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REMOVABLE SINGULARITIES FOR BLOCH 

AND NORMAL FUNCTIONS 

JUHANI RlIHENTAUS, Oulu 

(Received March 10, 1992) 

1 . INTRODUCTION 

1.1. Suppose that ft is a domain in C n , n ^ 1, E C ft is closed in ft and / : 

Q\E —+ C is a holomorphicfunction. Kaufman [13, Theorem (a), p . 369] proved that 

/ has a holomorphic extension / * to ft provided the (2?z — l)-dimensional Hausdorff 

measure of E is zero and / is (areal) BMO in the whole of ft. As a matter of fact, 

Kaufman gave a slightly more general result, but only for the case n = 1. However, 

his argument can be applied also for arbitrary n. Cima and Graham [4, Theorem 1, 

p . 691], [8, Theorem 2, pp. 177-178] proved that, provided E is a subvariety in ft 

satisfying a certain geometric condition and / is holomorphic and (areal) BMO in 

Q\E, then / has a holomorphic BMO extension /* to ft. We improve these results in 

section 2 in Theorems 2.10, 2.13 and 2.19. We also give there a short proof to a result 

announced by Poletskii and Shabat [20, Theorem 2.3, p . 79] concerning negligible 

sets for the Kobayashi pseudodistance, see Lemma 2.2 below. 

In section 3 in Theorems 3.2, 3.3 and in Corollary 3.4 we give related removability 

results for normal functions in the case when n = 1. Especially, answering to a 

question of Jarvi [12, Remark 3, p . 1174] in the case n = 1, we show that if ft is 

simply connected, if / is normal in ft \ E and if the hyperbolic distancies between 

different points of E are above some positive constant, then / has a normal extension 

/ * to ft. We conclude by giving in section 4 an answer to a question of Harvey and 

Polking [9, p . 42] . This question was repeated by Polking [21, p. 273]. 

1.2. Our notation is fairly standard. Nevertheless, for the convenience of the 

reader, we recall the following. 
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We identify C n with R2 n , n ^ 1. If z = {z\,...,zn) and iv = {w\,.. ., wn) are 

points of C n , then we write tv = {w\,..., wn) and 

n 

2: • W = (z, Iv) = 2_\ zj wj • 

i= i 

If 2 G C n and .4, H C C n , we write ^ ( A , ^ ) for the euclidean distance between A 

and B. Also we write d{z,A) = J({z},A). By d{A) we mean the euclidean diameter 

of A. The notation A CC P means that A is relatively compact in B. We write 

H2n(zo,r) for the open ball in C n , with center zo and radius r. We also use the 

s tandard notation D = H2(0, 1) for the unit disk in the complex plane C. If 71 ̂  2, 
zo = {z\> • • • 32n) £ C n and R = ( r i , . . . , r n ) , Tj > 0, j = 1,. . . , n , then we write 

P = P(z0,P) = B2{zlr\) x . . . x P2(2°,rn) 

for the open poly disk with center z$ and poly radius R. By 9oP we mean the distin

guished boundary of P, 

c50P = <90P(-r0, P) = 9H 2(z?, n ) x . . . x 3 P 2 ( z ° , r n ) . 

Moreover, if 1 ^ j ^ n, then we write 

A(Zj) = {zj€C:z = (zj,Zj)eA}, 

A(zj) = {Zj€Cn-l:z = (zj,Zj)eA} 

for the sections of A. Here 

2 = (zj,Zj) G C n , Z7- = {z\,...,zj-l}zj + \,...}zn) e Cn~\ 

The a-dimensional, a > 0, Hausdorff outer measure is denoted by Ha. Recall 

tha t HQ{A) gives the number of the points of the set A. The a-dimensional, a > 0, 

upper (respectively lower) Minkowski content is denoted by MQ (respectively Ma). 

In general one has C ( a , n ) H a ( A ) ^ Ma{A) ^ Ma(A) for each A C C n . However, 

C{d, n)Hd, Md and Md all reduce to the J-dimensional Lebesgue measure on compact 

subsets of a smooth submanifold of C n (= R 2 n ) of dimension d. For the definitions, 

and for these and other properties see [9, p. 41] and [21, pp. 263-264]. The Lebesgue 

measure is denoted by m. As usual, C = C(*) means a constant wich depends on 

the indicated quantities and which may vary from line to line. 

The spherical distance in the extended complex plane C* = C u { o o } is defined by 

g(q.fc) = — ' Q ~ J— f o r a , 6 e C , 

(1)
 l ; ynn^xynw 

9 ( f l i~ ) =^w foraGC 
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Suppose that ft is a domain in Cn , n ^ 1. It is well-known that if V is a k-

dimensional analytic subvariety in ft, then H2k(V D K) < oo for each compact 

set K C ft. Suppose that / ^ oo is meromorphic in ft. Then there are analytic 

subvarieties Fy, the pole set of / , and I/, the indeterjninancy set of / , in ft such 

that Ij C F/, H2n-4(IfC\K) < oo, H2n-2(Pj(M\) < oo for each compact set K C ft, 

/ is holomorphic in ft \ F/, / is spherically continuous in ft \ Ij and f\Pj \ Ij = oo. 

