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P F E F F E R INTEGRABILITY DOES NOT IMPLY 

A/i-INTEGRABILlTY 

JIŘÍ JARNÍK and JAROSLAV KURZWEIL, Praha 

(Received February 27, 1992) 

In [1] the author proved that every A/i-integrable function (see [2]) is Pfeffer 

integrable (see [3]). T h e aim of this note is to disprove the converse inclusion by 

constructing a function that is Pfeffer-integrable but not Mi -integrable. We will do 

so by modifying our construction from [4] or [5]. 

Let us recall the relevant notation and definitions. We will work in a Euclidean 

space R n , n > 1 with the maximum norm \\x\\ = max{|x.;|; i = l , 2 , . . . , ? i } . For a 

set M C Rn we denote by cl(AI), dM, I n t M , CI M, m(M) the diameter, boundary, 

interior, closure and Lebesgue measure of M. All intervals considered, if not stated 

otherwise, are assumed to be compact and nondegenerate. We also write V(t,r) = 

{x E Rn ; | | * - l|| ^ r} for t E R n , r > 0. 

Given an interval I C R n , a finite family of tagged intervals A = {(x,J)} with 

x E J C I where the intervals J are nonoverlapping is called a system in 1; it is called 

a partition of I if, moreover, the union of J's is I. Given 6: 1 —» (0,oo) (a gauge), 

a tagged interval (x,J) is called S-fine if J C V(x)6(x)). Given cv, 0 < cv ^ 1, then 

an interval J is called a-regular if reg J ^ cv, where reg J (the regularity) s tands for 

the ratio of the minimal and the maximal edge of J. A system in I is called b-fine 

or a-regular if all its members are <$-fine or o-regular, respectively. 

Given k E {0, 1 , . . . , ? . - 1} then any k-dimensional linear manifold E in R n which 
is parallel to k distinct coordinate axes will be called a plane (of dimension k). If 
J = [a i, 61 ] x . . . x [c/n, 6n] and E is a k-plane parallel to the .c^-axes, i = 1, 2, . . ., 
k, we define: 

reg^ J = reg J if J n E = 0; 
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if J D E ^ 0, then 

reg^ J = min{6j. - ay.; i = 1 ,2 , . . . , k}/d(J) if k 7- 0, 

r eg E J = 1 if k = 0. 

Let £ be a finite family of planes. Then we define 

reg^ J = max{reg£ J ; E e £} if £ 7- 0, 

regu J = reg J. 

Now let I C Rn be an interval, / : I —• R. 

D e f i n i t i o n 1 [2]. The function / is M\-integrable on I if there is a real number 

c such tha t for every e > 0 there is a gauge 6 on I such that 

(1) | C - ^ / ( x ) m ( J ) ^ e 

for every <5-fine partition A = {(#, J)} of I such that 

A 

(the quanti ty on the left-hand side was called the measure of irregularity in [2]). 

R e m a r k . We have formally modified the definition by replacing the arbitrary 

constant IV by e~l to make it more similar to PfelTer's definition. It is easy to see 

that it is equivalent to the definition of A/i-integrability in [2] or [1]. 

D e f i n i t i o n 2 [3]. The function / is Pfeffer-in tegrable on I if there is a real 

number c such that for every e > 0 and any finite family £ of planes there is a gauge 

6 on I such that (1) holds for every 6-fine partition A of I such that 

r e gf J ^ £ for (z, J) G A. 

It is evident that c from Definition 1 or 2, if it exists, is uniquely determined; we 

write c = M\ Jj f or c — P//. / , respectively. 

In [6] we have introduced the notion of weak Pfeffer integrability. Since we have 

proved tha t it is equivalent to the above defined Pfeffer integrability, we can formulate 

Definition 2 equivalently in the following form. 
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D e f i n i t i o n 2* [6]. The function / is Pfeffer iniegrable on I if there is a real c 

such that for every e > 0 there is a gauge 6 on I such that (1) holds for every 6-fine 

partition A of 1 such that 

regjr J ^ e f o r (x>*0 € A, 

where T is the family of all k-planes which contain 2* vertices of 1, k = 0, 1, . . ., 

n- 1. 

T h e o r e m . For n > 1 there is a function f: [—1, 2]n —* R that is Pfeffer-integrable 

but not Mi-integrable on I. 

To construct the function / we will use the idea from [4], replacing the constant 

r; by a sequence 7]k as in [5]. To avoid technical details which are identical to those 

from [4] we will suppose n = 2; the generalization of our construction to n > 2 is 

straightforward, involving more or less just forming Cartesian products of some sets. 

C o n s t r u c t i o n . Let us choose sequences j r * } , {Cfc}, {i]k}, k = 0, 1, 2, . . . 

such that 

(2) 3 ^ rk / oo, - > 6 \ 0, 1 < i]k / oo, ^.(r-ori . . . r ^ i ) " 1 \ 0 

(their further properties will be specified later) and set 

Ct = 5( l -2r t -
1 ) . 

