
L(GL(n,R)) = Af„(R) (see [7, Lemma 15, p. 59] or [23, Example 3.10(b), pp. 86-87]). 

2.6 Lemma. Let G be a Lie group of dimension n with neutral element e. Then 
there exists a linear isomorphism from L(G) onto Te(G), and therefore 

dim(L(G)) = n. 

For a p r o o f see [14, Theorem 1, pp. 190-191] or [23, Proposition 3.7 (a), p. 85]. 
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2.7 L e m m a . Let G be a Lie group of dimension n with neutral element e. Then 

there exists a C°° function exp : L(G) —• G with the following properties: 

a) exp(s + t)X = e x p s X • exp tX for all s,t GR and all X G L(G). 

b) There are open neighbourhoods U of e in G and V of 0 in L(G) such that exp 

is a diffeomorphism from V onto U. 

For a proof see [20, pp. 84-88] or [23, pp. 102-103]. 

in the case where G = GL(n, R), it can be shown that exp K = I-fy--f;-|---f... 

where I is the identity matrix in G (see [23, Example 3.35, pp. 105-107]). 

3. THE PERRON PRODUCT INTEGRAL 

A closed interval of the real line is said to be non-degenerate if it contains more 

than one point. Let «^(R) denote the set of all non-degenerate closed intervals of 

the real line. For A' G *^(R) we denote by *f(K) the set of all elements of *f(R) 

contained in A'. 

Let A' G -^(R)- A subdivision of K is a non-empty finite subset A of A' x S(K) 

such that 

(i) If (t,J)e A, then t G J. 

(ii) if (/, J) and (t', J') are two distinct members of A, then J D J' = 0. 

( i i i ) U { J : ( * , J ) G A } = Ii. 

If A' G «^(R) we denote by a(K) the set of all subdivisions of A'. For [a, b] G ~^(R) 

it is clear that every element of <r([a,&]) can be written in the form 

A = { ( / t , [ x l . l , x t ] ) : i G { i , 2 , . . . , n } } 

where n G N \ {0} , ti G [x,_i,-r,] and 

a = x0 < x\ < x2 < • . . < -c-j-i < xn = b. 

Every point Xi for 1 ^ i: ^ n — 1 is called a tag of A . 

Let [a, b] G ~^(R), let c be a real number such that a < c < b, let 

Ai = { ( < i , [ ^ . - i , x l ] : i G { l , 2 , . . . , n } } 

be an element of cr([a,c]) and let 

A 2 = { (*; , [* / ; - ! ,y , ] ) :JG { 1 , 2 . . . . , m } } 
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be an element of a([c,b]). Put Sj = ln+j and yj = xn+j for all j G { l , 2 , . . . , m } . 

Since x n = c — t/0, the set 

A = {(<i,[a:i-.i, «,-]): i G {1, 2 , . . . , m + n}} 

is a subdivision of [a, 6] and this fact is denoted by A = Ai o A2. 

Let Iv G S(R). Then 

a) Every function from Iv to ]0,-foo[ is called a gauge on IV. 

b) If 6 is a gauge on IV , a subdivision A of Iv is said to be 6-fine if J C ]t — 6(t), 

t + 6(t)[ for every (t,J) G A. 

Write <T(K,6) = {A G <r(K): A is 6-fine}. It is well-known that <r(K,6) 7- 0 

for every IV G ~^(R) and every gauge 6 on 1v (see [12, Lemma, p. 22] and [13, 

Compatibil ity Theorem, p. 38]). 
n 

If (x ,) i e N is a sequence of elements of a Lie group, then the symbol \\ xi l s defined 
i=0 

by the inductive formulas: 

" + 1 

П 
t = 0 ť=0 t = 0 

j j x i = x 0 and j j ar, = x n + i j j r t . 

