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In [1] the author proved that every M,-integrable function (see [2]) is Pfeffer
integrable (see [3]). The aim of this note is to disprove the converse inclusion by
constructing a function that is Pfeffer-integrable but not Af;-integrable. We will do
so by modifying our construction from [4] or [5].

Let us recall the relevant notation and definitions. We will work in a Euclidean
space R™ n > 1 with the maximun norm ||z|| = max{|z;|; ¢ = 1,2,...,n}. For a
set Al C R™ we denote by d(M), OM, Int M, CI M, m(M) the diameter, boundary,
interior, closure and Lebesgue measure of M. All intervals considered, if not stated
otherwise, are assutned to be compact and nondegenerate. We also write V (¢, 7) =
{zeR";||lz—t||<r}forte R »>0.

Given an interval I C R", a finite family of tagged intervals A = {(z, J)} with
r € J C I where the intervals J are nonoverlapping is called a system in I; it is called
a partition of I if, moreover, the union of J’s is I. Given é: I — (0,00) (a gauge),
a tagged interval (x,.J) is called é-fine if J C V(x,6(x)). Given o, 0 < a < 1, then
an interval J 1s called a-regular if reg J > «, where reg J (the regularity) stands for
the ratio of the minimal and the maximal edge of J. A system in [ is called §-fine
or a-regular if all its members are é-fine or a-regular, respectively.

Given k € {0,1,...,n— 1} then any k-dimensional linear manifold £ in R™ which
is parallel to & distinct coordinate axes will be called a plane (of dimension k). If

J =[a), 0] x ... x [an,b,] and E is a k-plane parallel to the zj,-axes, i = 1, 2, ...
k, we define:

)

regpJ =regJ if JNE=4{;

This research was supported by grant No. 11928 GA of the Czechoslovak Academy of
Sciences.

47



if JONE #0, then

regg J = min{b;, —a;,;i=1,2,... k}/d(J) if k#0,
reggJ =1 if k=0

Let &€ be a finite fainily of planes. Then we define

rege J = max{regp J; E€ &} if E£#0,
regyg J =regJ.

Now let I C R™ be an interval, f: I — R.

Definition 1 [2]. The function f is M;-integrable on I if there is a real number
¢ such that for every € > 0 there is a gauge é on [ such that

(1)

c— Zf(:c)m(.])‘ <e
A

for every 6-fine partition A = {(z,J)} of I such that

Z d(J)my,_1(0J) < e !

A

(the quantity on the left-hand side was called the measure of irregularity in [2]).

Remark. We have formally modified the definition by replacing the arbitrary
constant A by e~! to make it more similar to Pfeffer’s definition. It is easy to see
that it is equivalent to the definition of Mj-integrability in [2] or [1].

Definition 2 [3]. The function f is Pfeffer-integrable on I if there is a real
number ¢ such that for every € > 0 and any finite family & of planes there is a gauge
6 on I such that (1) holds for every é-fine partition A of I such that

regeJ >¢  for (z,J)€A.

It is evident that ¢ from Definition 1 or 2, if it exists, is uniquely determined; we
write c = My [, for e = Pf [, f, respectively.

In [6] we have introduced the notion of weak Pfeffer integrability. Since we have
proved that it is equivalent to the above defined Pfeffer integrability, we can forinulate

Definition 2 equivalently in the following form.
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Definition 2* [6]. The function f is Pfeffer integrable on I if there is a real ¢
such that for every € > 0 there is a gauge § on I such that (1) holds for every é-fine
partition A of T such that

regrJ 2¢ for (z,J)€A,

where F is the family of all k-planes which contain 2* vertices of I, k = 0, 1, ...,
n—1.

Theorem. Forn > | there is a function f: [-1,2]* — R that is Pfeffer-integrable
but not M, -integrable on 1

To construct the function f we will use the idea from [4], replacing the constant
1n by a sequence 7 as in [5]. To avoid technical details which are identical to those
from [4] we will suppose n = 2; the generalization of our construction to n > 2 is

straightforward, involving more or less just forming Cartesian products of some sets.