First, we construct a Cantor discontinuum on [0, 1]. Set 5o = [0, 1], Ao = | ,Fo = 

(Ao — Co, Ao + Co)- The set 5'o \ Jb is the union of two compact intervals. Let us 

denote any of them by 5'i and its center by Aj; then 5i = [Ai — ̂ r ^ 1 , Ai + ^ r ^ 1 ] 

and we set 1\ = (Xx - C i ^ o " 1 , * ! + Cir0~1)-

The general step of the construction is described as follows: let i £ N and let us 

have 21""1 pairwise disjoint compact intervals 

5;_i = [A.-i - - ( r 0 n . . . r t - - 2 ) " 1 ,A t - - i + - ( r o r 1 . . . r t - . 2 ) " 1 J 

and the same number of open intervals 

71--1 = (A t_2 - C i - i ( r 0 r i . . . r , _ 2 ) " \ A.:_i + C i - i ( r 0 r i . . . r t _ 2 ) " 1 ) . 
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Each set ,S't_i \ Ti_i (where £,•_-_, TJ-i have the same center) is the union of two 

compact intervals which we can write in the form 

$ = л« - 2 ^ ' ° ľ I •••r«'-i) l ' X i + 2 ( r ° Г l •••r«'-i)" 

we set 

Ti = (A, -Ci(r0rx . . . r i _ i ) _ 1 , At + Q(r0ri . . . r ^ i ) " 1 ) . 

The intervals Si or T t with the same index i will be called the intervals of the t'-th 
CO 

order. T h e set D = (J (IJ.Si) where the union is taken over all intervals Si of the 
t = 0 

t'-th order, is a Cantor discontinuum. 

We denote 

Qf = TiX [f,,-(r0 . . . r . . . ) - 1 , (f,. + f c ) ( r 0 . . . r , - ! ) " 1 ] , 

QT =Ti* l(Vi - ti)(ro • • • r . _ i ) " ' , »7,-(r0 . . . r . _ , ) " ' ] , 

Qi = QtnQr-

Now we can define the function / . Let us choose a sequence {/?/;}, k = 0, 1, 2, . . . 

such that 

oo 

(3) ft\0, £> = 00. 
k = Q 

and define 

л_) = 
'Ä^-^míQ,)) foг xЄІatQf, 

-ßip-^miQi))'1 for a r Є І n t Q - , 

, 0 elsewhere for _• Є [—1, 2] 2 . 

Note that in view of (2), / is Lebesgue integrable over any closed set II C [—1,2]2 

such that II H([0, 1] x {0}) = 0. Thus the following proposition can be applied to / . 

P r o p o s i t i o n . Let I C R" be an interval, / : / —• R, L C / a closed set, f(x) = 0 

for x G L. Assume tbat for every closed set H C I with H fl L = 0 the Lebesgue 

integral fH f = F(H) exists. Let q G R. Then the following two assertions are 

equivalent: 

(a) Mi J, f exists (Pffj f exists) and equals q; 

(b) for every £Q > 0 there is a gauge «5o: L —• (0, oo) such that | F ( / \ ( J J) —<_| ^ £n 
__. 
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for every S0-fine system A = {(/, J)} such that Int l j J D L, t G L for all (t,J) G A 
A 

and 

^ d ^ m ^ ^ J K ^ " 1 

A 

(reg^ J ^ So for all (t,J) G A, where T is the system of planes from Definition 2*). 

By F(M) we of course denote the (Lebesgue) integral off over M. Note that this 

proposition covers two notions of integral, namely the Mi-integral and the Pfeffer 

integral . Its analogue for the cv-regular Perron integral was proved in [4]. Since the 

proof of its present version is analogous (relying primarily upon the Saks-Henstock 

Lemma which is valid also for the integrals introduced and studied in the present 

paper), we omit it. 

In the next two lemmas we will prove assertion (b) from Proposition in the version 

corresponding to the Pfeffer integral, and disprove it in the version for the M\-

integral. It is clear that the only "candidate" for the value q of the integral is zero. 

L e m m a 1. Let e > 0, let p G N he such that 

(4) Ip-Zp > £ ~ \ 2/?p+1 $ £ 

and let S he a gauge on L = [0, 1] x {0} such that 

(5) ^ ) ^ ( ^ - ( p ) ( ' , o n - - - v i ) " 1 for x € L. 