In the sequel we use the following convention: When we write " . . . / : ft —> C* is a 

meromorphic function . . ." or " . . . a meromorphic function with values in C* . .." 

or something equivalent, then it is always meant that / is meromorphic in ft and 

Ij = 0, i.e. locally in ft either / or 1 / / is holomorphic. Our terminology (probably 

nonstandard) here follows the one used by Cima and Krantz [5, p. 305]. Note also 

that the term "holomorphic mapping to C*" is used, see e.g. [12]. 

1.3. Let ft be a domain in Cn , n ^ 1. The infinitesimal form of the Kobayashi 

metric is given by Fn: ft x Cn —+ R, 

Ih(^>0 = inf < a : a > 0, there is / : D —• ft holomorphic 
(2) 

such that/(0) = z and (/ ,(0))(e1) = ^ - ) . 
a J 

Here / ' (0) = df(0) and ej = (1, 0 , . . . , 0) G Cn . 
The Kobayashi pseudodistance in ft is given by KQ : ft x ft —• R, 

(3) Kӣ{z,z') = mî I Ғn(7(.),У(0)dť, 
./o 

where the infimum is taken over all C1 curves 7: [0, 1] —> ft with 7(0) = z, 7(1) = 
z''. Recall that Kn is continuous, satisfies the axioms for pseudodistance and is a 
distance, when ft is hyperbolic. (Indeed, this is the very definition of hyperbolicity; 
for example, bounded domains of C n are hyperbolic.) 

Let ft be a proper subdomain of C n , n ^ 1. The quasihyperbolic metric is given 
by wn: ft x C n -+R, 

( 4 > w ^ = l$xry 
The quasihyperbolic distance kn is defined analogously to (3). Note that here is used 
only C1 curves, unlike in [26, 3.2, p. 33]; this is possible by [18, Corollary 4.8, p. 183]. 

Using (2), (4) and (3) one sees at once that 

(5) Fn(z,Z)^™n(z,0 and Kn(z,z') ^ kn(z,z') 
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for a l l z , z ' G ft and£ G Cn . 
If n = 1 and ft is a hyperbolic domain in C (i.e. it has at least two boundary 

points in C), then the Kobayashi metric Fn and distance Kn agree with the hyper
bolic (Poincare) metric An and distance Dn, respectively. If ft is moreover simply 
connected, then 

(6) -wn{z,Z) ^ A n (* ,0 ^ wn{z,0 and -kn{z,z') <£ Qn{z,z') ^ kn(z,z') 

for all zy z' G ft and ( E C . For these and other related facts see e.g. [14, pp. 368-
372], [2, p. 37], [5, p. 305], [20, pp. 73-75], [26, pp. 19-36], [12, p. 1171] and [19, 
pp. 102-103]. 

1.4. Next we recall the definitions of BMO, quasi-Bloch, Bloch, quasi-normal and 
normal functions. 

Let G be a domain in Rn, n ̂  1. A measurable function / : G —*> C is BMO if 
there is a constant C = C{f) such that for each ball B C G there is a constant 
c = c(H, / ) so that 

/ |/(;r) - c|dm(x) <£ Cm{B). 
JB 

Let ft be a proper domain in Cn , n ^ 1. A holomorphic function / : ft —• C is 
quasi-Bloch if there is a constant C — C{f) such that 

(7) \f(z)-f(z')\^Cksl(z,z') 

for all z,z' E.Q. One sees easily that (7) is equivalent with the existence of a constant 
C = C'(f, n) for which 

for all z G ft and £ G C n . Here 

**•>-(£<«> £<•>) 
Instead of quasi-Bloch functions one often considers Bloch functions. Suppose 

that ft is an arbitrary domain in Cn . A holomorphic function / : ft —• C is Bloch if 
there is a constant C = C{f) such that 

\f(z)-f(z')\^CKn(z,z') 

for all z, z' G ft. Note that we use here the integrated form of the usual definition: A 
holomorphic function / : ft —* C is Bloch if there is a constant C = C{f) such that 

|V/(z)-£UC*FnM) 
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for all z e ft and ( G C n . See [15, p. 146]. 

Because of (5) Bloch functions are quasi-Bloch. Conversely, quasi-Bloch functions 

are Bloch if n = 1 and ft is hyperbolic, by Minda [19, Theorem 1, p . 105], and, if ft 

is a ball and n ̂  2, in view of Timoney's result [25, Theorem 4.7, p . 260]. We point 

out below in Remark 2.15 that , for n ̂  2, Bloch functions form, in general, a proper 

subclass of quasi-Bloch functions. (Maybe, this is more or less known, but we have 

been unable to find any reference.) On the other hand, quasi-Bloch and holomorphic 

BMO classes are the same, by the following result: 

1.5. L e m m a . ([4, Basic Lemma, p. 693]) Let ft be a proper domain in C n , n ̂  1. 

Let f be holomorphic in ft. Then f is quasi-Bloch if and only if f is BMO. 

