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Czechoslovak Mathemat ica l Journal , 44 (119) 1994, P r a h a 

ON THE DISTRIBUTION OF MULTIPLICITIES OF ZEROS 

OF RIEMANN ZETA FUNCTION 

J A N MOSER,1 Brat islava 

(Received April 8, 1992) 

1. FORMULATION OF RESULTS 

In the present paper, studying the classical Hardy-Littlewood theorem on the 
distribution of zeros of the function C(f + it) we obtain new results concerning the 
distribution of multiplicities of zeros of the function £(s), s = a+it in some rectangles 
of the critical strip. 

In 1918 Hardy and Littlewood proved a theorem (see [2], pp. 177-184) improving 
a theorem of Hardy from 1914 (see [1]), which can be formulated in the following 
way: for every sufficiently large T > 0 the interval 

(T,T + Ti+2u) 

(0 < LO an arbitrarily small number) contains a zero t = 7 of the function C(^ + it) 
for which 

2{n( 7 ) 

where 71(7) is the multiplicity of the zero t = 7. 
This form of the Hardy-Littlewood theorem makes it possible to extend the theo

rem from the critical straight line to the critical strip in the following way. 
Let n(g) denote the multiplicity of a nontrivial zero g = (3 + ij of the function 

((s). Then the following theorem holds. 

Theorem. If 

(1) «s) = 0( l"+"/ 2) , 1^(7 , O ^ a ^ i 
2 6 

1 Suppor ted by Gran t GA-SAV 3G3 
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tijejj for all sufficiently large T > 0 the rectangle 

(2) Qk(a,u>) = {s:o€ (0,1), t€ (T,T + Hk(a,w))}, 

Hk(a,w)=T^+a+2u^ 

contains a zero g satisfying 

(3) 2*fn(ê), 

where 

k = a,g + l , . . . , f c 0 , k o = ^ ( T ) l n l n T J 

(4) 
9 = Qk{a) = 

tl>(T)\ 

3 + [8a], if 8a is noninteger, 

2 + 8a, if 8a is integer 

(q is obtained from the condition (£ + a)£ ^ | J and 0 < -0(f) is a function growing 
arbitrarily slowly to oo for T —•> oo. 

Since we have (see [7], pp.97, 109) 

(5) C(«) = 0(1 / 6 + w!2), i^<r, 

i.e. a = 1/6 (see (1)) independently of any hypothesis, Theorem yields 

Corollary 1. For every sufficiently large T > 0 the rectangle 

(6) Q , ( i , u ; ) = { s : O G ( 0 , l ) , f G ( T , T + H,(i,u;))}, 

contains a zej*o /} satisfying 2k f 7i(£), where 

(7) k = 4,5,...,A;0. 

R e m a r k 1. Until now, the existing values of a in (1) represent no essential 
improvement of the value 1/6 which we have used in (5). 
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Consequently, Corollary 1 implies: 

the rectangle 

QЛ^OJ) = {s:aЄ (0,1),Í Є ( T T + Г * + ђ } 

contains a zero Q satisfying 8 { n(o), 

the rectangle 

Q 5 ( ^ ) = { s : ^ ( 0 , l ) , ( € ( T , T + r n + T ) } 

contains a zero Q satisfying 10 \ n(g), etc. 

Taking into account Lindellof s conjecture (see [7], p. 323) 

as) = 0(t"'% \^a, 

i.e. a = 0 (see (1)), Theorem implies 

Corollary 2. By Lindellof's conjecture, for every sufficiently large T > 0 the 

rectangle 

(8) Q*(0,u;) = {s: a G (0,1),* G (T,T + T ^ + ^ ) } 

contains a zero Q satisfying 2k \ U(Q), where 

(9) fc = 2,3,...,fed. 

Consequently, using Corollary 2 we have: 

the rectangle 

Q2(0,u;) = {*: o G (0,1), t G (T,T+ &+»)} 

contains a zero Q satisfying 4 \ U(Q), etc. 

R e m a r k 2. Let us explicitly point out the influence of Lindellofs conjecture 

on the initial values k (cf. (7), (9)). 

