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AN ITERATIVE CONSTRUCTION OF BASES FOR FINITELY 

G E N E R A T E D MODULES OVER PRINCIPAL IDEAL DOMAINS 

ALEXANDER ABIAN, Iowa, PAULA KEMP, SERGI SVERCHKOV, Springfield 

(Received November 11, 1991) 

The existence of a set of linearly independent generators (i.e., a basis) for a finitely 

generated Module V over a Principal Ideal Ring (i.e., a generalization of the Fun

damental theorem of Abelian groups) is proved here in a well motivated way which 

star ts by choosing from all possible sets of generators of V a set G of generators of 

V such that G has a smallest number of generators and such that G also contains an 

element, say, b of the minimal (as defined below) order. Then the process is repeated 

for the submodule of V generated by G — {6}, etc. The completion of the process 

yields a basis of V. The proofs are considerably simpler and more lucid than those 

known in the existing literature and remain the same whether V does or does not 

have elements of infinite order. 

In what follows we shall use well known items and facts of any principal ideal 

domain R such as the existence of a greatest common divisor of finitely many elements 

of R (and its representation as a linear combination of these elements) the units and 

associates of R and the fact that R is a unique factorization domain, etc. [2, 3]. 

L e m m a 1. Let R be a principal ideal domain and let an, . . . , ci\ be elements of 

R with a greatest common divisor gn, i.e., 

(1) («n, • • - , « i ) = gn-

Then there exists an n by n matrix Mn with entries over R, whose first row is 

aU} . . ., ai and whose determinant is equal to gn, i.e., 

(2) det\In - gn. 

P r o o f . We use induction to prove the Lemma. The statement of the Lemma is 

trivially true for n — \. Let us assume that the Lemma is true for the n—\ elements 
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a„_i, . . . , ai of fí, i.e., 

(3) ( ű r г - Ь • • ->Яl ) = áГn_i 

and that there exists an n — 1 by n — 1 matrix A/n_i such that 

(4) Mn-l = 
a„_i . . . ai 

and detЛ/„_i =gn-i. 

Since R is a principal ideal domain from (1) and (3) it follows that 

(5) gn __ pan + qgn-\ for some elements p and <7 of R. 

From (3) and (5) it follows that 

(6) />(«»-i/_Jn-i)i • • •, p(«i/_7n-i) are n - 1-elements of R. 

Let M*_i be an n — 1 by n — 1 matrix which is obtained by replacing the first row 

of the matrix A/n_i by the n — 1 elements of R given in (6). But then, clearly, from 

(4) and (6) it follows that 

(7) detA/:,., = p . 

Now, let us consider the n by n matrix Mn which extends the n — 1 by ?i — 1 

matrix A/n_i on top by one row a n, a n _i, ..., ai (i.e., precisely an followed by the 

elements of the first row of matrix A/n_i) and on the left by one column as shown 

below: 

(8) Mn = 

an a„_i 
-я 

0 

0 

ar 

K-i 

But then expanding the determinant of Mn along its first column, from (4), (5) and 

(7) it follows det A/n = gn. Thus, A/n is an n by n matrix with entries over H, 

whose first row is a n , ..., ai and A/n satisfies (2). Hence, the proof of the Lemma is 

complete. D 
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Corollary 1. Let a\, ..., an be n relatively prime elements of a principal ideal 

domain R. Then there exists an n by n matrix Mn with entries over R whose first 

row is a\, ..., an such that det M = 1. Moreover, Mn is invertible and M " 1 is an n 

by n matrix with entries over R. 

P r o o f . By the assumption, (ai,.. .,nn) = 1. Thus, from (1) and (2) it follows 

that detM n = 1. But then clearly, A/"1 exists and its entries are over R. O 

Lemma 2. Let R be a principal ideal domain and V be an R-module generated 

by n generators g\, ..., gn. Let a\, ..., an be n relatively prime elements of R. Then 

V can be also generated by a set of n generators includes a\g\ + . . . + angn as one 

of the generators. 

P r o o f . Let Mn be the matrix mentioned in Corollary 1. Clearly, 

<7i + 
(9) 

• • • + Пnířn \ 

Obviously, the elements of the rightmost column appearing in (9) form a set of 
generators of V. Indeed, as (9) shows everyone of the n generators g\, ..., gn of V 
is a linear combination of the elements of the rightmost column appearing in (9). 
But then since a \ g\ + . . . + angn is one of the elements of the rightmost column 
appearing in (9), we see that there exists a set of n generators of V which includes 
a\9\ + • • • + angn (which could be 0) as one of the generators. Thus, Lemma 2 is 
proved. • 

R e m a r k 1. We note that the proof of Lemma 1 gives us a constructive method 
of building of the matrix Mn and that Lemma 2 gives us a constructive method of 
replacing a set of generators of R with another set of generators of R [cf. 1]. 

Let ft be a principal ideal domain, we recall that elements x and y of R are called 
associates (denoted by x ~ y) iff x = uy for some unit u of R. We define order < 
(read: less than) in R as follows: 

(10) x < y if and only if x | y and x^y, 

i.e., x divides y and x and y are not associates. This means that x and y are not 
associates and that y is an elements of the ideal generated by x. Since R has no 
infinite properly ascending chain of ideals [3, p. 121], we have: 

(11) every nonempty subset of R has a minimal (i.e., < -minimal) element. 
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Let V be a module over a principal ideal domain R. As expected, a minimal 

annihilator (if it exists) of an element v of R is called order of v (denoted by ord v); 

otherwise, v is said to be of infinite order. Clearly ord v is defined up to an associate. 