1.6. We use Cima's and Krantz 's definition for normal functions [5, pp. 305-306], 

see also [12, p . 1171], however, in the following integrated form: Let ft be a domain 

in C n , /i ̂  1. Let / : ft —• C* be a meromorphic function. One says tha t / is normal 

(in ft) if there is a constant C > 0 such that 

(8) q(f(z),f(z'))^CKn(z,z') 

for all z, z' G ft. The minimum of those constants C for which (8) holds true is called 

the order of normality of / , and it is denoted by Cj. 

Quasinormal (weakly normal) meromorphic functions are defined analogously to 

(8), just replacing the Kobayashi distance KQ, by the quasihyperbolic distance kn. 

Normal functions are quasi-normal by (5) above. There are quasinormal functions 

which are not normal, even in the case when n = 1. See [17, p . 6] and [19, pp. 102-

103]. If n = 1 and ft is a hyperbolic domain in C, then the definition (8) is often 

written as follows: A meromorphic function / : ft —> C* is normal if and only if there 

is a positive constant C such that 

for all z £ ft. Here / # = lV\}i$ is the spherical derivative of / , which is defined and 

continuous in all of ft. (Note tha t the spherical derivatives of / and j agree.) If ft 

is moreover simply connected, then / is normal if and only if it is quasinormal. See 

e.g. [16, Theorem 3, p. 56] and [19, pp. 102-103] (and (6) above). 
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2 . BLOCH AND NORMAL FUNCTIONS 

2 . 1 . We begin with a short proof to a result announced by Poletskii and Shabat 

[20, Theorem 2.3, p. 79]. They do not give any proof in their survey article, but 

just announce t h a t a proof can be based on a variation of a reasoning of Campbell , 

Howard and Ochiai [3, Theorem 1, p. 106]. We here base our proof on the earlier 

argument of Campbell and Ogawa [2, Proposition 2, p. 40] (on which the argument 

of Campbel l , Howard and Ochiai is based, too). 

2.2. L e m m a . Let Q be a domain in Cn, n ^ 1. Let E C Q be closed in Q such 

that H2n~2(E) = 0. Tijen 

I<n\E{z,z') = Kn(z,z') 

foг aiì z,z' ЄП\E. 

P r o o f . By [2, Proposition 1, p. 39] it is sufficient to show that Hol(D,f2\ E) 

is dense in Hol(D,f i) . We use here the standard notation 

Hol(D,fi) = {f: D -> Q: f is holomorphic}. 

Recall also that Hol(D, Q) is equipped with the usual compact-open topology. 

Write 

M = {fe Hol(D, fi): f(D) CC fi}. 

It is clear that M is dense in Hol(D,fi) . Take g e M arbitrarily. Then the mapping 

C : D x Q - 4 D x i l , 

G(t,b) = (t,g(t)-b), 

is clearly a holomorphic injection. It follows, at least from [6, 2.10.45, p. 202], t h a t 

H2n(D x E) = 0. But then H2n(G(D x E)) = 0. Since the projections do not 

increase Hausdorff measure, we find a sequence ck —• 0, c* G C n , k = 1,2,..., such 

t h a t Ck ^ g(t) — b for all t G D, 6 G E and k = 1, 2,. ... Define for each k = 1,2,.. . 

holomorphic mappings gk : D —• C n , 

9k(t) =g(t) -ck. 

Since g(D) C C fi, there is a positive integer N such that gk(D) C C fi for all k ^ N. 

It is clear that gk —• g in Hol(D,fi) as k —> oo. Moreover, one easily sees that 

gk(D) C fi \ E for all k = 1,2,.... Hence the assertion follows. • 
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2 . 3 . T h e o r e m . Let Q be a domain in Cn, n J> 1, and let E C 17 be closed in 

£1 such that H2n~2(E) = 0. If f: Q \ £ - • C is a Bloch function (respectively iff: 

£2 \ E —* C* is a normal meromorphic function), then f has a Bloch extension f* : 

Cl —• C (respectively a normal extension / * : Q —• C*). 

P r o o f . By [24, Lemma 3 (i), p. 115] / has a holomorphic extension /* to Q. 

Using then Lemma 2.2 above, the continuity of the Kobayashi pseudodistance I\n 

and also the continuity of / * , we see that /* is Bloch. To prove the normal function 

case, take z$ 6 E arbitrarily. Choose R > 0 such that B2TI(ZQ)R) C C £7 and take 

z* e B2n(zQ,f)\E arbitrarily. Then either f\B2n(z*, £ ) \ E or ±\B2n(z*, f ) \ E is 

a holomorphic function, and has thus again by [24, Lemma 3 (i), p. 115] a holomor

phic extension g to I?2n(z*,y). Thus / has a spherically continuous meromorphic 

extension / * to Q. The normality of / * follows then again by using Lemma 2.2, the 

continuity of the Kobayashi pseudodistance KQ, and the spherical continuity of / * . 