Let A = {(/, J)} be a S-fine system in [—1,2]2 such that 

t e L , regjr J ^ e for ( I , J ) E A , 

Int|J D L. 
A 

Then 
X[ <e. •('\U')| 

P r o o f . If ( t ,J) G A then J n E = 0 for all E G T since T includes only the 

faces of I = [—1,2]2. Hence reg^ J = reg J and we can proceed as in the proof of 

Lemma 3 in [4] with the single change that r; is replaced by rjp. If F(Qr\\ J) ^ 0 

(which is the "dangerous" case) then writing J = [u, v] x [w,z] we obtain the crucial 

inequality in the form 

v - u ^ e(z -w)> e(i)i - &)(r0 . . . r ^ - i ) " 1 

>£(%> - ^ P ) ( r 0 . . . r z _ 1 ) - 1 > ( r o . - . r , - . ! ) " 1 
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(making use of the fact that reg J ^ e and i ^ p because of (5)). In the same way 

as in [4], est imating the number of intervals Q\ such that F(Q\ \ J) ^ 0 and adding 

the contributions over all intervals J of the system A, we arrive at the estimate 

|F(7\UJ)h|EF(^\UJ)h2^^ ^ 
A Q. A 

which proves the lemma and hence also the validity of (b) from Proposition for the 

Pfeffer integral and q = 0. D 

L e m m a 2. There exists e > 0 such that for every gauge 8 on L there are 6-fine 

systems A\, An in I satisfying 

teL for ( U ) 6 A , - , 

] T J ( J ) m n _ i ( c 9 J ) ^ e - \ hit ( J J D L, i= 1,2, 

A, A, 

E(/\[>)=o, 
A , 

F(l\{Jj)>e. 

P r o o f . First, let {(r/, [cr/_i, cr\]) ; / = 1 , . . . , s} be a oVfine partition of [—7, 1 -f-

7] where 0 < 7 < 1 and <$i(r) = 6(t) with / = (r, 0). Set 

Ai = {((T\,0),[<J1-\,(T\} x [-dh-d\ + a\ - < r / - i ] ) ; / = V...,.s} 

with 0 < d\ < (7\ — (7/_i chosen in such a way that 

-d\ + (j\ - <7/_i £ ((in -ti)(ro...Vi_\)-\(i)i + ( i ) ( r 0 . . . r i - i ) " 1 ) 

for i £ N (such a choice is evidently possible provided the conditions (2) are suitably 

specified, e.g. by assuming (?/, - & ) ( r 0 . . . r _ i ) _ 1 > (?;,•+! + & + i ) ( r 0 . . .r,-)""1)- T n e n 

Ai is a system in I satisfying 

J2 d(J)mn.x(dJ) = ]~~>, - <T\-\)A(<T\ - *t-i ^ 4(1 -f 27) 
A! Ai 

(provided we assume — without loss of generality — cr\ — a\_\ ^ 1). Choosing 

e < \(\ + 2 7 ) " l we find that Ai satisfies all conditions of Lemma 2 including 

F(I \ (J J) = 0 (since no J cuts any Qi "horizontally"). 
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R e rn a r k . This part of the proof requires a comment concerning the case n > 2. 

Then the first step of the proof consists in constructing a partition of [—7, 1 -f 7 ] n _ 1 

into (71 — l)-diniensional cubes (then the estimate of ^2 d(J)mn-\(dJ) is obtained 
A, 

similarly as above). Such a partition exists by virtue of the Cousin Lemma. It is 

even inessential tha t the interval to be partitioned is an (?i — l)-dimensional cube 

since by a strong version of the Cousin Lemma (see Appendix) any interval can 

be partitioned into intervals arbitrarily close to cubes, i.e. with reg J >̂ a , where 

0 < a < 1 is arbitrary. The above mentioned estimate than follows in the same way 

as above. 

P r o o f — c o n t i n u e d Let us now construct the partition A2 from Lemma 2. 

We proceed again similarly as in the proof of Lemma 4 [4]. 

Let 6 be a gauge on L and let us denote 

Wk = {«., € D; 6{(wi,0)) > fc"1}, k = 1 ,2 , . . . . 

By Baire's theorem on complete spaces there is p G N such that Wp is not nowhere 

dense, i.e. there are z G D and u> > 0 such that 

(i) Dr\[z-u,z + w]cC\Wv. 

CO 

Since D = f] (f)Si), there is a G N and an interval Sq of g-th order such that 
i = 0 

(ii) Sq C[z-u,z + u]\ 

without loss of generality we may and will assume that q is chosen such that (see 

(2)) 

(-") Vv(rorj . . . r ^ i ) - 1 < - . 
P 

Finally, since /30 -j- 0i -f- . . . = oo, there is m G N such that 

(iv) /?, + . - V l + . . . + / W £ 2 * . 

Now, there is one interval Tq of order q such that Tq C Sq, two intervals Fg+1 such 

that T^+i C .S'̂ , generally 2j intervals T 7 + i such that Tq+j C 5^ for j = 0, 1, . . ., m. 