Now let G be a Lie group with neutral element e, let L(G) be the Lie algebra 
of G\ let K G <^(R), let u: K -* L(G) and let [a,6] G S(K). For each element 
A = { ( « i , [ x i _ 1 , X i ] ) : i G { V 2 , . . . , 7 i } } o f ( 7 ( [ a , 6 ] ) , write 

n 

5(n, A) = j j e x p ( ( x , - Xi-i)u(U)). 
i = l 

We say t h a t u is Perroji product integrable on [a, 6] if, for every e > 0, there exists 

a gauge 6 on [a, 6] such that g(S(u, A\),S(u, A2)) < £ whenever A i , A 2 G <r([a,b],6), 

where g is the left invariant metric on G given by Lemma 2.3. 

Henceforth we fix an element Iv G -^(R). 

3.1 L e m m a . Let u: K —> L(G) a/ic/ let [a,b] G S(K). Then u is Perron product 

integrable on [a,b] if and only if there exists an element g G G with the following 

property: 

(*) For every e > 0 there exists a gauge 6 on [a, 6] such that g(g,S(u,A)) < € 

whenever A G <r([a,b],6). 

P r o o f . Since the sufficiency is trivial, it remains to show the necessity. 
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For every 71 G N \ {0}, let Wn = {S(t/, A ) : A G <r([a,6],£) for some gauge 8 on 

[a, 6] and g(S(u, A) , S(w, A' ) ) < £ for all A ' G <x([a, 6], 6)}. Since u is Perron product 

integrable on [a, 6], every lVn 9-- 0, 7* = 1,2, 3 , . . . . We shall show tha t 

2 
diam(VVn) ^ - for every n G N \ {0}. 

71 

Let S ( t i , A i ) , S (w,A 2 ) be two elements of Wn. Then A, G <r([a, 6], 6,) for some 

gauge Si on [a, 6] and D(S(ti, A , ) , S(t/, AJ)) < £ for all AJ G <r([a, 6], S{) (i = 1,2). 

Let 8 = min{<$i,62) and let A G <r([a, 6], 8). Then 

AG<7([a,6],<S,)n<T([a,6],<52) 

and therefore 

^ ( s ( t i , A 0 , S ( t i , A 2 ) ) <C p (S ( t ( ,A , ) ,S ( t i ,A) ) + p ( S ( t i , A ) , S ( u , A 2 ) ) < - . 

Hence diam(IVn) ^ ^ . We shall show that 

VVn+i ^ Wn for every n G N \ {0}. 

In fact, let S(tx, A) G VVn+i. Then A G <r([a, 6]), <S) for some gauge 8 on [a, 6] and 

Q(S(U, A) , (S(t/, A ' ) ) < — l — for ail A ' G <r([a, 6], <5). 

71+1 
Since - ^ < £ , it follows that S(uy A) G IVn. 

Let F„ = W^ for all 71 G N \ {0}. Since diam(Fn) = diam(lVn) it follows tha t 

lirn d iam(F n ) = 0. But (G, g) is a complete metric space. Then, by Cantor Theorem 
n—*oo 

CO 

[11, p . 413], there exists g G G such that f] Fn = {g}. To prove the condition (*), 
n = l 

let e > 0. Choose 710 G N \ {0} such that ~ < e. Since g G Fn0 = ^Vn0» there exists 

S(w, Ao) G VVno such tha t D(</,S(ti, Ao)) < ^ . Then Ao G <r([a,6],8) for some gauge 

8 on [a, 6] and D(S(ti, A 0 ) , S(ti, A ' ) ) < -^ for all A ' G <x([a, 6], <S). Let A G <r([a, 6],<5). 

Then g(g, S(ti, A)) ^ g(g, S(u, A 0 ) ) + g°(S(u, A 0 ) , S(ti, A)) < e. D 

It is clear tha t , if u is Perron product integrable on [a, 6], then there exists a unique 

element g G G satisfying the condition (*) of Lemma 3.L This element is called the 
b 

Perron product integral of u over [a, 6] and it is denoted by (P) \[exp(u(t)dt). 
a 

Now consider the set D([a,6]) of all pairs (<5, A) , where 8 is a gauge on [a, 6] and 