Further (see (2), (7)), we have 

Hk(a,u) G ( ( l n T ) « i + ^ + o ( D W r ) j r A + j \ 
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R e m a r k 3. Consequently, Theorem is valid even for rectangles Qk(a,uj) of 

"very small" height Hk(a,uj) (in the context of the results on the critical line), say 

(using tf£ from (6)) 

5 „ \ InT яй~(inг) 1»'» 1» г, żõ~(A + 2 w ) 
l n l n T - l n l n l n Г ' 

It seems probable that the method of trigonometric sums does not extend to intervals 

of length ( l n T ) ^ T ) . It would be interesting to compare this result with a remark by 

I. M. Vinogradov (see [4], p. 13, lines 4-8 from below) concerning the possibilities 

of the method of trigonometric sums for an estimate of the remainder in the law of 

distribution of prime numbers. 

Let us further recall that for the distribution of multiplicities of zeros of the func

tion C(s) we have the estimate (see [7], p. 209) 

(10) 1 ^n(g) ^ AlnT. 

The condition (10) has been, until now, the only information concerning the distri

bution of multiplicities n(g) in rectangles Qk(a,u) (see (2), (6), (8)). Nonetheless, 

the condition (10) offers a great number of possibilities for the distribution of mul

tiplicities. In connection with this fact we make 

R e m a r k 4. The above theorem (see also Corollaries 1,2) excludes a great 

number of types of the distribution of multiplicities of zeros of the function ((s), 

s G Qk(a,u) which are permitted by the condition (10). 

Finally, let us note that the crucial moment of the proof of Theorem is the ap

plication of the properties of univalent analytic branches of multivalued functions 

(cf. [5], [6]) 

where (see [7], pp. 81, 94) 

(11) G(s) = {X(s)}-l/2as), X(s) = 
Г(s) cos -ÿ * 

Here the zeros of the function ((s) are the branching points of the multivalued 

functions. 

The subsequent sections of the paper contain the proof of Theorem. 
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2. LEMMA ON TRIGONOMETRIC INTEGRALS 

L e m m a 1. Let 

(12) <p{t;k,n) = ^ - t \ n n , i?x(«) = | In - ^ - | - g. 

Then for an arbitrary sufficiently large T > 0 we have 

T+Hk 

(13) / e i* , (' ; fc>n) dt = o ( l ) , n = l, 

' ( h T i ) ' 2 < n < [P1 / f e] = r, P : 

T 

01 

where fc = 2, 3, . . ., fc0, H/c = Hk(a,u) (see (2), (4),. 

P r o o f . (A) Since 

^;^M) = 4 l n ^ ^ l n | = ilnP, *fc =-L >0 

for t G (T,T + Hjt), we obtain (see [7], p. 73, Lemma 1) an estimate 

T+// fc 

/^*.0(ІŁІ).0(ІŁ).«] 

(see (4)), which is the first estimate in (13). 
(B) If 2 <C n< [Pl/k] = r, then 

1 pl/A: 
(14) (/?',(£; fc,?i) ̂  - l n P - l n ? i = ln ^ hi - > 0, u"2 > 0, 

fc n n 

and in the same way as in the case (A) we obtain an estimate 

T+Hk 

I e
i v , ( t ;*'n ) At = o ( r ^ ) , 

T 

i.e. the second estimate in (13). 

389 



(C) If n > r + 1 = r ' then, since 

r + 2 / 1 \ / T \ - - / 2 * 

r + 1 r + 1 V r + 1/ V2n/ 

fcT 
Я / г 0(Т-1+тfe+%1) = o(Т-Ä+2ш), 

we obtain (cf. (14)) 

1 , í . , 1 , Т + Яfc 
- ^ ř ; f c , n ) = l n n - - l n - ^ l n n - - l n 2 п 

---5-S-5-(I + * ) = - i ^ + 0 ( i # ) 

>'»fp4n + 0(§) = '»^T + 0(i)>5'"7fT>^ 
-*# < o. 

Consequently, the estimate 

T+tffc 

T T 

liolds, which is the last estimate in (13). D 

3 . INFINITE SUM OF TRIGONOMETRIC INTEGRALS 

For a > 1 let us put (cf. [3], p. 11, [5], [6]) 

(15) {((s)}± =JT^±, Qi(fc) = l, k = 2,3,...,A;0, 
7 1 = 1 

where we fix the branch of the multivalued function for which {((cr)}1^ > 0. 

Using the Euler product we obtain 

{a*)}*=n^ - p _ s ) ^ = n E M H ,„* jp""15 

p p 771 = 0 ^ ' 

(where p ranges over prime numbers). Since 

\m I k 
o<(-Dm( n ; н i , 
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1 
k 

ni \ 

we conclude that 

Qn(fc) = ( - l ) m i + - + m f ~ M . . . ( _ f c ) , n = 2 ,3 , . . . . 

for n = pmi • pm2.. .pm'. Consequently, 

(16) 0 < a n ( * ) ^ l , n = l , 2 , . . . . 