Let us find numbers 9?g+j, 

( v ) - ( r o - . - r ^ - . O " 1 >V>g+j > C g + i ( ^ o . . . r g + i _ i ) - 1 
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such tha t all intervals 

Tq+j = (\q+j - Cq+j(rQ • • * rg+.7-l)~ i^q+j + V?<?+j) 

with j = 0, 1, . . ., ra are pairwise disjoint. Thus their closures are nonoverlapping 

and Hq+j = C\Tq+j C Sq+j C Sq. By virtue of (i), (ii) and (v) we find in each Hq+j 

a point Tq+j E Hq+j D Wp, set 

(6) J = H7+i x [ - V ( r o . . . ^ + i - i ) - 1 , ? / 7 + j ( r 0 . . . r 9 + i _ i ) - 1 ] , 

t = (r9+j , 0) 

with 0 a (sufficiently small) positive number, and include that pair (t,J) in the 

system A2. 

Now the complement of the union of the intervals Tq+j in [—7, 1 + 7], i.e. the set 

[—7, 1 + 7 ] \ U Tq+j consists of a finite number of intervals. Applying to each of them 

the procedure analogous to the construction of At in the preceding part of the proof, 

we complete the system A2 to a system covering the interval [—7, 1 + 7 ] as required, 

and we evidently have 

771 

t = 0 

where the inner sum is taken over all intervals corresponding to the intervals Hq+j 

constructed above. Taking into account the definition of / and the inequality (iv) 

we obtain 

F (I \ ( j J) = pq2-< + 2/?,+12-<*+1> + • • • + 2 m / ? , + m 2-< ' + m > ^ 1. 

It remains to estimate the value of ^d(J)mn-\(dJ). We split the sum into 

A 2 

two parts , one corresponding to the tagged intervals of the form (6) and the other 

corresponding to the intervals filling the gaps between the former. Since the latter 

are squares we have 
m 

Yd(J)mn^(dJ) = E + E ^ _>'(»»«+> +V;)(ro...r,+i_1)-
1 

A 2 1 2 j = 0 

x4(r.,+> + i>)(r0 . .. r,^-,)-1 + £ d(J) • Ad(J) 
o 

^ X>'+2(»,,+i +rl>)2(r0...r<l+j_l)-*+4j2<l2(J)-
}=0 2 
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Specifying the conditions (2) we certainly can make the first sum converge (e.g. by 

assuming ?/jt ^ r^-i and r* ^ r ^ - i + 1). The second sum is obviously bounded by 

a constant independent of the particular form of the system A2 (similarly as in the 

first part of the proof when Ai was constructed) . Hence 

^ d ( J ) 7 7 i n _ ! ( a J ) ^ C 

and choosing e ^ m i n ( l , C _ 1 ) we complete the proof. • 

R e m a r k . In [5] we have defined the ^-integral for g: (0, 00) —• [0, 1): A function 

/ : / —> R is D-integrable on I if there is a real number c such that for every e > 0 

there is a gauge 6 on I such that (1) holds for every 6-fine partition A of I satisfying 

r e g J ^ D ( J ( J ) ) for ( * , J ) e A . 

Modifying our method accordingly, namely, starting the proof of Lemma 1 with the 

inequality v — u ^ g(z — iu)(z — w) and making a suitable choice of the values of 7/^, 

we can prove the following result: 

For every g: (0,oo) —-> [0, 1) such that lim g(a) = 0 and every n > 1 there is a 
a—• 0-}-

function f: [—l,2]n —> R that is g-integrable but not M\-integrable on I. 

A P P E N D I X 

S t r o n g C o u s i n L e m m a . Let I\ C Rn be a compact interval, 0 < a < 1 ,6 : 

A' —> (0, 00). Then there exists a 6-fine a-regular partition of K. 

P r o o f . Denote Iv = [u\} v\] x . . . x [un, vn], Jt- — Vi — wt-, and assume d\ ^ Jt-

for f = l , 2 , . . . , n. We first construct an a-regular division of Iv, i.e. a finite family 

of a-regular nonoverlapping intervals whose union is Iv. 

For 2 = 1 , 2 , . . . , n find positive integers &,•, lt such that 

<7» 37 <T <*"£ 
(we will assume k\ = l\ = 1). Denote l = lil2 . . . ln and cut each interval [t-i,u,-] 

into kil/li congruent subintervals. Forming all possible Cartesian products of n such 

intervals, in which the i-th factor is a subinterval of [ut, vt], we obtain a division of 

Iv , and by routine application of (7) we find that it is a-regular. 

Now, applying the classical Cousin Lemma to each of the intervals of this division, 

we obtain its o~-fine partition into similar intervals (i.e., with the same regularity) 

by halving the edges and using the standard compactness argument. The set whose 

elements are all tagged intervals thus obtained forms the desired 6-fine a-regular 

parti t ion of K. • 
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