A G <r([a,6],<5). It is clear tha t D([a,6]) is non-empty. If (61, A i ) and (<S2,A2) are 
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two elements of D([a,6]), we say that (6\, A i ) is finer than (62, A 2 ) and we write 

(<$i, A i ) ^ (62,A2) if*61 ^ 62. For example, if (61, A i ) and (62,A2) are two elements 

of D([a,6]), 6 = min{6\,62} and A G <r([a,b],6), then (6, A) is finer than (6\, A\) 

and (<52,A2). Since (D[a,6],J>) is a partially ordered set, the preceeding example 

shows tha t ( D ( [ a , 6 ] , ^ ) is a directed set. Let u: I\ —• L(G) and let [a, 6] G J(K). 

For each (6, A) G D([a,b]) define h(6, A) = S(u, A) . Then h is a net in G. Since G 

is a Hausdorff topological space, the net h converges to at most one point. 

3.2 L e m m a . Let u : I\ —• L(G) and let [a, 6] G <f(K). Then u is Perron product 

integrable on [a, 6] if and only if the net h converges. Moreover, 

b 

liin h(6, A) = (P)Y[exp(u(t)dt). 
a 

P r o o f . Suppose that u is Perron product integrable on [a,6]. Let e > 0. Then 

by Lemma 3.1. there exists a gauge 6£ on [a, b] such that 

6 

g((P) Y[exp(u(t)dt),S(u, A)) < e whenever A G <r([a,b],6£). 
a 

Choose a <S£-fine subdivision A£ of [a, 6]. Then (<5£,A£) G D([a,6]). Let (6, A) G 

D([a,6]) be such that (6, A) ^ (6£,A£). Then A is 6£-fine, and therefore 

0 

4>((Р)П«ФИ0<Ю,М*>Д)) < Є. 

Hence the net h converges to (P) J~[ exp(u( l)d l). 
a 

Suppose t h a t the net /* converges and let g — lim h(6, A). Let e > 0. Then there 
(6A) 

exists ( 6 £ ,A £ ) G D([a,b]) such that (<̂ , A) G D([a,b]) and (6, A) ^ (<5£,A£) imply 

g(g,h(6,A)) < e. Let A G a([a,b]),6£). Then (<5£,A) G D([a,6]) and (<5£,A) ^ 

(6£, A £ ) . Therefore g(g,S(u, A)) < e. By Lemma 3.1, u is Perron product integrable 

on [a, 6]. D 

3.3 L e m m a . Let u : I\ —• L(G) and let [a, 6] G J(l\). Then u is Perron product 

integrable on [a, 6] if and only if, for every e > 0, there exists a gauge 6 on [a, 6] such 

that g(S(u,A\)~l, S(u,A2)~
l) < £ whenever A i , A 2 G c([a, b], 6). 

P r o o f . Suppose that u is Perron product integrable on [a,6]. By Lemma 3.2, 

the net h converges, and therefore h is Cauchy in (G,°?/R), where <9/R is the right 
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uniformity on G. Let e > 0. Then V = {g G G : g(g,e) < e] is a neighbourhood 

of e in G, and therefore U = {(01,02) G G x G: 02 • 0J"1 G V} is an element of <?/R. 

So there exists (6, A) G D([a,6]) such that (6', A ' ) , (6", A") <E F>(M]) and (6', A ' ) , 

(<T",A")2> ( O , A ) imply/*(«", A " ) . / i ( « ; , A ' ) " 1 G V. Let A i , A 2 G <x([a, 6],8). Since 

( * , A 1 ) > ( * , A 2 ) € D ( [ a , 6 ] ) and (6,Al),(6,A2)^(6,A), 

we get S(u,A2) • 5( 11, A 1 ) " 1 G V. Hence 

D^AO^.SKAo)-1) = ff(5(ti,A2)-5(ti,Air1
Jc) < £ . 

To prove the sufficiency, let H be an element of the right uniformity ^/R on G. 

Then there exists a neighbourhood V of e in G such that 

U = {(01,02) eGxG: g2g;1 G V}. 