We observe that ord v coincides with its classical definition [3, p. 165]. Let a\V\ + 

. .. + anvn be a linear combination of the elements v, of V with a, elements of R. 

We say that a i v i + ... + anvn is nontrivial in vn if and only if 

(12) a\V\ + . . . + anvn = 0 and anvn -^ 0. 

L e m m a 3 . Let. as in (12), a\V\ + . . . + anvn be nontrivial in vn and vn be not of 

infinite order. Then there exists a linear combination b\V\ + .. . + bnvn such that 

(13) b\V\ -f . . . -f bnvn is nontrivial in vn and bn < ord vn 

P r o o f . Indeed, let 

(14) 6n = ( a n , o r d i ; n ) = xan +y(ordvn). 

Clearly, 6n ^ ord vn since otherwise , in view of (14), ord vn would divide 6n and also 

would divide an contradicting (12). On the other hand, since 6n divides ord vn from 

(10) it follows tha t 6n < vn. But then, from (12) and (14) we obtain 

0 = x(a\V\ + ... + anvn) + y(ord vn)vn 

= xa\V\ + ...+ (xan + ... + y(ordvn))vn = b\V\ + . . . + bnvn 

where 6,- = xai for i < n. Clearly, in the above bnvn ^ 0 since 6n < ordi ' , , . Thus, 

(13) is established, and the Lemma is proved. • 

Let R be a principal ideal domain and V be an 1?-module generated by n pairwise 

distinct nonzero generators r/i, . . . , gn. We recall that these n generators form a 

basis of V if and only if 0 (the zero of 17) cannot be equal to a linear combination of 

(/i, . . . , gn over R with some nonzero summands. 

T h e o r e m . Let R be a principal ideal domain and V be a finitely generated R-

inodule. Then V has a basis. 

P r o o f . We prove the Theorem in its following version. Let V be such that 

it can be generated by n generators </i, . . . , gn and not by less than n generators, 

where (to avoid the trivial case) we let n > 1. We use induction. Thus, we assume 

tha t any I?-module which can be generated by n — 1 generators and not by less than 
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7i—l generators has a basis. Now, by (11), among all possible sets of n generators 

of V we choose a set {g\,... ,</n_i, 6} such that no set of n generators of V has 

an element of order (which could be infinite) less than the order of 6. Clearly, the 

submodule 5 of V which is generated by the set {</i , . . . , # n - i } of n — 1 generators 

cannot be generated by less than n — 1 generators since V cannot be generated by 

less than n generators. Hence, by our assumption, S has a basis, say, { 6 i , . . . , 6 n _ i } . 

We prove the Theorem by showing that { 6 1 } . . . , 6 n _i , 6} is a basis of V. Obviously, 

{ 6 i , . . . , bn-i, 6} generates V. Let us assume to the contrary, and therefore 

(15) a\b\ + . . . + a n _ 1 6 n _ 1 + anb = 0 and a n6 ^ 0. 

But then a l 5 . . . , a n_ 1 ? a n cannot be relatively prime since otherwise from Lemma 

2 it would follow that a161 + . . . + a n _ i 6 n _ i + an6 could be a member of a set of n 

generators of V which by (15) would imply that 0 would be a member of a set of n 

generators of V and therefore V could be generated by less than n generators which is 

impossible. Hence, a1? . . . , a n _ 1 ? an are not relatively prime and ( a 1 ? . . . , a n _ 1 ? a n ) = 

d ^- 1. But then from (15) we have 

(16) d((a\/d)b\ + . . . + ( a n _ 1 / J ) 6 n _ 1 + (a n /d )6) = 0 

where (a\/d), . . . , (an..\/d), (an/d) are now relatively prime. But then, again, from 

Lemma 2 it would follow that 6* = (a\/d)b\ + . . . + ( a n _ 1 / d ) 6 n _ 1 + ( a n /J )6 could be 

a member of a set of 7i generators of V which by (16) would lead to a contradiction 

if 6 were of infinite order. Thus, in (15), we let 6 be not of infinite order, and, in 

view of (13), without loss of generality we may assume that in (15) it is the case that 

an < ord 6. But then, from (16) we see that ord 6* divides d which in turn divides 

an and therefore by (10) we have ord 6* < ord 6, contradicting the choice of 6. Thus, 

the Theorem is proved. • 

R e m a r k 2. From the proof of the Theorem it follows that if V is a finitely 

generated module over a principal ideal domain such that no set of generators of V 

has an element of not of infinite order then any set with least number of generators 

of V is a base of V. Also, since every finitely generated Abelian group is a finitely 

generated module over the integral domain of integers, the above Theorem and its 

proof implies the following Fundamental Theorem of Abelian Groups with a proof 

which does not consider two cases of Torsion and Torsion free subgroups of the group. 

Corol lary 2. Every Finitely Generated Abelian group has a basis and therefore 

is a direct sum of its cyclic subgroups. 

R e m a r k 3. The central lines of ideas and proofs given above are generalized 

version of the ideas in [4] to the case of Modules over principal ideal domains . The 
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generalization is nontrivial as witnessed by Lemma 3 and the succeeding proofs. Also, 

it can be shown that based on Lemmas 1, 2, 3 an iterative process can be devised 

which starting with a set of generators of V will yield a basis of V in finitely many 

steps . 
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