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INTRODUCTION 

Reflexive algebras have been studied intensively by many authors interested in 

invariant subspace problem. Among the most interesting results in this direction 

the reflexivity of the algebra generated by a single isometry, by a normal, and by 

a subnormal operator was proved by J. A. Deddens ([2]), D. Sarason ([9]), and by 

R. Olin and J. E. Thomson ([5]), respectively. 

The reflexivity of algebra generated by two isometries was studied by M . Ptak 

in [6], [7]. He obtained the positive result for certain class of shifts which were 

called compatible (for definition see [4]) and which include doubly commuting shifts. 

The present authors conjecture that algebra generated by any family of commuting 

isometries is reflexive. The aim of this paper is to present some partial results in 

that direction. 

Let T = (Ta)a£A be a family of operators on a Uilbert space 7i. As usual we 

denote by Lat T the lattice of all subspaces of H invariant with respect to any Ta 

(en £ A). Further A l g L a t T denotes the (weakly closed) algebra of operators leaving 

invariant every subspace from L a t T . 

A weakly closed algebra generated by Ta is called reflexive if it is equal to A l g L a t T . 

The comimitant of family T is the set of all operators which commute with every 

Ta (a e A) and is denoted by T ' . The commutant T " of T ' is called the double 

com mutant of T . 

The main result of this paper is that A lgLa tV is contained in the double commu­

tant V for any family V = (Va)a^A of commuting isometries. Moreover, it is proved 

that T belongs to the double commutant of (Va)a$A where (Va)a£A, Va £ B(K), are 

unitary extensions of given isometries Va and T £ B(K) the corresponding extension 

of T £ A l g L a t V . This means that T is a function of V . 
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Throughout the paper we shall use the following well-known Wold decomposition: 
Is V is an isometry on a Hilbert space H then H can be decomposed into two parts 
M+(C)®nv where V\M+(C) is the unilateral shift on M+(£) = £ 0 V £ e V 2 £ 0 . . . , 
C = H 0 VH being the corresponding wandering subspace, and V\Ry is unitary on 
the (residue) subspace IZv = H VnH. 

n*£0 

We begin with a simple lemma. 

Lemma 1. Let V G B(H) be an isometry, let x e HQVH and let a be a complex 
number such that \a\ < 1. Then 

(I-aVTlx L(a-V)H. 

P r o o f . The equality 

cv - V = aV*V - V = (aV* - I)V 

gives for |cv| < 1 

Let h e H. Then 

V = (aV* - I)~l(a-V). 

0 = (a?, Vh) = (x,(aV* - I)~](a - V)h) = 

= ((aV-I)-lx,(a-V)h), 

hence (I - aV)'lx ± (a - V)H. D 

Lemma 2. Let V e B(H) be an isometry, and let T G B(H) be an operator 

that leaves invariant every subspace (a — V)H with \a\ < 1. Then (VT — TV)H C 

f| VnH. 

P r o o f . For h e H let us denote m0 = Th. As T leaves VH invariant, TVh G 
VH, which means that TVh = Vmx for some mx eH. If x G H G VH, and \a\ < \, 
then T(cv — V)h G (a — V)7i and by the preceding Lemma 

0 = (T(tt - V)h,(! - aV)~lx) = (am0 - Vmx, £ a*V"*) = 
; = 0 

= YL « j + 1 (mo, War) - £ a-> (Vm,, V"*) = 
i=o i=o 

oo 
= 53 tt' + 1 (?7l0-77Jl,V jx) . 

j=0 
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Hence (mo - mi, Vjx) = 0 for any integer j ^ 0 and x G H 0 V7i, which implies 

that 77io-mi G fl ^'W, and (VT-TV)/i = V(m0-mi) G fl ^'W. The inclusion 

is proved. D 

T h e o r e m 1. Let V = (Va)a^A be a commuting system of isometries on a Hilbert 

space H. IfT G AlgLat V tlieu TVa = VaT (a G -4). 

P r o o f . For any finite subset F = {a i , . . . , a*} C A let us denote 

vF = vai...vak, nF=f]vpn. 

The subspace nF reduces VF and is invariant for any isometry Va, a G A. 

Further the common residue subspace 7^ of all Va is defined by 

тг= p | nғ. 
FCA 

\F\<oo 

Clearly, 7v is invariant for any Va (a G A). 