• 
2.4 . R e m a r k . The above result supplements the result of [22, Corollary 3.2, 

p . 148]. For a partial generalization, where the assumption iiH2n~2(E) = 0" is 

replaced by the weaker assumption "H2n~2(EC\ K) < oo for each K C 17 compact", 

see Theorem 2.13 below. 

2 .5 . For convenience of the reader, we recall first four basic results which we need 

in the proof of our results, Theorem 2.10 and Theorem 2.13 below. 

2.6. L e m m a . ([10, Corollary 1, p. 188]) Let G be a domain in C. Let E C G be 

closed in G and let Hl(E) = 0. Suppose that f is holomorphic in G\E. If for some 

p> 1 

\f'(z)\rdm(z) < oo, 
JG^ IG\E 

then f has a holomorphic extension f* to G. 

2 .7 . L e m m a . ([6, 2.10.25, p . 188] or [24, Corollary 4, p . 114]) Let A C C n , n ^ 2. 

(a) If H2n~2(A) < oo, then for each j , 1 ^ j <J n, and for H2n~2-almost all 

Zj E C " - 1 H°(A(ZJ)) <OO. 

(b) If H2n~l(A) = 0, then for each j , 1 <J j ^ n, and for H2n~2-almost all 

Zj E C " " 1 H1(A(Zj)) = 0. 

The proof of the next lemma follows from the properties of the Kobayashi metric, 

just as in [23, Lemma 2.2, p . 925], see [5, Proposition 1.6 and Corollary 1.7, p . 309] 

and [12, Lemma 2, p . 1173]. 
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2.8 . L e m m a . Let SI be a domain in Cn, n ^ 2, and 1 ^ j ^ n. Suppose that 

f: SI —• C is Bloch (respectively / : SI —* C* is normal). If Zj G Cn~l is such that 

Sl(Zj) is a nonempty domain in C, then the holomorphic function fzj • Sl(Zj) —• C 

(respectively the meromorphic function fzj: -^(-^;) —• C*J, 

fzJ(zj) = f(zj,Zj), 

is Bloch (respectively normal). 

2.9 . L e m m a ([11, Lemma 3.4, p. 299]). Let SI be a domain in Cn, n ^ 2. Let 

E C SI be closed in Q and such that for each j , 1 ^ j ^ n, and for H2n~2-almost 

all Zj ~ Cn~x the section E(Zj) is totally disconnected. Let f:Q\E—+ C be a 

holomorphic function. If for each j , 1 ^ j ^ n, and for H2n~2-almost all Zj ~ Cn~l 

the function fZj: (SI \ E)(Zj) -> C, 

fzj(zj) = f(zj,Zj), 

has a holomorphic (respectively a meromorphic) extension f% to Sl(Zj), then f has 

a holomorphic (respectively a meromorphic) extension /* to Q. 

Next we give our result for quasi-Bloch functions: 

2 .10 . T h e o r e m . Let Q be a domain in Cn, n ^ 1. Let E C SI be nonempty, 

closed in Q and such that M2n~l~p(E) < oo for some p, 0 < p ^ 2n - 1. If f is 

quasi-Bloch in S2 \ E, then f has a holomorphic extension f* to SI. 

P r o o f . We first show that for each p', 1 < p' < 1 + p, | V / | G £foc(-~-). Since 

M2n~l~p(E) < oo, there is AIi < oo and e0 > 0 such that m(E£) ^ M{e
l+P for all 

e, 0 < e ^ e0. Here 

£?c = {zeCn:d(z,E)<e}. 

Proceeding as in [9, p. 42], we write for j = 0, 1, 2 , . . . 

Kj = {zeCn:d(z,E)<e02~j}, 

and get 
oo 

E£o = \J(Kj\Kj+1). 
j=0 
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Choose then p', 1 < pf < 1 + p, arbitrarily. Then 

I I °° f 1 
/ Air F\P'dmW ^ - £ / d(z F\P'dmW 

JEt0 d(z,L)P £ j j JKi\Ki+i d\z^Y 

^f^[e02-^]-p'™V<j) 
j=o 

oo 

<: ^ £ o - p , 2 ^ + 1 ) p ' M i ( e o 2 - - ' ) 1 + p 

CX) 