Lemma 2 . 

oo T + / / f c 

(17) E ^ r - / e^ f c ' " )dt=o( l ) , fc = 2,3,...,fc0. 
n = l rp 

P r o o f . First of all, by virtue of (13), (15) wre have 

T+Hk 

(18) ai(fc)- / ei,p{t''k>1) dt = o(l). 

T 

Further (see (13), the second estimate), 

2 ^ n < r n 2 ^ n < § f ^ n < r 

Evidently (see (16)), 

^n=-2 

For T3 we have 

ъ = ø(E;^)=o(i). 
x <n-=9 / 

(19) h i - = In----- = -In ( l - - ) > . 4 - , . = 1,...,L, L <. J, 
11 T — I \ T J T 2 

and, consequently (see (16)), 

*3 = O(T. E 7i+b)= 0(^) = 0 ( T"" l n T ) ' 

^ 1 < / < Z . / 

Using (4) wre obtain 

(20) l i = 0 ( l ) + 0 ( T " f t •lnT) = 0 ( l ) - f - 0 ( T ~ ^ " -lnT) = 0 ( l ) . 391 



Q » ( f c ) _ \ . X T _ T 
— J5 + XQ . 

Now let us set (see (13), the last estimate) 

T _ V * Qn(k) _ V~ V-> 
X4 " Z_ ni+u, l n 4 - z_ + z_ 

T ' < ™ T r'<n^|r' |r'<n 

For J5 we have (cf. (19)) 

l n ^ = l n " ^ = l n ( 1 + ^ ) > ^ . / = ! , . . . , L i , L i < 

This implies (cf. T3) 

X5 - 0 ( r ~ f t inT) = 0(T~^T InT) = O(l). 

Since evidently 1$ = 0(1), we have 

(21) 2 4 = 0 ( 1 ) . 

For the other terms of the infinite sum we have 

T+Hh 

(22) £ £§• / e^>d*=o(î ) 

= 0(Hfc • T " A - - ^ ) = 0 ( T - ( 4 - a - 2 " H ) 

= 0 ( T " ( ^ ~ 2 u ; ) ^ ) - = o ( l ) . 

Finally, by virtue of (18), (20), (22) we arrive at the estimate (17). D 

4. T H E CHOICE OF THE UNIVALENT BRANCH OF THE FUNCTION { ( (S )} 1 / A : 

Let us denote by 11^ the rectangle with vertices at the points 

i + iT, i + i(T + Hk), 1 + CJ + i(T + Hk), 1+UJ + IT. 

Without loss of generality we may assume that the horizontal segments joining the 
points 1/2 + iT, 1 + UJ + iT and 1/2 + i(T + Hk), 1 + UJ + i(T + Hk), respectively, do 
not contain zeros of the function ((5). 

Let Qr,i be zeros of the function ((s) lying in the rectangle IT ,̂ i.e. 

Qr,l = Pr + igr,/, V = 0, 1, . . . , ??2, / = 1, . . . , LV 

392 



(of course, pr = pr(a, k,u;)), where 

^ / ? r < l , T < 7 r , / < T + Hfc ( A ) = ^ ) -

The zeros grj arc the branching points of the multivalued function {C(s)}l^k. 

Let us define a contour Ck(e) C IU- in the following way: 

m 

Ck(e) = Lk(e) U M0
M U { \J {Lk(e) U Mk<1)} U j £ + 1 U M2, 

where 
(A) Lo(^) is the segment joining the points | + iT, | + i(T + Hk) modified by 

semicircles lying in n*; we circumvent the zero Do,/> / = 1, - - -»jPo along a semicircle 
with center at D0,. and radius e (0 < e an arbitrarily small number), 

(B) Lk(e) = Lk>l(e)ULk>2(e), r = 1, . . . , m where L^1^) is the left "bank" of the 
cut joining the points 

(3r + i(T + Hk), f3k+ hr,Pr = Qr,Pr, 

modified by small semicircles (we circumvent a point Dr>/, I = 1, . . . , pr along the left 

semicircle with center at this point and radius E) and Lk>2(e) is the right "bank" of 

the cut joining the points 

QrtPr, (3r + i(T + Hk) 

(now the point Dr>/, I = 1, . . . , pr is circumvented along a small right semicircle), 
(C) Lk

x+l is the segment joining the points 

l+c . j + i(T + Hfc), l + u ; + iT, 

(D) M 0 ' is the segment joining the points 

i + i(T + Hfc), ft+icr + tf*), 

Mk,i is the segment joining the points 

Pr + i(T + Hk), /Jr+i + i(T + HO, r = 1 , . . . , m - 1, 

M^'1 is the segment joining the points 

/?m + i(T + HO, 1 + a; + i(T + Hfc), 
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(E) A/2 is the point joining the points 

1 + LJ + iF, -+YT 

and closing the contour Ck(e). 