Let ao G -4o- For any finite subset F' C A containing ao, F' = {ao, «i, ..., a,v}, 
nFi also reduces Vtt0 as 

KM' = ^ W a , • • • v;n)(vai • • • vajnF. c vF,nF. c nF>. 

Thus for any finite subset F C A we have 

va*0ft c v*0n,FU{Qo} c nFu{ao} c nFy 

v:onc f] nF = n 
FCA 

|F|<oo 

which proves that 7^ reduces every Va (a G -4) and Va\n are unitary operators. 

By our assumption on T, it follows that 7v reduces T, and by an application of 

the von Neumann double commutant theorem (see e.g. [3] or [1]) its restriction T\n 

commutes with every Va^, i.e. TVa\n = VaT|72 for any a G A. 

Suppose now that h G 7^J- = H 0 7^, and a G A are given. For any finite subset 

F C A we have by Lemma 2 (for the isometry VF) 

(TVF-VFT)HcnFy 
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and for the isoinetry VaVF we obtain analogously 

KFU{«} = n ^ ^ ) ' * cf)včnc nF, 
k>0 k>0 

which gives the inclusion 

Then 

(VFVaT-TVFVa)HcKF. 

(VFVaT - VFTVa)k = (VFVaT - TVFVa)h + (TVF - VFT)VJi € UF 

which implies that 

(VaT - TVa)h € VFUF = 1ZF 

for any finite subset F C A, h € TZ1, a (E A. Hence 

(VaT-TVa)liЄ f | Tlғ=П. 
FQA 

|P |«x> 

On the otlier hand, as n reduces any Va and T leaves invariant every subspace from 

f| Lat Va, we have TnL C 1ZL and VaU
L C nL which implies that (VaT-TVa)h G 

a£Л 

nL, hence VaTh = TVah for any h G 7^-L, a G A. This finishes the proof. D 

Lemma 3. Let V, Ta G B(7i) (cv G -4) be commuting operators, V an isometry. 

Then there exist commuting extensions V, Ta on a larger Hilbert space K D Ti such 

that V\H = V, fa\H = Ta, V is unitary, ||F.|| = \\Ti\\, and 7} is an isometry (unitary, 

res p.) ifTi is. 

P r o o f . Taking V the minimal unitary extension of V on some Hilbert space 

hiDH (where the condition of minimality gives AC = V V*k(7i)) we define 
k>0 

Tal £ V*khk) = £ V^Ta/l*, 
\ik = 0 / fc = 0 

for a G ̂ 4, m ̂  0, bo, • • ., hm G H. The definition is correct as 

(i) 

1n — 
£ v*kтahk 

k = 0 
= 

= 

£ Vm'kTahk 
k = 0 

ni 

= Ta £ Vm-khk 

£ Vm"fc7;Л, 
Jfc = 0 

k = 0 

š\\Ta\\ 

$ \\Ta £ v**A* 
Jk = 0 
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Clearly, Ta can be extended to K in such a way that 

||7~0|| = | |T 0 | | , f„V = Vfa, fa% = fpfa ( a , 0 € A). 

If Ta is an isometry then the equality in (1) holds and Ta is also an isometry. 

Analogously, if 7^ is unitary then Ta is an isometry with range dense in K as TaK D 

faV*kH = V*kTaH = V*kH for any nonnegative integer k. Therefore faK = AC 

and Ta is unitary . Q 

Coro l lary. Let Va, T G ti{'H) be a commuting system of operators on a Hilbert 

space H, Va isometrics (a G A). Then there exist commuting extensions Va, T G 

B(K) on a larger Hilbert space K D H such that Va\H = Va, T\H — T, and Va are 

unitary for any c\ G A. 

P r o o f . Take a good ordering {cvi, (V2,.. .} of A. Using the previous Lemma 

we construct the space K and operators Va, 7' G B(K) by the transfmite induction . 

D 

Note that the [Filbert space K constructed above depends on isometries Va only, 

not on 71. 

Let V = (Va)a£A be a commuting system of isometries on a Hilbert space H, let 

T G AlgLat V and let V = (Va)aeA, f be the extensions to the Hilbert space K DH 

constructed above . Let E() be the spectral measure of the commuting system of 

unitary operators Va (c\ G A) (E is the projection-valued function on the Borel 

subsets of JA). For x G H let us denote by Z+(x) (Z(x)) the smallest subspace 

containing x which is invariant (reducing) with respect to all Va (c\ G A). 