= 2p /M1£o1 + p"p /X ,]2 ( p /"1"P ) i < o c -
i=o 

Take zo £ E arbitrarily, and choose ro > 0 so small that d(z, S(f2 \ E)) = d(zy E) 

for all z £ B2n(z0,ro). Then we get 

/ \Vf(z)\»'dm(z) < C f —L-dm(z) < oo. 
J-,0nB-«(*0,r0) JEc0

 d \ z ^ f 

Thus | V / | e CP^C(Q). Using then Fubini's theorem, the fact that H2n~l(E) = 0 

(since M2n~x~v(E) < oo), Lemma 2.7 (b), Lemma 2.6 and Lemma 2.9, we see tha t 

/ has a holomorphic extension / * to ft, concluding the proof. • 

2 . 1 1 . R e m a r k . Because of Shiftman's result [24, Lemma 3 (i), p . 115], the 

above result is of interest only for 0 < p ^ 1. In this case our theorem gives, in view 

of Lemma 1.5, a partial improvement to the cited result of Kaufman. Using Theorem 

2.10 we give below in Theorem 2.19 an improvement to the aforementioned result of 

Cima and Graham. 

2 .12 . R e m a r k . We give an example which shows that if 0 < p ^ 1 then the 

condition " M 2 n - 1 ~ P ( K ) < oo" in the above theorem cannot be replaced by the 

condition "H2n~l~p(E) < oo", except of course when n = p = 1. As a mat ter of 

fact, our example shows tha t not even the condition liH2n~2(E) < oo" is sufficient, 

except when n = 1. Our example is a modification of Timoney's , and Cima's and 

Graham's example [4, pp. 696, 699]. 

We first construct our exceptional set in C n . For later need in section 4, the 

construction is given in a slightly more general form than is actually necessary here. 

Suppose first tha t 7i ^ 2 and 0 < q -̂  1. Write for k = 2, 3 , . . . 

Ak = Dn~x x дB2 

( " • * ) • 
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Choose for each k = 2, 3 , . . . a finite number of points a*, a£ , . . . , ajvYfc) ^ ^* s u c n 

that for each z £ Ak 
. ft. 1 ! 

J l k9 ( i + l ) « ' 

for some j £ {1, 2 , . . . , N(k)}. This is possible, since Ak is compact. Set then 

CO 

E=\J{ak
ltal . . . . ^ u r ' x f O } ) . 

* = 2 

Then E C Dn is closed in L>n. Clearly now H2n~2(E) < oo. Define / , 

1 f(z) = f(zìì...ìzn-iìzn) = 
zn 

Then / is holomorphic in Dn \ K, but has no holomorphic extension to Dn. Choose 
then q = 1. It remains to show that / is quasi-Bloch in Dn \ E. It is sufficient to 
show that d(z,E)\Vf(z)\ is bounded in Dn\E. Take z = (zu ..., * n _ i , zn) e Dn\E 
arbitrarily and suppose that 

1 $\*n\<T ifc+1 ^ ' "' k 

for some k G N. Then 

and thus 

Suppose then that n = 1 and 0 < p < 1. Proceeding as above, we get a countable 
set E (for which then Hl~p(E) = 0) and a quasi-Bloch function / i n D\ E, which 
has no holomorphic extension to D. 

On the other hand, the assumption iiH2n~2(E) < oo" is sufficient for Bloch func
tions (and for normal functions, too): 

2.13. Theorem. Let Q be a domain in Cn , n ^ 1. Let E C ft be closed in Q and 

such that H2n~2(E D K) < oo for all K C ft compact. If f is Bloch (respectively 

normal) in ft \ E, then f has a holomorphic (respectively meromorphic) extension 

f* toft. 

P r o o f . Because of Lemma 2.7 (a), Lemma 2.8 and Lemma 2.9 it is sufficient 
to give the proof for n = 1. But then the exceptional set E is locally finite in ft. 
Since Bloch functions are quasi-Bloch, the result follows from Theorem 2.10. The 
normal function case is proved similarly, see [23, Theorem 3.5, p. 927]. • 
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2.14. Remark. Timoney's example [4, p. 696] shows that the holomorphic 
extension /* need not be Bloch. Similarly, the meromorphic extension /* need not 
be a meromorphic function, see [12, Remark 2, p. 1174] and also [23, 3.6, p. 927]. 

2.15. Remark. Because of Theorem 2.13 the quasi-Bloch function / given in 
Remark 2.12 above cannot be Bloch. Thus for n ^ 2 the Bloch class is, in general, a 
proper subclass of the quasi-Bloch class, unlike for the case n =- 1. See [19, Theorem 
1, p. 105] and [25, Theorem 4.7, p. 260]. 

2.16. In order to improve Cima's and Graham's result [4, Theorems 1 and V, 
pp. 691, 697] we recall for convenience here their covering condition A. (In fact, we 
rewrite their condition in a slightly more compact form.) 

Let il be a domain in Cn , n ^ 1. Let E C fi be closed in fi. Then E satisfies the 
A covering condition if the following conditions are satisfied: 

(a) There exist polydisks P a , a G A, such that Pa C Q, a G A, and 

E C Ua€APa-

(b) There exists a positive constant c\ such that 

d(pa)^Cld(paidn) 

for all a G A. 