Let £ > 0 be such that {g £ G: g(g,e) < e] C V. By hypothesis, there exists a 

gauge 6 on [a, 6] such that 

Q(S(u,Al)-
1,S(u,A2)-

i)<£ 

whenever A i , A 2 G Q([a,b],6). Let A G <r([a,6],6). For i = 1,2, let (6., A.) G 

D([a,b]) be such that (5,-, A. ) > (6, A ) . Then A i , A 2 € <x([a,6],6), and therefore 

e(5(«, A2)5(«, AO-'.e) = f f(5(u, A,)"1 ,stu.Aj)-') < e. 

Hence /i(<$2,A2) •/*(<$i, <Si)-1 G V. Consequently, /i is a Cauchy net in (G,°?/R). 

Since (G,°?/R) is a complete uniform space, it follows that the net h converges. By 

Lemma 3.2, u is Perron product integrable on [a, 6], D 

3.4 T h e o r e m . Let K = [a, 6], let u: K — L(G) and let [c, rf] G ^ ( K ) - /.f ti is 

Perron product integrable on [a, 6], then u is Perron product integrable on [c,d\. 

P r o o f . We consider three cases: 

1. c = a and rf < 6. 

Let e > 0. Since u is Perron product integrable on [a, 6], there exists a gauge 6 

on [a, 6] such tha t g(S(u, A'), S(u, A")) < e whenever A ' , A " G <r([a, 6], «). Let A G 

a([rf,6],<S|[rf,6]). For A i , A 2 G <x([c, rf],o"|[c, rf]), write A 3 = A , o A a n d A 4 = A 2 o A . 

It is easy to verify that A3 and A4 are two <$-fine subdivisions of [a, 6], S(u, A3) = 

S(u,A)S(u,A[) and S(u,A4) = S(u, A)S(u,A2). Since g is a left invariant metric, 
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we have g(S(u, A i ) , S(u, A2)) = g(S(u, A) • S(u, Ax), S(u,A)-S(u,A2)) < e, and 

therefore u is Perron product integrable on [c,d]. 

2. c > a and d = 6. 

Let £ > 0. Since tz is Perron product integrable on [a, 6], by Lemma 3.3, there 

exists a gauge 6 on [a, 6] such that g(S(u, A ' ) " 1 , S(u, A")""1) < e whenever A ' , 

A " e cr([a,b],6). Let A £ v([a, c], 6\[a, c]). For A i , A 2 € <r([c,d],6\[c,d]), write 

A3 = A o Ai and A4 = A o A2. It is easy to verify that A3 and A4 are two <5-fine 

subdivisions of [a,b],S(u, A 3 ) = S(u, Ai)-S(u, A) and S(u,A4) = S(u, A 2 ) S ( u , A ) . 

Then S(u, A 3 ) - 1 = S(u, A ) " 1 -S(u, A , ) " 1 and S(u, A4)~
l = S(u, A ) " V S ( u , A s ) " 1 , 

and therefore 

e(s(tl,Al)-
1,S(u,A2r')=e(s(n,A)-1S(u,Al)-\S(u,A)-lS(u,A2r

l) <e 

By Lemma 3.3, u is Perron product integrable on [c,d]. 

3. c > a and d < b. 

Since u is Perron product integrable on [a, 6], the first case implies that u is Perron 

product integrable on [a,d]. Let v — u\[a,d]. Since v is product integrable on [a,d], 

the second case implies that v is Perron product integrable on [c,d]. So u is Perron 

product integrable on [c, d]. D 

3.5 L e m m a . Let [a,b] £ J(K), let c be a reai number such that a < c < b and 

let Dc([o,6]) = {(6, A) £ D([a,b]): c is a tag of A } . Tijen Dc([a,6]) is a cofmal 

subset o f ( D ( [ a , 6 ] ) , ^ ) . 

P r o o f . Let (6, A) £ D([a,6]). Define a gauge 6' on [tt,6] by 

6'(t) ^ mm(\t - c\,6(t)) for t±c and 6'(c) ^ 6(c). 

