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SUBCOHERENT ALGEBRAS 

JAROMÍR DUDA, Brno 

(Received September 20, 1991) 

Coherent algebras were introduced by D. Geiger [9]. The same author proved that 

any variety of coherent algebras is permutable and regular, see [3] and [11] for these 

concepts . Local versions of Geiger's results were formulated in [2] and [5]. Varieties 

of weakly regular algebras were investigated in [7]. The notion of weakly coherent 

algebras comes from I. Chajda [1]; it was shown that any variety of weakly coherent 

algebras is permutable and weakly regular. The concept of subregular algebras is 

due to J . Timin [12]. In this paper subcoherent algebras are introduced and their 

relationships to permutable and subregular algebras are studied . 

N o t a t i o n 1, Let A be an algebra, B a nonvoid subset of A and 0 a congruence 

on A. The symbol [B]S denotes the set union (J {H@; b e B}. 

De f in i t ion 1. Let A be an algebra. A subalgebra B of A is called subcoherent 

with a congruence 0 on A whenever the assumption [C]0 C B for some subalgebra 

C of B implies [B]G = B. 

An algebra A is called subcoherent whenever every subalgebra of A is subcoherent 

with each congruence on A. 

T h e o r e m 1. For a variety V, the following conditions are equivalent: 

(\) V is a variety of subcoherent algebras; 

(2) there are unary terms ui,..., un, ternary terms t\,... ,tn, and a (1 -f- n)-ary 

term s such that 

y = s(x,tx(x,y,z),...,tn(x,y,z)) 

and 

Ui(z) = ti(x,x,z), 1 ^ i ^ n, 

are identities in V. 

P r o o f . (1) => (2): Let A = Fy(x,y,z) be the V-free algebra with free gener

ators x,y and z. Further, choose C = Fy(z) and let 0 = Q(x,y) be the principal 
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congruence on A collapsing x and y. Denote by B the subalgebra of A generated by 

the subset { # } u [ C ] 0 . Since B is subcoherent with 0 the equality [B]Q = B holds. In 

particular we have y £ [x]S C [H]0 = B and thus y = s(x, t\(x, y, z),. .., tn(x, y, z)) 

where s is a (1 + n)-ary term and ti(x,y,z) £ [C]Q, 1 ^ ii^ ?i. The last argument 

gives unary terms ux,...,un such that (ti(x,y,z),Ui(z)) £ Q(x,y), 1 ^ * -$ n. The 

remaining identities of (2) follow. 

(2) => (1): Let B be a subalgebra of an algebra A £ V, 0 a congruence on A. 

Suppose further that [C]0 C B for some subalgebra C of B. We have to verify the 

inclusion [B]S C B. 

Take an element d £ [-9]0. Then d £ [6]0 for some 6 £ B. In other words, 

(6, d) £ 0 . Choose an arbitrary element c £ C. Then (ti(b,d, c), w,(c)) = (ti(b,d,c), 

<«(6,6,c)) £ 0 , 1 <£ i ^ 7i, i.e. U(b,d,c) £ [u,(c)]0 C [C]0 C fl, 1 ^ f $ n. Con

sequently, rf = 5(6, Ji(6, d, c),..., £n(6, rf, c)) £ i9 as required. The proof is complete. 

D 

Corol lary 1. Any variety of subcoherent algebras is permutable. 

P r o o f . We use the identities from Theorem 1(2). Let us introduce a ternary 

term p \\ap(x,y,z) = s(z,t\(y,x,z),... ,tn(y,x,zj). Then 

p(x,x,z) = s(z,tx(x,x,z),...,tn(x,x,z)) 

= s(z,u{(z),...,un(z)) = s(z,ti(z,z,z),...,tn(z,z,z)) = z 

and 

p(x,z,z) = s(z,ti(z,x,z),...,tn(z,x,z)) = x, 

which means that p is a MaFcev term. The permutability of V is verified, see [11]. 

D 

Def in i t i on 2 . An algebra A is called subregular whenever every congruence 0 

on A is uniquely determined by its blocks [6]0, 6 £ B, for each subalgebra B of A. 

A variety V is called subregular whenever any V-algebra has this property. 

Coro l lary 2. Any variety of subcoherent algebras is subregular. 

P r o o f . The identities ti(x,x,z) = Ui(z), 1 ^ i 1$ n, were shown in Theorem 

1(2). Further suppose that ti(x,y, z) = u ,(z) , 1 1$ i ^ ?i. Then 

y = s(x, tx(x, y,z),..., tn(x, y, z)) = s(x, ux(z),..., un(z)) 

= s(x,tx(x,x,z),...,tn(x,x,z)) = X. 