(c) There exists a positive constant c2 such that 

d(d0PaiE)^c2d(PaidQ) 

for all a G A. 

(d) There is a positive constant C3 such that for any z G E there exists a 
poly disk P a o , a0 G A, with z G Pao and 

d(z)dPao)^c3d(Pao}dn). 

When n ^ 2 examples of sets satisfying the A covering condition are subvarieties of 
bounded domains which extend across the boundary of the domain and are smooth 
near the boundary. See [4, pp. 697, 701]. 

When 71 = 1 examples of such sets are sets E which are 6-separated (sparse) in Q 
in the following sense: There is a positive constant 6 such that 

\a-b\^Sd(a,dQ) 
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for all a,b ~ E, a ^ b. 

Note tha t if A C ft is separated in ft, then ft is necessarily a proper open subset 

of C. When Q = D the above separatedness condition can be expressed both using 

the pseudohyperbolic distance xpD, 

V>DM) = i ^ r j n a,beD, 

and using the hyperbolic distance gD, as follows: 

2 .17 . P r o p o s i t i o n . If A C D, then the following conditions are equivalent: 

(i) There is 6 > 0 such that A is 6-separated in D. 

(ii) There is 6' > 0 (6' = 6'(6)) such that xl>D(a, b) ^ 6' for all a,bGA,a^b. 

(iii) Tijere is 6" > 0 (6" = 6"(6)) such that gD(a, b) ^ 6" for all a, 6 G A, a ^ 6. 

The equivalence of (i) and (ii) follows from [4, (1), p. 691, and (6), p. 694]. The 

equivalence of (ii) and (iii) follows from the fact that 

1 l + 1>D(a,b) 
QD{a*h)= 2X°*1-+D(a,bY 

See also [8, p . 177] and [7, (1.4), p. 286 and pp. 2, 5]. 

2 . 1 8 . R e m a r k . It is easy to see that the A covering condition and the Minkowski 

dimension condition iiM2n~1~p(E) < oo for some p, 0 < p ^ 1" are mutually 

independent. In fact, one finds easily a set E which satisfies the A covering condition 

but for wich M2n~l~p(E) = oo for some p, 0 < p ^ 1. On the other hand, choosing 

71 = 1, ft — D and 

£={l - i :*eN} 

one gets a set for wich Ml P(E) = 0 when 0 < p < ^, but which does not satisfy 

the A covering condition . We leave the details to the reader. 

The next theorem improves the cited result of Cima and Graham: 

2 .19 . T h e o r e m . Let ft be a proper domain in Cn , n ^ 1. Let E C ft be closed 

in ft and such that M2n~1~p(E) < oo for some p, 0 < p ^ In — 1. Suppose further 

that E satisfies the A covering condition. If f is quasi-Bloch in ft \ E, then f has a 

quasi-Bloch extension f* to ft. 

P r o o f . By Theorem 2A0 / has a holomorphic extension /* to ft. We show 

by a short argument that / * is quasi-Bloch in ft. (Cima's and Graham's argument 
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[4, Lemmas 2 and 3, pp. 698-699] can certainly also be applied in this more general 

situation.) 

We know that there is a positive constant C such that 

for all z € ft \ E. Here ft' = ft \ E. We must show that for some positive constant 

C 

(10) |vr(z)| <; c l 

d{z,9П) 

for all z G ft. For this purpose take z G ft arbitrarily. 

Suppose first that z G Pao for some ao G A. Using the maximum principle, the 

condition (c) above and (9), we find a z o G d0Pao such that 

(ii) ivr^)i^iv/(z 0 ) i^c^ 1 

d(z0,dSV) 

By the conditions (b) and (c) we have clearly 

d(z,9ft) <c d(Pao) + d(Pao)dtt) <: cxd(Pao,5ft) + d(PaoidQ) 

Similarly, we get with the aid of (b) 

d(z1dQ)^d(Pao) + d(z0ldQ)^cld(PaoidQ) + d(z0idQ) 

^(ci + l)d(z0idQ). 

Thus (10) follows from (11) when z G Ua^\Pa. 

Consider then the case when z g Ua6APa- Take z* G E such that d(z, E) — \z — z* |. 

It is clearly sufficient to consider the case when 

(12) d{ZtE)<^m. 

By the condition (d) we find a polydisk P^0, /?0 G A, such that z* G Pp0 and 

(13) c/(z,F) = \z - z*\ > d(z*,8PPo) > c3d(PPo,dn). 
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Then it follows from (12) and (b) that 

d(z,дӣ) ŚL d(z,E) + d(pßo) + d(pßo,дӣ) 

^ d(z, E) + cxd(Pßo,дU) + d(Pßo,дӣ) 

^ d ( £ i M + ( C l + i ) . ť / ( p / , o i ô П ) . 