Let AQ = {(/, , [x,_i , ic,]): i 6 { 1 , 2 , . . . , 71}} be a <5'-fine subdivision of [a,b]. We 

may suppose that c is not a tag of Ao . Then there exists j £ {\, 2 , . . . , n} such tha t 

X J _ I < c < Xj. Because Ao is 6'-fine, the above conditions imply that tj = c. Put 

A i = {(t\,[x0,xi]),(t2}[xl,x2]),...,(tj,[xj-utj])}, 

--2 = {(tj, [tj;,Xj]), (tj+i, [XJ, xj + }]), ...,(tn, [x n _i , xn])}, 

A' = Ai o A 2 . 

Since Ai is 6'\[a, c]-fine and A 2 is 6'\[c, 6]-fine, A ' is 6'-f\ne. So (6', A') <E Dc([a, 6]) 

and (6', A') ^ (6, A). D 

3.6 T k e o r e m . Let K = [a, b], let c be a reai number such that a < c < b and let 

u: K —> L(G). If u is Perron product integrable on [a,c] and [c,6], then u is Perron 
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product integrable on [a,b] and 

b b e 

(P)JJexp(u(OdO = (P)JJexp(u(OdO • (P) JJexp(ti(«)dO-
a c a 

P r o o f . By Lemma 3.5 Dc([a,6]) is a cofinal subset of (D([a,6],^). Let 

k(6,A) = S(u,A) for all (6, A) G Dc([a,6]). Then k is a subnet of the net /i. 

We shall show that 

b c 

lim k(6,A) = (P)TTexp(ti(OdO • (P)TTexp(a(_)dO. 
(-5.A) - L - L • L J L 

v c a 

Let (6, A) G Dc([a,6]) be such that 

A = {(/i,[xi_i,Xi]):fG{l,2, . . .,n}} 

where Xj = c with 1 ̂  j ^ n — 1. Put 

6i(6) = 6\[a,c), 62(6) = 6\{c,b], 

Al{A) = {(ti,[xi-l,xi]):ie{l,2,...J}} 
and 

Then 

Let 

and 

Дз(Д) = {(<,, [*,•_!, *,•]): i € {j + l . i + 2 , . . . , n}}. 

(Ы*),Д.(Д) )Єo([a,c] ) and (Ó_(í).Д-(Д))€D([c,6]). 

£>,([«, c]) = {(- ,( í) , Дi(Д)) : (í, Д) Є /Л([a,6])} 

ö2([c, 6]) = {(<52(.5). Д 2 (Д)) : (í, Д) Є De{[a,6])}. 

Let (*0,Ao) G D([a,c]) and let («0 0, A 0 0) G D([c,6]). Define: 1. A = A 0 o A 0 0 ; 

2. <5'(*) = o"0(0 if a ^ t < c, <5"(*) = 60o(0 if c < * $$ 6 and 6'(c) = 6"(c) = 

min{oo(c), 600(c)}; 

3. 6(0 = 6'It) [ft G [a,c] and 6(t) = <$"(*) if/ G [c,6]. Then it is clear that 

(6,A)e Dc([a,b]),6f = 6l(6),6,f = 62(6),A0 = Al(A) and A 0 0 = A2(A). 

This shows that Di([a,c]) is a cofinal subset of (D([a,c], ^ ) and D2([c, 6]) is a cofinal 

subset of (D([c, 6],^). Let v = i/|[a,c] and tv = w|[c,6]. Put lii(6i,A{) = S(v,Ai) 

359 



for all (tSi.Ai) € oi([a,c]) and /i2(62,A2) = S(w,A2) for all (62,A2) <E D2([c,b}). 