Let us denote by Dk(e) the domain bounded by the contour Ck(s). Since 

(23) C W ^ O , seDk(e), 

the multivalued function {((s)}1//k splits in Dk(e) into k univalent analytic branches. 

Now we fix the desired analytic branch—let us denote it by {C(5)}n —by the 

condition (£(± + iF) 7-0) 

(24) ( c ( . + i r ) ) * = |c(I + i r ) |v e x p { i-<ii±i2 } ; 

doing so we have to observe continuous change of the argument of the function 

{C(5)}o a l ° n g the contour Ck(s). 

Finally, let us introduce a contour 

(25) Ck = \miCk(e). 
£-->0 

5. INTEGRALS OF THE FUNCTION {C(s)}J/fc ALONG THE SEGMENT 

OF THE CONTOUR Ck 

Let nr,q = n(gr,q) be the multiplicity of the zero gr,q. Let us set 

/ 

(26) Ar>/ = 7 :X/ / V ' f " ' = 1>---.:Pr, 
Jb 

4=1 

Д r = Д o > 7 , „ + 2 ^ Д ; > ř ) , . , r = 0,l , . . . 
(=1 

(of course, ^2X = 0 ) . 
Further, let (see (25)) 

(27) Lk
r = lim L*(e), r = 0 , 1 , . . . ,m. 

394 



Lemma 3. 

ro,i 

(28) J ШŰ ds = i J {C(A> + i^)} ł dí 

^o т 

p o - i 7 , | ; + 1 T + , Я Ł 

+ І ^ C І Д O , J + І ІД". y , 

/ _ 1 7 o . i 70, iҷ, 

T+/1A: 

(29) / {C(5)}| d5 = ie І A ' _ 1 • ( e i 2 A - - - 1) • J {Ç(ßr + i^)}ł dt 
Lk 7r. i 

7r,i 

, i ( Д * ' ~ Ч Д t л ) ( e i 2 ( A f , | ł r - Д , л ) „ 1 ) . ľ + . . . 

7r,2 
7r.,,,.-i 

І Є І ^ - Ч Д , , , - ! ) . ( e i 2 ( Д , , ł , r - Д , , ï , r - i ) _ X) . /" ? 

for Г = 1, . . ., 77І, 

T+Я,, 

(30) / {C(s)}î ds = -ie i д m • J {C(l + w + ií)}ł dt, 
ь „ . + i T 

(31) / {C(s)}j ds = eiA" • J {Q(a + i(T + fffe)) } * da 

M*-1 1/2 

A- i+« 

+ ge-./ + e-./, 
r _ 1 0 , _ i /?„• 

711 

where M M = (J M*'1, and finally 
r = 0 

l+u> 

(32) J {C(s)}£ ds = -ie iA '" • J {C(<r + iT)}* da . 

M2 ' 1/2 
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P r o o f . (A) First of all, we have 

(33) {C(*)}! = { c ( i + i t ) } ^ , *e(r ,7o. i -e>, 

where the value at the point \ + iT is given by the condition (24). 

In the neighborhood of the zero Oo,i = \ + i7o,i of multiplicity 7?o,i we have 

as) = (s-L>OA)nul-F(s), F(eo,i)?0, 

where F(s) is an analytic function. Consequently, 

(34) argC(s) = ?i0,i • arg(s - D0,i) + argF(s). 

Since on the semicircle joining the points |+i(7o,i —-), |+i(7o,i +-) the increments 
of the arguments standing on the right hand side of (34) satisfy 

A a r g ( s - £o,i) = *, AargF(s) = o(l), e -» 0 

we have 

AargC(s) = 71710,1 +o( l ) , 

and hence 

Дarg{C(s)}0

fc = - ? ю , i + o ( l ) . 
k 

Consequently (cf. (33)), 

{Q(s))l = {C(^ + -*) } " • exp {i^7L0,i + o(l)}, 

t e (70,1 +£,7o,2 - - ) , 

which for s -> 0 yields (see also (26)) 

(35) {C(s)}l = { c ( ^ + i « ) } r - c i A | 1 1 , .6(70,1,70,2). 