Thus we get from (13) 

d(z,dtt) ^ 2(C l + l)d(P(,oidQ) ^ -(cx + \)d(z,E). 
C3 

Therefore (10) follows from (9), concluding the proof. • 

3 . QUASINORMAL AND NORMAL FUNCTIONS ON PLANAR DOMAINS 

3.1. We begin by giving a removability result for normal functions. Our proof for 

this case is based partly on a variant of the arguments in [12, proof of Lemma 1, 

p. 1172] and [16, proof of Theorem 9, p. 63], see also [20, p. 75]. 

3.2. T h e o r e m . Let ft be a hyperbolic domain in C. Suppose that K C ft and E 

is 6-separated in ft, where 6 > 0. Let f: ft \ E —> C* be a meromorphic function. If 

f is normal, then f has a quasinormal meromorphic extension f* : ft —• C*. 

P r o o f . By [16, Theorem 9, p. 62] / has a meromorphic extension g — f* \ 

ft — C * . 

Write ft' — ft \ E. Let C be a positive constant such that 

/ # ^ c Ф^õ 
for all z G ft7. 

It is sufficient to show that there is a positive constant C* such that for all z G ft 

9*(z) < C* 1 

d(z,дü)' 

We may suppose that g is nonconstant and that 0 < 6 < 1. We first consider the 

situation near the exceptional set E. Take 6 G E arbitrarily and let To — oV/(6,<9ft). 

Since E is 8-separated in ft, we know that I?2(6, ro) \ {6} C ft'. 

Suppose first that \g(b)\ ^ 1. We claim that \g(z) - g(b)\ < 1 for all z G £2(6, r6), 

where r6 — roe~40C . Suppose, on the contrary, that \g(z) — <1(6)| ^ 1 for some 
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z G B2(b,rb). Choose z0 G B2(b,rb) such that \g(z0)-g(b)\ = 1 and \g(z)-g(b)\ < 1 

for all z G B2(b, \z0 - 6|). Write r = \z0 - 6|. First of all, note that \g(z)\ ^ 2 for all 

zEBf fc , r). Thus we have for z, *' G S (6, r) 

i|^)-^)l^^(A^)) 

and therefore also 

\\g'(z)\^g#(z) 

for all z G £2(6, r). But then we have for z', z" G dB7(b, r) 

\g(z") - g(z')\ ^ 5 / ,#(z)|d-| = 5 / J ^ L H 
JaB2(6,r) JaB2(6,r) X + l#UJI 

I 1 5C I2* r 

* 5 C W ) 2|z-6|.ogrAr^
 = f j o H o T f " 

bnC _ 57iC _ 7i 
^ l o g ^ " loge4°c - 8" 

—2 

Since g is nonconstant and holomorphic in a neighborhood of B (b, r), we thus have 

for -', z" G B2(6, r) 

|<,(z")-^')K^. 
But this is a contradiction with our assumption that \g(z0) — g(6)| = 1. 

Now we know that |g(z)| ^ 2 for all z G H2(6,n,). By a standard application of 

the Cauchy integral formula one sees that for z G B2(b, ^ ) 

# n , | ( n | j 8e40C t 8e40C . 

Í Í 

r» j d(b,dÜ) ^ 6 dlfM) 
l - f á e - 4 0 C 

8e40C + AS 1 

6 d(z,dü)' 

Suppose then that |g(6)| >̂ 1. If we write h = j , then /i is a normal meromorphic 
function for which C/j = Cg. Since also h#(z) = g#(z) for all z G n, we get, 
proceeding as above, that 

g#(z) = k#(z)^\h'(z)\^8e4°C + 4S l 

6 d(z,дӣ) 

for all г Є B2(b, -£). 
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Until now we know that 

8e40C + 46 1 
(14) g#(z) Š 

6 d(z,dQ) 

for all z € U, where 

e = U "(».?)• 
b£E 

We then consider the case when z £ fi \ U. Suppose first that d(zydQ') > d(z>£n). 

Then it follows from the normality of / and from [19, p. 102] (see also (6) above) 

that 

05) ^^C-^—^ZC- l 

d(z,dn') d(z,dn)' 

Suppose then that d(z, <9fi') = \z - a\ <£ ^% a n^, where a € dfi'. Since z € fi \ U} we 

know that 

Henc 

thus 

But then 

6 -40C ,/ o n x ^ , . ^ d(2,<9fi) 
- e * °_(a, <9fi) r̂  |z - a| ^ 3—L-

\z-a\> d(z, díl) - d(a} díl) > d(z, díl) - ^e40C\z - a|, 
o 

( l + ^ e 4 0 C ) | 2 - a | ^ r f ( 2 , a f i ) . 

g#(z) ţ ^—x ^ ° 
(16) 

_ a i ^ 4» an) 
1 ' l+fe« c 

C(2e 4 0 C + í) 1 
ф , Ő П ) ' 