Clearly, Z+(x) C Z(x), and Z+(x) is the closure in H of all p(Y)x, p G V, where 

V is set of all polynomials with \A\ commuting variables. 

As T G AlgLat V , TZ+(x) C Z+(x). The extensions Va are unitary on K, hence 

T commutes with all Va, Va (a G A). It follows that 

TZ(x) C Z(Tx) C Z(x). 

Further let us denote pr = | |E ( ) i ; | | 2 the positive scalar measure (spectral measure) 

corresponding to x EH. 

L e u n n a 4 . //* x, y G H then there exists a complex number X such that the 

measures pr V py and px+\y are equivalent (i.e. absolutely continuous with respect 

to each other). 
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P r o o f . Let us denote ft = ftr V //y . As 

ftr+\y(B) = \\E(B)(x + Ag)||2 = \\E(B)x + AF(H)g | |2 

for any complex A and a L3orel subset B C TA, ftr+\y -< ft- Hence there exists a 

measurable function (the spectral density) f\ £ Ll(ft) such that dftx+\y = f\ dfi. 

If C\ = {z eTA: f\(z) = 0} denotes the set of zeros of fA then 

fir+\y(C\) = / f\dft = 0. 
JCx 

To obtain the equivalence ft ~ ftr+\y for some A £ C, it is sufficient to prove that 

ft(C\) = 0. If CA, CK are the corresponding zero sets for two different complex 

numbers A ^ AC, for C = C\ C\CK it holds 

0 ^ ftx+Xy(C) ^ ^^(Cx) = 0, 

and analogously ftx+Ky(C) = 0, which implies that 

E(C)(x + Xy) = E(C)(x + KIJ) = 0, 

(\-K)E(C)y = i), 

and as A — K ^- 0 we get E(C)y = E(C)x = 0, i.e. ftx(C) = fiy(C) = U, hence 

fi(C) = 0. Summing up these equalities we obtain that 

/ , ( C A U C K ) = /.(CA) + /<(CK). 

The last equality implies that there could be only countable number of those A £ C 

for which ft(C\) ^ 0, which proves the existence of the desired complex A. • 

For any x £ H the restriction T|Z(x*) is unitarily equivalent to the multiplication 

Mtx on the space L2(ftx) by some function tx £ LCXJ(//J). 'The equivalence is given 

by the unitary operator 

* X : Z ( J T ) - L2(flr), 

with 

*xVa = MZo*„ *xf = A/<X<D,, *xx = 1. 

Hence, the operator T £ B(K) can be viewed as tx(V) on 2(x). Moreover, we 

may suppose that 

IH-lk = sup \tt{:)\ $ \\f\\ = \\T\\. 
z£TA 
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Lemma 5. Let x, y 6 7i be any vectors in a Hilbert space 7i such that the 

corresponding spectral measures satisfy px < py. Then 

tx = ty fix-a.e. 

P r o o f . Let e > 0 and let / £ Ll(fiy) satisfy J//r = fdfiy. For given 8 > 0 

let us denote N^ = {z: | / (~) | ^ 6). From the inclusion T(x + y) 6 Z+(x -f- y) = 

{P(V)(.r + 2/)}~ we can deduce that there exists a polynoin p such that 

( T - p ( V ) ) ( ï + y) | |< 
є"\ß 
4imr 

Denoting by z = (T - p(V))(x- + y) = (<y - p)(V)y + (<, - p)(V)x we obtain 

r-л/ťT 
(1) ||T-|| = \\t,(t, - P)(V)y + tx(tx - p)(V)x\\ < ^ 

ll^(V)-|| = \\ty(ty-p)(V)y + ly(tx-V)(V)x\\ < sup \ly(z)\-^— < 
ZČJA 4\/é||T|| 

r3 
(2) < 

Cyß 
4 ' 

