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Czechoslovak Mathematical Journal, 43 (118) 1993, Praha 

A NOTE ON JOINT CAPACITIES IN BANACH ALGEBRAS 

VLADIMIR MULLER, Praha 

(Received December 30, 1991) 

The concept of capacity of a Banach algebra element was introduced by Halmos 

[1] and extended by Stirling [9] (for alternative approach see also [5], [6]) to mutually 

commuting n-tuples (x\,..., xn) of elements of a Banach algebra A. The main result 

of [9] states that capcr(x1,. ..,xn) ^ cap(xi, . . .,xn) ^ 2ncapcr(xi,. . . , x n ) . 

The aim of this paper is to show that cap(xi , . . . , xn) = cap<r(-ci,..., xn) for 
every commuting n-tuple (x\,..., xn) of elements of a Banach algebra, so that there 

is analogy with the Halnros' result for n = 1. 

Further we show that the joint essential spectrum and the joint spectrum of an mu

tually commuting n-tuple of operators on a Banach space have the same capacities, 

which is again analogy to the case n = 1, see [8]. 

All algebras in this paper will be complex and with the unit element. Let x\, . . . , 
xn be mutually commuting elements of a Banach algebra A. By cr(x\,... ,xn) we 
denote the Harte spectrum [2], i.e. the set of all n-tuples (Ai , . . . ,A n) of complex 
numbers such that either the left or the right ideal generated by X{ — A,- (i = 1, . . . , 
n) is proper. Actually, we can take any other joint spectrum instead of the Harte 
spectrum (see the remark bellow). 

Let n ^ 0, k ^ 0 be integers. An arbitrary polynomial of degree ^ k in n variables 
may be written in the form 

p(z\,...,zn)= ] T a^z^ 

where /* = (/*i,. ..,/*„) is an n-tuple of non-negative integers, |/J| = Yl llh t n e 

coefficients a^(p) are complex numbers, z = (z\,..., zn) E Cn and z^ = z±l • • • z£n . 
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The set of all polynomials of degree ^ it in n variables will be denoted by &k(n). 

Denote further &k(n) the set of all polynomials p(z) = £ a$i(p)zti G &k(n) with 
M<* 

JZ la/i(p)l = 1- These polynomials were called monic in [9]. 
I/-I=* 

Let .C|,...,xn be mutually commuting elements of a Banach algebra A. The joint 
capacity of (x\,..., xn) was defined in [9] by 

cap(xi , . . . , xn) = lini infcap fc(xi,..., xn)l/k 

where 

c a p ^ X ! , . . . , ^ ) = inf{||/>(*i,...,-rn)||: pG &l(n)}. 

For a compact subset A' C Cw define the corresponding capacity by 

cap K = lim inf (cap ̂  K)x/k 

k — oo 

where 

captiY = inf{ | |p| |K:p€ ^ ( » ) } and ||Hk = sup{|p(z)|: : £ A | 

This capacity was studied in [10] and called the homogeneous Tshebyshcv constant 
of a compact set K. 

By Siciak [4], the capacity cau be expressed in another, more convenient way. 
Denote by Qk(n) the set of all polynomials p(z) = ]T z** G &k(n) such that 

MS* 

1 
1 M=* J 

M 

where T = {z = ( : i , . . . , 2 n ) G C*: |z,-| = 1 (i = l , . . . , n ) } is the n-dimensional 
torus. 

Theorem 1. Let x\,..., xn be mutually commuting elements of a Banach alge
bra A. Then 

(a) cap(xi, . . . ,xn) = lim cap^xi , . . . ,xn)xlk = inf inf {||p(x)||l/fc : p 6 Qk(n)}, 
Jfc—>oo k 

(b) cap(*i , . . . ,x n ) = infinf{(capp(xi, . . . ,xn))1/ f c: pE Qk(n)}, 
k 

(c) cap(xi, ...,xn) = capcr(ari,...,xn). 

P r o o f , (a) We use the argument of [4], Remark 9.5. 
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Let p = ^2 ai>(p)zl/ € &*k(n)- By Cauchy formulas we have for every p with 
Ma 

H = * 

J M=* 
la/i(p)l *$ m a x 1 | 5Z aЛP)2 

1 M = * 

: г £ Г 

Further 

| £ a"(P)*" 
M=* 

^ 

M=* v '"м=-

where (* r ^ x ) is the number of coefficients aft(p) with | p | = k. Denote by 

<*k = i n f { | | p ( x i , . . . , x n ) | | : p Є Q*(?0}-

Then 

(1) c&pk(xi,...,xn) ^ a f c ^ 
ík + n - 1\ 

c а p f c ( x i , . . . , x n ) . 

Let p G Qjfc(?0 a n ( l ' e t m > s be non-negative integers, 0 ^ s ^ k — 1. Then q = p m • 

z\ G g m * + . ( n ) . Thus a m t + . ^ a m | | .- , | | * , a ^ ' ^ a ; ^ 7 max{ l , | | . r 1 | | * - 1 } 1 / m * + s 

and l i m s u p t t r t$ a J . So the limit lim ak exists and is equal to inf ak . 
r —oo fc--»oo k 

By (1) the limit lim c a p ^ x i , . . . , x n ) 1 / f c also exists and 
k—+ 00 

c a p ( x i , . . . , x n ) = liin cap^Дxi , . . . , xn)
l'к = lim aк 

i/k 

fc—>oo k—юo 

= infai/ t = infinf{||p(i,,...,xB)|| I/*:peQ t(n)}. 