Construction. Let us choose sequences {7}, {&}, {m}, £ =0, 1, 2, ...
such that

1
(2) 3L /S o, 3 >& N0, 1<y /oo, m(rorr...re—1)”" P \W 0

(their further properties will be specified later) and set
1 -1
Ck = §(l - 21'k .

First, we construct a Cantor discontinuum on [0,1]. Set So = [0,1], Ao = %,To =
(Ao — €o, A0 + Co). The set. Sp \ Tp is the union of two compact intervals. Let us
denote any of them by S| and its center by A;; then S; = [/\1 - %1’[{1,/\1 + %7'6’1]
and we set 77 = (A — (,1*5’,,\1 +C1rgl).

The general step of the construction is described as follows: let ¢ € N and let us
have 2!~! pairwise disjoint compact intervals

. 1 - 1 -
Si—1 = [/\i—l - 5(7’01‘1 ...Ti—2) 1,/\,'_1 + 5(1'01‘1 .. .T',‘_z) 1]
and the same nuiber of open intervals

Tici = (Micy = Gima(rory oo oriz2) ™ Micy 4+ Gima (rory - o 1i2a) 7).
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Each set S;_; \ T;—1 (where S;_1, T;—1 have the same center) is the union of two
compact intervals which we can write in the form

, 1 _ 1 _
Si = [,\,- — §(r0r1 ceaTict) Ui+ —2-(1‘01'1 S Tisy) l};

we set
Ti = (M = Glrory...ric)) ™ X + Gilrory . mim) ™).
The intervals S; or T, with the same index i will be called the intervals of the i-th

order. The set D = U (U S:i) where the union is taken over all intervals S; of the

i-th order, is a Cant01 (hscontmuum
We denote

QFf =T x [mi(ro...rica) ™ (i +&)(ro .. .riz1) ™',
Qr =T x (i —&)ro--.riz1) ™ ymi(ro .. .rizy) ™Y,
Qi=QtnQ;.

Now we can define the function f. Let us choose a sequence {8}, k=0,1,2, ...
such that

(3) B\O, D Bi=

and define

B (‘2‘A"lm(Qi))_I for zentQ},
f(z) =14 —B; (2"‘1111((),-))_1 for z€ntQ;,
0 elsewhere for z € [-1,2]%

Note that in view of (2), f is Lebesgue integrable over any closed set. /I C [—1,2]?
such that H N ([0, 1] x {0}) = 0. Thus the following proposition can be applied to f.

Proposition. Let I C R" be an interval, f: [ — R, L C I a closed set, f(z) =0
for r € L. Assume that for every closed set H C I with H N L = @ the Lebesgue
integral [, f = F(H) exists. Let ¢ € R. Then the following two assertions are
equivalent:

(a) M, fl f exists (Pf fl f exists) and equals q;

(b) for every o > 0 there is a gauge 8: L — (0, 00) such that |F(I\UJ) —q| < €0

a
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for every bo-fine system A = {(t,J)} such that Int|JJ D L,t € L forall (t,J) € A
A
and
Z d(J)ymp-1(0J) < Eal

a
(regr J > ¢€o for all (t,J) € A, where F is the system of planes from Definition 2").

By F(M) we of course denote the (Lebesgue) integral of f over M. Note that this
proposition covers two notions of integral, namely the M;-integral and the Pfeffer
integral. Its analogue for the a-regular Perron integral was proved in [4]. Since the
proof of its present version is analogous (relying primarily upon the Saks-Henstock
Lemnma which is valid also for the integrals introduced and studied in the present
paper), we omit it.

In the next two leminas we will prove assertion (b) from Proposition in the version
corresponding to the Pfeffer integral, and disprove it in the version for the M-

integral. It is clear that the only “candidate” for the value ¢ of the integral is zero.
Lemma 1. Let € > 0, let p € N be such that
(4) =& >, 2Bpp1 <€
and let 6 be a gauge on L = [0, 1] x {0} such that
(5) §(z) < (mp —&)(rory ...Tp1)™t for z€L.
Let A = {(t', J)} be a é-fine system in [—1,2]? such that
teL, regrJ>2e for (1,J)€A,