Since « is Perron product integrable on [a,c] and [c, 6], we have 

(6 
lim h1(*1,A1) = (P)IIexp(u(OdO 

,, A ll '^r 111M62,A2) = (P)n«p(u(0d0-
(*2,--2)€D2([c,6]) X J * 

c 

But k(6,A) = h2(s2(6), A2(A)) hi (£,(*), A,(A)) for all (6, A) € De([a,b]). Then 

liin *(6,A) = (P) JJexp(u(/)dO • (P) JJexp(u(0<-0-

Now let e > 0. Then there exists (60, A0) G Dc([a,6]) such that 

6 c 

D(k((5,A),(P)JJexp(u(0d0(P)JIexl)vM(0^)) <£ 
c a 

whenever (o7, A) € .Oc([«, 6]) and (8, A) ^ (6o, Ao). Define a gauge 6' on [a, 6] satisfy

ing the following conditions: 1. 6'(t) ^ 60(t)
 f o r M l € [a, 6]; 2. < + <5'(0 < c if t < c; 

3. J — 6(t') > c if t > c. Let A be any S'-fine subdivision of [a, 6]. We may suppose 

that c is not a tag of A. Then we can write A = {(<,-, [x,_i,a:,]): i E {1, 2 , . . . , n}} 

where £j_i < c < Xj for some j £ {1 ,2 , . . . , n}. Since A is 6'-fine, the conditions I 

and 2 imply that c = tj. Define 

A ' = {(tl,[x0,xl]),...,(tj-.i,[xj-.2,xj-i]),(tj,[xj-i,tj]), 

(^»[^»-c j])»(0 + l»[- c i»^ + l])»--»(<»»[^n-. l ,^r . ])}. 

Then 

So 
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(6',A')єПc([a,b]) aud (6',A')ž(60,A0). 

О С 

д(к(8', А'),(Р)[[ехр(и(0а0 • (Г)Цещ>(и(1)А1)) < е. 



But 

ri 

k(S\ A') = I J exp((*i - Xi-tMU)) • exp((*,. - tj)u(tj)) • exp((/, - *;- iM*>)) 
•=j+i 

i - i 
x JJexp((x, - Xi-i))u(ti) 

t=i 
n 

= JJexp((«< - *••-i))u(<.-) = 5(u, A). 

Then 

< £. 
u c 

ff(5(ti,A),(P)n««P(«(0d0-(',)IIexP(ttWdl)) 
c a 

By Lemma 3.1, u is Perron product integrable on [a, 6] and 

b b c 

(P)JJexp(u(0d/) = (P)JJexp(u(<)dO (P)JJexp(ti(0d«). 

We denote by || • || any norm on L(G). Let /v G -^(R), let u: K —> L(G) and let 

[a, 6] G ^ ( I O - F o r each element A = {(«,-, [*,-_i, *,•]): i G { l , 2 , . . . , n}} of <r([a, 6]) 
n 

we write s(u, A) = 52(#« — -r,_i)u((i). We say that u is Perron summation integrable 
i=i 

on [a, 6] if there exists an element A' G L(G) with the following property: 
(**) For every e > 0 there exists a gauge 6 on [a, 6] such that ||A" — s(u, A)|| < e 

whenever A G <x([a,6],£). 
It is easy to see that, if u is Perron summation integrable on [a, 6], then there exists 

a unique element X G L(G) satisfying the condition (**). This element is called the 
Perron summation integral of u over [a, 6] and it is denoted by (P) fa u(t)dt. 

For each (6, A) G D([a, 6]) define j(6, A) = s(u, A). Then j is a net in (L(G), || • ||). 
A trivial modification of the argument used in the proof of Lemma 3.2, yields the 
following Lemma: 

3.7 Lemma. Let u: K —* L(G) and let [a, 6] G S(K). Then u is Perron summa
tion integrable on [a, 6] if and only if the net j converges. Moreover, 

\imj(6,A) = (P) f u(t)dt. 
(*,д) Л 

361 



3.8 Theorem. Let [a, 6] G S(K) and let u: K —• L(G) be a function such that 
[u(s), u(t)] = 0 for all B, t G [a, 6]. Jf u is Perron summation integrable on [a, 6], then 
u is Perron product integrable on [a, 6] and 

(P)f[exp(u(t)dt) = exp ((F) / u(/)d*). 
a V Ja ' 

P r o o f . Let (6, A) G D([a, 6]) be such that 

A = { (< , , [x l _ 1 ,x l ] ) : /G{l > 2, . . . ,n}} . 