5 - 1 

(b) Let p G Qib(?0 and let q = zs + £ o^a)^* G ^*}(1) = Q , ( l ) . Then q op G 
1 = 0 

Qsk(") so that 

(2) cap(xi , . . . , xn) <: ||(r/ o p) (x i , . . . , x n ) | | 1 / 5 f c (q G Q , ( l ) ) . 

Hence 

cap(xi , . . . , xn) $ inf inf {||o(p(x!, . . ., x n ) ) | | 1 / 5 * : a G Q , ( l ) } 

= (capp(x 1 , . . . , x r l ) ) 1 / ** 

and 

c a p ( x ! , . . . , x n ) ^ i i i f i n f { ( c a p p ( x 1 , . . . , x n ) ) 1 / f c : pe Q*(?0}. 
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On the other hand cap p(x\,.. .,xn) ^ \\p(x\,.. . ,-r n ) | | for every p G Qk(n). Together 

with (a) this gives cap(* i , . . . ,*„) = inf inf{(capp(xi,..., xn)ffk : pe Qk(n)}. 

(c) By (2) wehavecap(x-!,...,xn) $ | |p(^i9 - - --Xn)*||1/** for every p G Qk(n) and 
positive integer s. So 

c a p ( * i , . . . , xn) ^ i-if{||p(xi,..., xn)
s \\x/9k} = \p(x\,.. .,xn)\xJk. 

By the spectral mapping theorem for commuting elements x\,..., xn e A (see [2]) 

we have 

| p ( 3 i , . . . , * w ) | y * = max{|p(r)|: z G <r(xx,... ,xn)}1 k. 

So 

c a p ( x i , . . . , x - n ) ^ i n f i n f { | | p | | ^ i Xn): p G Qk(n)} 
k 

\/k 

i mҶ n _ i ) N t ^ i ^l) 
\/k 

Hence cap(<zi,. ..,xn) ^ cap<r(xi,. ..,xn). 

On the other hand, 

| | p ( * l , . . . , * n ) | | ^ N ^ l , . . - , ^ n ) U = ||piU(.t:1,...,.rn) 

for every polynomial p G ^ ( H ) , so that 

capk(x\,...,xn) ^ cap .̂ <r(xi,. . .,x n) 

and 

cap(£ j , . . . , xn) ^ cap <r(xx,..., xn). 

Following the concept of Zelazko [11], a subspectrum a is a set-valued func

tion which assignes to every n-tuple of commuting elements x\,...,xn of a Ba-

nach algebra A a non-empty compact subset cr(x\,... ,xn) C Cn such that 1) 
n 

a(x\,...,xn) C [I a(xi) a n d 2) cr(p(xx,...,xn)) = p(<y(x\,...,xn) for every m-

tuple p = ( p i , . . . , pm) of polynomials in n variables. 

By [7] (cf. also [6]), capa(x\,... ,xn) = cap cr(x\,..., xn) for every subspectrum 

satisfying 

max{|A|: A G °(x\)} = max{|A|: A G cr(x{)} (x\ G v4). 
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This includes e.g. the approximate point spectrum, the left, right,defect and Taylor 

spectra. Condition (b) of the previous theorem enables to extend this result to the 

subspectra satisfying cap<r(.zi) = capcr(xi) (x\ G A). An important example of 

such a subspectrum is the essential spectrum of operators in a Banach space. 

Corol lary. Let A be a Banach algebra and let (J be a subspectrum satisfying 

capcr(xi) = cap<r(xi) (x\ G A). Then 

cap CT(X\ , . . . , xn) = cap <r(x\,..., xn) = cap(x\,..., xn) 

for every n-tuple x\,..., xn of mutually commuting elements of A. 

P r o o f . Let x\,...yxn be mutually commuting elements of A. Consider the 

algebra C(K) of all continuous functions on the compact set K = <r(x\i..., xn) C C n 

with the supnorm on I\ and let z\, . . . , zn be the independent variables. 

As \\q\\h' = \\q(z\> • • • > 2rn)||c(K) -or every polynomial q it is easy to see that cap K = 

cap(-ri , . . . , zn) and capp(A') = c a p p ( z i , . . . , zn) for every polynomial p. Thus 

cap(ari,.. . ,ar„) = inf i n f { ( c a p p ( x i , . . . ,arn)) l /* : pe Qk(n)} 
k 

= inf inf {(cap <r(p(x\,..., xn)))
l/k : p G Qk(n)} 

= \nfinf{(capcr(p(x\,...1xn)))^
k:peQk(n)} 

= mfinf{(capp((r(x\y...,xn)))
l/k:peQk(n)} 

= i n f i n f { c a p p ( 2 i , . . . , z n ) : peQk(n)} 

= c a p ( ^ i , . . . , z n ) = c a p a - ( x i , . . . , x n ) . 

Let A' be a Banach space. Denote by B(X) the algebra of all bounded operators 

on X and by / \( .X) the ideal of all compact operators on X. Denote by 7T the 

cannonical projection from B(X) onto the Calkin algebra B(X)\K(X). Let Ti, . . . , 

Tn be mutually commuting operators on X. Denote by <re(Ti, . . . ,T n ) the spectrum 

of the commuting n-tuple (TT(TI), . . . , 7r(Tn)) in the algebra B(X)\K(X). 

Let S G B(X). As <r(S) contains only countably many points in the unbounded 

component of C — <re(S) we have cap<rc(.S') = cap<r(5) (cf. [8]). Hence 

cap<T e(Ti , . . . ,Tn ) = captT(Ti , . . . ,T n ) = c a p ( T i , . . . , T n ) 

for every mutually commuting operators Ti, ..., Tn G B(X). 
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Another example when the previous corollary can be used is the essential Taylor 

spectrum (for the definition see e.g. [3]). 
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