From (14), (15) and (16) it follows that g = /* is quasinormal in fi, concluding the 

proof. • 

If fi is simply connected, we thus get, using [19, p. 102] (see (6) above), the 

following new extension result for normal functions: 

3.3. Theorem. Let fi be a simply connected hyperbolic domain in C. Suppose 

that E C fi and E is 6-separated in fi, where 6 > 0. Let / : fi \ E —• C* be a 

meromorphic function. If f is normal, then f has a normal meromorphic extension 

/* : fi — C*. 
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Using the conformal invariencies of the hyperbolic distance and the normality and 
also Proposition 2.17 above, our result, Theorem 3.3, can be rewritten also to the 
following neat form: 

3.4. Corollary. Let Q be a simply connected hyperbolic domain in C. Suppose 

that E C i l and that there is 6 > 0 such that £n(a,6) > 6 for all a,b G E, a -/ 6. 

Let / : fi \ K —• C* be a meromorphic function. If f is normal, then f has a normal 

meromorphic extension /* : ft —• C*. 

A similar result can, of course, be obtained also for Bloch functions: 

3.5. Corollary. Let ft be a simply connected hyperbolic domain in C. Suppose 
that E C ft and that there is S > 0 such that Qn(a, b) ^ 6 for all a,b 6 E, a ^ b. If 
f is Bloch in Q\E, then f has a Bloch extension /* toft. 

Observe, however, that Theorem 2.19 in the case n = 1 and ft simply connected, 

gives a much stronger result for Bloch functions. 

4 . A REMARK CONCERNING A QUESTION OF HARVEY AND POLKING 

4 .1 . We conclude by answering to a question of Harvey and Polking, in the case 
of holomorphic functions. 

Bochner [1], see Harvey and Polking [9, Theorem 2.5, p. 42], proved the following 
result. Let G be an open set in Rn, n ^ 2, and let P(x,D) be a linear partial 
differential operator of order m on G. Suppose further that E C G is closed in G, 
Mn-m~P(Er\K) < oo for all compact sets K C G, f G Clc(G), f(x) = o(d(x, E)~P) 
uniformly for x on compact subsets of G and P(x, D)f = 0 in G\E. Then P(x, D)f = 
0 in G. Polking [21, 2.3.5, 2.4.12, pp. 267, 271-272] showed that in the above result 
the upper Minkowski content can be replaced by the lower one. These results apply, 
with m = 1, and are of interest also for holomorphic functions, see [21, p. 273]. 

Harvey and Polking [9, p. 42] and also later Polking [21, p. 273] asked whether 
in the above result the Minkowski upper (lower) content could be replaced by the 
Hausdorff measure. The following example shows that this is not possible for any p, 
0 < p ^ 1, in the case of holomorphic functions, except of course, when n = p = 1. 

Suppose first that n ^ 2 and 0 < p ^ 1. Let E and / be as in the example given 
in Remark 2.12 above. Choose q = p in the definition of E. Then I/2n"~2(K) < oo, 
and it remains only to show that 

(17) f(z) = o(d(z,E)-") 
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uniformly for z on compact subsets of Dn. Suppose that 2 = ( z i , . . . , z„_i,z n ) 6 
Dn\E and that 

1 , , 1 
< l - n | < (*+!)" kP 

for some k £ N. Then 

and thus 

(18) d(z,EY\f(z)\^2'> 

d(z,E)šĄ 

1 1 

kP ( . t + ł ) p J ' 

(/fc+l)P^2t>+1[(l + i) P -l j ř 'ғ-' ' 2 , 
Lfcp ( * + 1 ) P J 

since 0 < p ^ 1. Using again the fact that 0 < p ^ 1, we see at once that 

1 \ P "IP o < [(i + -^)P - i] V-" 2 < *-p2 — 0 

as k —•• CXD. From this and from (18) it follows easily that (17) holds. 

The case n — \ and 0 < p < 1 can be treated similarly. 

Additional r emarks . After this manuscript was completed, P. Koskela (Depart
ment of Mathematics, University of Jyvaskyla, SF-40351 Jyvaskyla, Finland), Re
movable singularities for analytic functions, University of Jyvaskyla, Preprint 137, 
January 1992, gave a similar result to Theorem 2.10 in the case when n — 1, in the 
connection of his related results concerning certain Lipschitz classes. 

We have referred above in Abstract, in 1.1 and in Remark 2.11 to a result of 

Kaufman [13, Theorem (a), p. 369], in the special case when the exceptional set 

E is closed in the domain Q. After submitting our manuscript we have, however, 

found that this result has in fact been obtained already by J. Krai, Singularites non 

essentielles des solutions des equations aux derivees partielles, Seminaire de Theorie 

du Potentiel Paris 1972-1974, LNM 518 (1976) (eds. F. Hirsch and G. Mokobodzki), 

pp. 95-106; Corollaire 1, p. 99, as a part of his results for partial differential equations. 
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