Then 
n n 

h(6y A) = 5(u, A) = j jexp ( (x t - a?,-i)ti(*,-)) = exp (]T](-c. - * ,- i )"(<*)) 
t = i i = i 

because [u(*,), u(^)] = 0 for all ij G {1, 2 , . . . , n}. So /t(<5,A) = exp(j(<$, A)). The 
continuity of exp and Lemmas 3.2 and 3.7 imply the result. D 

Let [a, 6] G ̂ f(K). A Riemann partitioii of [a, 6] is a finite family 7r = {I;}?-^ of 
n o o 

elements of J(K) such that (J Ij = [a, 6] and Ij O I* = 0 if jf -̂  ib. If I G < (̂ A') we 
i = i 

denote by |I| the length of I. 
Let 7T be a Riemann partition of [a, 6]. Then 

a) The positive real number ||7r|| = max{|I|: I G 71*} is called the mesh of 7r. 
b) A choice function for 7r is any function c: 7r —• K such that c(I) G I for all 

IG7T. 

Consider the set D^([a,6]) of all pairs (7r,c), where 7r is a Riemann partition 
of [a, 6] and c is a choice function for 7T. If (7T,c) and (7r'.c') are two elements of 
D#([a,6]), we say that (n'yc') is finer than (7r,c), and we write (TT'JC') ^ (n^c), if 
.Mil ^ IMI- ^ ls dear that D#([a,6], ^) is a directed set. 

Let u: Iv —• L(G). For each (7r,c) G D/*([a,6]) with 

TT= {[*,•_!, *,-] : a = a?o < *i < *2 < . . . < xn-\ <xn = 6}, n G N \ { 0 } , 

we write 
n 

5/t(u,(7T,c)) = j^[exp((xt - Xi-X)u(c([xi-i,Xi]))). 
»=i 

Then the function (7r,c) —-> .$#(u, (7T,c)) is a net in G. If this net converges, we say 
that u is Riemann product integrable on [a, 6] and the limit lim SR(U, (7T,c)) is called 

(*.<*) 
6 

the Riemann product integral over [a, 6] and we denote it by f]exp(u(*)d£). 
a 
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3.9 T h e o r e m . Let [a,b] G S(K) and let u: K —> L(G). Ifu is Riemann product 

integrable on [a, 6], then u is Perron product integrable on [a, 6] and 

6 6 

(P) IJexpMOdO = I l ^ ^ O d O . 

b 

P r o o f . Write g = f j exp( t i (0d0- L e t £ > 0. Then we can choose (7To,co) G 
a 

-9/*([a,6]) such that Q(SR(U, (IT, c)),g) < e whenever (n,c) G D^([a,6]) and (n,c) ^ 

(no, Co). 

Let 7; = ||7To||. Let 6 be a gauge on [a, 6] such that 6(t) = ^n for all t G [a, 6]. 

Let A G cr([a,b],6) be such that A = {(*,, [x,_i, x,]): t G {1, 2 , . . . , n}}, where n G 

N \ {0} . Put C([XJ_I, x,]) = £,- for all i G { 1 , 2 , . . . , n}. Then c is a choice function for 

the Riemann partition n = {[x,_i , x , ] : ? G { 1 , 2 , . . . , n}} of [a, 6]. Because A is Mine, 

we have (7r,c) ^ (7r0,c0). So Q(SR(U, (n, c)),g) < e. Since SR(U, (IT, C)) = 5 ( t i ,A) , 

we get g(S(u, A),g) < e. By Lemma 3.1, u is Perron product integrable on [a, 6] and 

(/J)nexp(ti(i)dO = </. • 
a 

3.10 Corol lary. Let K = [a,b] and let u: K —• L(G). If u is bounded and 

continuous a.e. on K, then u is Perron product integrable on [a,b]. 