Int U O L.
A

Then

IF(I\UJ)]gs.
A

Proof. If(¢t,J) € A then JNE = 0§ for all E € F since F includes only the
faces of 1 = [—1,2]%. Hence regr J = regJ and we can proceed as in the proof of
Lemma 3 in [4] with the single change that 7 is replaced by 7,. If F(Q; \ J) # 0
(which is the “dangerous” case) then writing J = [u, v] x [w, 2] we obtain the crucial
inequality in the form

v—uze(z—w)>e(n—&)(ro...ri-1)""
> e(np —&)(ro- - i) > (ro-. .r,~_1)_l
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(making use of the fact that reg.J > € and i > p because of (5)). In the same way
as in [4], estimating the number of intervals (); such that F(Q;\ J) # 0 and adding
the contributions over all intervals J of the system A, we arrive at the estimate

P [T r(eay)] <2h <=

which proves the lemma and hence also the validity of (b) from Proposition for the
Pfeffer integral and ¢ = 0. 0

Lemma 2. There exists € > 0 such that for every gauge é on L there are é-fine
systems Ay, As in [ satisfying

teL for (t,J)€A;

Y o d(J)ma(@)) < | DL, i=1,2,
A, A,

and

r(n\Us) =o,
F(I\LAJZJ) > e

Proof. First,let {(m,[o1-1,01]);: 1 = 1,...,s} be a §-fine partition of [—7, 1 +
v] where 0 < v < 1 and é;(7) = 8(t) with t = (7,0). Set

Al = {((TI,O),[UI_l,O'l] X [—(h,-dl +0’1 - (71_1]); l = l,...,s}

with 0 < d; < 07 — 0y_) chosen in such a way that

—di+or—o—1 ¢ (i — &) (ro...vic) ™ (i + &) (ro. . .7iz1) ™)

for 7 € N (such a choice is evidently possible provided the conditions (2) are suitably
specified, e.g. by assuming (1; —&)(ro .. 7i—1) ™! > (i1 +E41)(r0 ... 7)™ ). Then
Aq is a systemn in [ satisfying

Z d(J)ymn-1(0J) = Z(m —o)A(or —oi-y <4(1+ 2y)

Ay Ay

(provided we assume — without loss of generality — oy — oy—; < 1). Choosing
€ < (1 +2y)7" we find that A, satisfies all conditions of Lemma 2 including
F(I\UJ) =0 (since no J cuts any Q; “horizontally”).

Ay
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Remark. This part of the proof requires a comment concerning the case n > 2.
Then the first step of the proof consists in constructing a partition of [—y, 1 +v]*~!

into (n — 1)-dimensional cubes (then the estimate of Y d(.J)mp_1(8J) is obtained
Ay
sinilarly as above). Such a partition exists by virtue of the Cousin Lemma. It is

even inessential that the interval to be partitioned is an (n — 1)-dimensional cube
since by a strong version of the Cousin Lemma (see Appendix) any interval can
be partitioned into intervals arbitrarily close to cubes, i.e. with regJ > a, where
0 < o < 1 1s arbitrary. The above mentioned estimate than follows in the same way
as above.

Proof—continued Let us now construct the partition A, from Lemma 2.
We proceed again similarly as in the proof of Lemma 4 [4].
Let 8 be a gauge on L and let us denote

Wi = {wl €D; 6((w1,0)) > k—l}, k=1,2,....

By Baire’s theorem on complete spaces there is p € N such that W), is not nowhere
dense, 1.e. there are = € D and w > 0 such that

(1) DNiz-w,z4+w]C ClW,.
Since D = (] ([ S:), there is ¢ € N and an interval S, of ¢-th order such that
i=0

(i1) SqClze—w,z+w];

without loss of generality we may and will assunie that ¢ is chosen such that (see

(2)

_ 1
(iii) Ne(rory...rg1)” < =,

P
Finally, since o + 81 + ... = 0o, there is m € N such that
(IV) ﬂq +ﬂq+1 + “'+#3q+m 2 2q.