(3) | | . , (V)r | | = \\tx(ty - p)(V)y + . , ( . . - p)(V)x|| < ' 3 

By substracting (2) — (1) and (1) — (3) we have 

Є"ß 

fyß 
(ty - tx)(tx - p)(V)x\\ < ' 2 

ll('y -h)(iy - p ) ( V ) y | | < r 3 Є-yß 
2 ' 

which means that 

w(ty ~ tx)(tx - p)iit,,„x) = IKÍ, - (,)(. . - p)i/r /2iu2(„y) < £ ^ , 

e3Ví e3 

||(/y -/,)(<» -P)\\L\„,) < -j- < T-

hence 

e3 

Víl l i^ , ) • * - ' * < 
3 

||(ty - tr)(tx ~ p)\N6\\LHlly) < \\(ty - tx)(tx - P)\fť/2\N6\\LHlis) • i" 1 ! 2 < 2 

\\(ty-tX)(t*-p)\Ns\\LH,y)<j, 
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which by subtracting results into 

Wy - IT)2\N6\\LH*,) < e* 

and 

/ '»({* € J V 4 : | ( . , - . • , ) ( - ) ! ^ e } ) ^ e . 

As e was arbitrary we have obtained 

!',({: eNt:ty(z)?tlc(z)})=0, 

lЦ{г€TA:t9(z)фШ})ś 
OO 

< E ; ' x ({ :€Л V „ : l s ( : ) ^ í ( : )} ) = 0. 
П = l 

D 

T h e o r e m 2. Let V = (Va)a^,\ he a commuting system of isometrics on a Hilhert 

space 7i. Then AlgLat V C V " . 

P r o o f . Let T G AlgLat V and let .S' G B('H) be any operator in connnutant 

of (Va)a£A, SVa = V a 5 (cv G .4). Using Corollary of Lemma 3 we can construct 

llilbert space K D Tt and operators Vft, S and T such that VaS = 5Vr
a, Vft|W = l f t , 

5|W = 5 , T|W = T. 

Let x G H be arbitrary, and g be a linear combination (which exists by Lemma 4) 

of vectors x and Sx such that pT < / /y , psx < Hy Then T | Z ( J : ) = tx(V)\Z(x) = 

ty(V)\Z(x) and T | Z ( . S ' J . ) = tsr(V)\Z(Sx) = ly(V)|Z(.S'x-) by the previous result. 

It follows that 

STx = STx = 5 / y ( V > = ty(V)Sx = /y(V)5ar = TSx = T.S\r, 

hence 

.ST = T,S', T G (V t t)"-

D 

T h e o r e m 3 . Let (V f t) f t e^ />e a commuting system of isometrics on a Hilhert space 

H and suppose that T G AlgLat V . 77je/j 71, t/je extension ofT defined in Corollary of 

Lemma 3, belongs to the douhle commutant ofV = (Va)aeA, the minimal extension 

ofV. 
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P r o o f . Let S G B(K') be any operator in commutant of (Va)a$A, SVa = VaS 
(c\ G A), and let u G K be any vector of K. Let e > 0 be given. As K = V Z(x), 

xčҠ 
one can find vectors x\, ..., # n G 7i, ^'i, . . . , £m G ri, and vectors i/i, . . . , un G K, 

w'n • • •> wm £ ^- s u c n t n a t 

" - £ гii 
г = l 

< є, .Çti - £ u\ 
i = l 

< Є, 

II,- G .Z(-r,-) (1 ^ i ^ ?i), u; G .£(x{) (1 ^ i ^ m). 

n m 
By Lemma 4 and 5 there exists a function / G L°°(/i), where /i = V /iXl V \ / /«v 

i = l t = l 

such that f\ZTt = f(W)\Zx% (i = 1, . . . , n) and f | Z r ; = / ( V ) ^ ; (i = 1, . . . , m). 

Then 

.S'7'м - 7'.S'U|| s£ .STÎІ - sî 
n 

'•£«.• 
г'=l 

+ 
Tł 

6T E 
~ m 

: щ - т £ и 
1 г = l 

:• + 
~ m 

I' E »', 
i = l 

- T S 'u 

š IЙI ИЛI 
n 

u ~ üuг 
i = l 

+ 
^ ~ n ~ rn 

•S7(V) E «••-/(v)E«í-
г = l i = l 

+ IIЛI 
m 

E«. 
i = l 

-Sw 

š 11*11 II Лk + ll/(V)||( 
^ n ^ 

S' £ MІ - Su + 
~ m 

.ç« - E «; ì+ПЛk 
1 = 1 i = l / 

^2| | .S' | | | |T | | f + 2 | |71 | f . 

As f w a s a r b i t r a r y we have .STu = T.S 'M, i.e. .ST = TS a n d T G (Va)
N. D 
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