P r o o f . It is an immediate consequence of Theorem 3.9 and the Existence 

Theorem of [16, p. 326]. • 

Let [a, 6] G J(K) and let u: K —• L(G) be a Perron product integrable function 

on [a, 6]. If t\,t2 G [a, 6], we define 

(P) [eXP(u(t)dt) = Є Іf <i=< 2 

апс! 

(Р)Дехр(и(0с10 = ((Р)1[ехр(и(1)^)У И 1\ > 12. 
ti 

Then it is easy to verify that 

•3 

(P) n exp(n(0d0 = (P) I ] exp(ii(0d0 (P) U exp(u(t)dt) 
ti t2 tt 

for all t\,t2,t3 € [a,6]. 
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3.11 Lemma. Let K = [a, 6], iet [c, rf] € ^ (K ) anrf iet w: K •— L(G) be a Perrojj 
product integrable function on [a,b]. Then 

a) Jim (P)nexp(«(/)d/) = (P)nexp(ij(/)d/), 
c < . i < i i * c 

b) lim (P)flexp(«(OdO = (P^expMOdO-
S — d r r 

c<s<d C c 

P r o o f , a) Let e > 0. By Theorem 3.4 ?J is Perron product integrable on [c,d\. 
Then, by Lemma 3.1, there exists a gauge S on [c, d\ such that 

Є((P)ГJexp(«(/)d0,5(«,Д))< 

whenever A 6 <r([c,d\,S). Let s be any real number such that c < s < rf. Since 

u is Perron product integrable on [s,d\, there exists a gauge Ss on [s, rf] such that 

£5 <I j|[s, rf] and 
d 

Q((P)l[exY>(u(tyit),S(u,As))<
6-

s 

whenever A, £ (r([s,d\,Ss). Let <p(<) = exp((* — c) • u(c)) for all t ^ c. Since <p is 
continuous at c, there exists ?; > 0 such that r; < min{rf— c, S(c)} and c < / < c + .7 
implies £>(y?(<),e) < e/3. Let s be a real number such that c < s < c + ?; and let 
A, be a 65-fine subdivision of [s,d\. Let A = {(c, [c, s])} o A,. Then A is a 6-fine 
subdivision of [c, rf]. Since S(u, A) = S(u, As) • exp((s — c)u(c)), we get 

<i d 

g((P)Ylexp(u{t)dtUP)Jlexp(u{i)dt)) 
C 5 

^ Q((P) I I exp(ti(l)clO, 5(ti, A)) + g(S(u, As) • exp((s - c)u(c)), S(u, As)) 
c 

<J 

+ *(5(«,A.),(P)Hexp(«(0d0) 

< | + e(9{s), e) + | < £ . 

Hence 

jiiтi (P)ГJexp(u(OdO = (P)Пexp(ti(ť)dO. 
5—>C 

c<s<d 

b) A trivial modification of the argument used in a). 
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3.12 Tkeorem. Let K = (a, 6], let u: K —• L(G) be a Perron product integrable 

function on [a, b] and let 

s 

<p(s) = (P)Y[exp(u(t)(\t) for all s 6 7\. 
a 

Then (p: K —* G is uniformly continuous. 

P r o o f . It suffices to show that <p is right-continuous on K \ {b} and left-

continuous on K \ {a}. Lemma 3.11 b) implies immediately the left-continuity of u 

on K \ {a}. Let c 6 A' \ {b}. By Lemma 3.11 a) we have 

b b 

Jim (P)J[exp(u(t)dt) = (P)Y[exp(u(t)di). 
c<s<b $ c 

Since 
s s b 

(P) TJ exp(«(Odi) = (P) I ] exp(«(«)dO -{P)J[ exp(«(.)d.) 
a b a 

for all s G K and the function (01,02) —* 9^02 from G x G to G is continuous, it 

follows that 

cO<6 <i 
1|т (Р)Пехр(и(/)с10 = (Р)Цехр(и(1)Л1) • ( Р ) П « Р И 0 Л ) 

6 а 

с 

= (Р)Пехр(и(0а0 

and therefore l i m ^ ( « ) = <f(c). D 
s[c 
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