Altogether (ti(x,y, z) = m(z), 1 .$ i ^ n) iff x = y, i.e. V satisfies the criterion for 

subregularity, see [6; Theorem 1(3)]. D 
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N o t a t i o n 2 . Let A be an algebra. The symbol u)A denotes the diagonal on A, 

i.e. u)A = { (a,a) ; a e A}. 

Stronger (local) versions of the preceding corollaries follow. 

P r o p o s i t i o n 1. Let A be an algebra. Then A x A subcoherent implies A per-

mutable. 

P r o o f . Let 4*, 4> be congruences on A. Then T = tyo^n^oty is asubalgebra of 

Ax A. Moreover, for a subalgebra uA of T we have [u;^]^ x ^ = ^OUJAO^ = ^ C J . 

Hence [ T ] ^ x ^ = T, by hypothesis. In the same way we obtain the equality 

[T]4>x<l> = T. Consequently [T](* x *)V(4> x4>) = T. However, ( * x *)V(<I> x $ ) = 

(^V4>)x(*V4>), see [8], and so *V<I> C (^V4>)oTo(yv$) = [T] (^V4>)x(*V#) = T , 

which establishes the permutability of A. D 

P r o p o s i t i o n 2 . Let A be an algebra. Then Ax A subcoherent implies A subreg-

ular. 

P r o o f . Let *&,<$ be congruences on A, let B be a subalgebra of A. Suppose 

that [6]* = [b]<& for every b e B. Then [uB]V x ¥ = [uB]& x $ C [uA]Q x $ = 

<J> o uA o 4> = <t> and thus also [ $ ] • x \P = 4>, by hypothesis. In other words, we 

have * C * o $ o * = [4>]* x • = $ . The opposite inclusion follows by symmetrical 

arguments. Altogether ^ = $ , which proves the subregularity of A. D 

Def in i t i on 3 . Let A be an algebra. A subalgebra B of A x A is called a diagonal 

subalgebra whenever the inclusion u)A C B holds. 

Def in i t ion 4. Let A be an algebra. A congruence 0 on A x A is called factorable 

whenever 0 = 4* x 4> for some congruences ty, 4> on A. 

Now we are ready to show the relationships between subcoherence, permutability 

and subregularity. 

T h e o r e m 2 . For a variety V, the following conditions are equivalent: 

(1) any diagonal subalgebra of A x A is subcoherent with factorable congruences 

on A x A, A € V; 

(2) any diagonal symmetric subalgebra of A x A is subcoherent with factorable 

congruences on A x A, A £ V; 

(3) V is permutable and subregular. 

P r o o f . (1) => (2) is trivial. (2) =-> (3): Use proofs of Proposition 1 and 

Proposition 2 . (3) =-> (1): Let S be a diagonal subalgebra of A x A. By [13], 

permutabil i ty of V yields that 5 is a congruence on A, say 5 = 0 . Further, let B be 

a subalgebra of 0 such that [ f i ]* x K 0 for congruences >&, $ on A. Consider a 
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congruence block [(b, c)]ty x 4> for an arbitrary (6, c) G B. Take (u, v) G [(6, c)]tf x 4>. 

Since [(6, c ) ] ^ x <l> = [6]# x [c]<f> we have also (u, c) G [(6, d ) ^ x 4> C 0 . Now (6, c) G O 

and (w,c) G 0 give (u,b) G 0 , by transitivity of 0 . Analogously (v,c) G 0 can be 

obtained. Altogether (u,v) G [b]Q x [c]0 = [(6, c)]0 x 0 , which proves the inclusion 

[(&, c ) ] * x 4> C [(6, c)]0 x 0 . Then tf x 4> C 0 x 0 , by subregularity. Consequently, 

[ 0 ] ^ x $ C [ 0 ] 0 X 0 = 0 o 0 o 0 = 0 a s required. D 

T h e o r e m 3. For a variety V, the following conditions are equivalent: 

(1) any diagonal transitive subalgebra of A x A is subcoherent with factorable 

congruences on A x A, A G V; 

(2) any congruence on A is subcoherent with factorable congruences on A x A, 

AeV; 

(3) V is subregular. 

P r o o f . (1) => (2) is trivial. (2) => (3): See the proof of Proposition 2. (3) => 

(1): By [10], any subregular variety is n-permutabie for an integer n > 1. Then any 

diagonal transitive subalgebra of the square is a congruence, see [10] again. The rest 

of the proof is the same as in the previous Theorem 2. • 
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