Now, there is one interval Ty of order ¢ such that Ty, C S,, two intervals T4, such
that Ty41 C S,, generally 27 intervals Ty4; such that Tyy; C Sy for j=0,1, ..., m.
Let us find numbers g4,

] _ _
(v) 5("0---Tq+j-n) '> g4 > Coai(ro. . mgpj1)!
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such that all intervals

Tyri = (Mgt = Gt (To - Taai—1) ™ Agas + 0gti)

with j = 0, I, ..., m are pairwise disjoint. Thus their closures are nonoverlapping
and Hyq; = Cl f’q+j C Sg+j C Sg. By virtue of (i), (ii) and (v) we find in each H g4 ;
a point T,4; € Hyy; NW,, set

(6) J = Hyyj x [=(ro .. .rq+j_l)'l,nq+j(1'0 .. .rq+j..1)_l],
t = (74+;,0)

with 9 a (sufficiently small) positive number, and include that pair (¢,J) in the
system As.

Now the con;xplement of the union of the intervals Ty4; in [—7, 1 4 9], i.e. the set
[—=7, 149)\U Ty+; consists of a finite number of intervals. Applying to each of them
the procedure analogous to the construction of A in the preceding part of the proof,
we complete the systemn Aj to a systein covering the interval [—v, 1+ 7] as required,
and we evidently have

m

4 — A +
F(NUY) = 23 F@),
Az 1=0
where the inner sum is taken over all intervals corresponding to the intervals {4 ;

constructed above. Taking into account the definition of f and the inequality (iv)

we obtain

F (1 \UJ J) = B2+ 2B, 27D om0 () 5
Az

It remains to estimate the value of Y d(J)m,_1(8J). We split the sumn into
Az
two parts, one corresponding to the tagged intervals of the form (6) and the other

corresponding to the intervals filling the gaps between the former. Since the latter
are squares we have

Z(I(J)m,,_l(aJ) = Z+Z < ZQj(7lq+j +¥)(ro...rgpi-1)7"
1 2

Az ji=0
x4(ng4; +P)(ro . rgpi—1) "+ Y d(J) - 4d(J)

[e°)

< ZQHZ(UH]‘ + ) (0. . repi—1) T 4 42(12“).
j=0 2



Specifying the conditions (2) we certainly can make the first sum converge (e.g. by
assuming 7 < k-1 and rg > 71 + 1). The second sumn is obviously bounded by
a constant independent of the particular form of the system A, (similarly as in the
first part of the proof when A, was constructed). Hence

> d(J)yma_1(8J) < C
Az

and choosing € < min(1,C~!) we complete the proof. a

Remark. In[5]wehave defined the g-integral for p: (0,00) — [0,1): A function
f: I — R is p-integrable on [ if there is a real number ¢ such that for every ¢ > 0
there is a gauge é on I such that (1) holds for every é-fine partition A of I satisfying

regJ > o(d(J)) for (t,J)€A.

Modifying our method accordingly, namely, starting the proof of Lemma | with the
inequality v — u > p(z — w)(z — w) and making a suitable choice of the values of 7,
we can prove the following result:

For every ¢: (0,00) — [0,1) such that lix})}+ o(0) = 0 and every n > 1 there is a
o—
function f:[—1,2]" — R that is p-integrable but not M;-integrable on I.

APPENDIX

Strong Cousin Lemma. Let K C R™ be a compact interval, 0 < a < 1, §:

K — (0,00). Then there exists a é6-fine a-regular partition of K.

Proof. Denote K = [uj,v1] X ... X [un, vy}, di — v; — u;, and assume d; < d;
fori=1, 2, ..., n. Wefirst construct an a-regular division of K, i.e. a finite family
of -regular nonoverlapping intervals whose union is K.

For i =1, 2, ..., nfind positive integers k;, {; such that

l‘l,‘ k,' 1 (li
7 — < — < a " —
(7) 4G 5"
(we will assume ky = [, = 1). Denote | = l1l5...1, and cut each interval [u;, v;]

into k;l/l; congruent subintervals. Forming all possible Cartesian products of n such
intervals, in which the i-th factor is a subinterval of [u;, v;], we obtain a division of
K, and by routine application of (7) we find that it is a-regular.

Now, applying the classical Cousin Lenuna to each of the intervals of this division,
we obtain its é-fine partition into similar intervals (i.e., with the same regularity)
by halving the edges and using the standard compactness argument. The set whose
elements are all tagged intervals thus obtained forms the desired é-fine a-regular
partition of K. O
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