Analogously we obtain 

(36) {C(s)}! = { c ( 2 + i * ) } r - e i A " ' 2 ' *€ (70,2,70,3),.. 

{<;(*)}! = {C(|+i*)}* •e'A"' tZito^T + H,,) 

396 

D 



R e m a r k 5. In (35), (3G) as well as in all other analogous cases we explicitly 

write the factor (constant in the corresponding interval) related to the increment of 

the argument corresponding to one circumvention of the branching point. 

Taking into account the above argument, in virtue of (26), (27), (33), (35), (36), . . . 

we obtain (28). 

(B) By virtue of (A) we arrive at the point /3i + i(T + Hk) with the value 

(37) {C(s)}! = {C(/?i+i(T + tf,))V-eiA°. 

Further (see Sec. 4, point (B)), we obtain quite analogously to (A) the relations 

(38) J {C(s)}l ds = lm,o J {C(s)}$ds 

) 
T+Hk 

L\\e) 

= - ІЄІA" • I {C(Д + ií)}* dí - ieІA" • e І A l 1 • Í 
71 

' l , ľ l - 2 7 1 . , , ! 

í _ i e i - " . e i Д . , . . - . . í 

71,1 71.2 

7 1 , , < i - 2 7 i . , , _ - i 

- i e i A ° . e
i A l - " - - 2 • 

7 1 . , < i - i 

(39) J ШŰds = lim J {Q(s)}lds 
r A : , 2 / _ 

L i (є) 

7 1 . , Ч - 1 

_ _ i e i ( д Ч Д i . ; i l - i ) .e^nUl>1 . ľ 

Ti.i-i 

7 1 . M - 2 

+ i e i ( A ( ) + A l i ' i - 1 ) • e i T l n i ' P l + i T n i ' P i _ 1 . / + _ 

7 l . , , ! - l 

71,1 

+ i e i ( A ° + A l l ' i - 1 ) . e i ( í r n i í ' i + A l ^ ' i - 1 _ A l 1 ) • / 

71,2 

T+tffc 
+ ieKAЧДi.^-i) . e i ( ¥ n i . м + д i . ľ i - i ) . / 

As, for example, 

A 0 + A i , P l _ i + -^íii, í, 1 +AlyPl.1 = A° + 2 A l i P l , 
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we have by virtue of (38), (39) 

(40) J{<(s)}$ds= J + J 
r k , 1 Л : ,2 

Ьl Ьl 

= ie i A " • ( e i 2 A 

T+Я„ 

- 1 » - / 
7i . i 

7 i . i 

+ ieK--0+Ai.i) . (^(A^^-A,,!) _xy í + 

71.2 

+ iei(AU+Al"i-2) • (e i2(Al"i-Al^-2) - 1) • í 

7 1 , , . ! -

71. M 

+ ie i(A°+ A l '"i-1) • (e i2(Al-»»i-Al-M-1) - 1) • / 

71.2 

71.-.--2 

7 i , м - l 

7 1 . / M - 1 

71.M 

which actually is (29), r = 1. Note that we start from the point (5\ + \(T + Hk) with 

the value (cf. (37)) 

(41) {Q((3v+i{T + Hk))Y0={((lh+i{T + Hk))y . e

i A \ 

Now it is already clear that the substitutions 

A 0 -> A 1 -> A2 -> . . . , 

( A U , . . . , A 1 ) P 1 ) -> (A 2 ) 1 , . . . ,A 2 , P 2 ) -> (A 3,i,...,A3,P 3) - > . . . , 

( 7 I . I > - - . , 7 I , P I ) " + ( 7 2 , i , . . - , 7 2 , p 2 ) -+ ( 7 3 , i , . - . , 7 3 , p 3 ) -> . - . 

in (40) successively yield all the other relations in (29), r = 2, . . ., m. Here we start 

from the point 0r + i(T + Hk) with the value (cf. (41)) 

(42) {C(/5r + i(T + H,))}|--{C(^ + i(T + J4))}^eiA^ 

(C) The relations (30)-(32) are evident (see Sec. 4, points (C)-(E) and also (37), 

(42)). 
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6. T H E FIRST FUNDAMENTAL LEMMA 

Let us recall that (see [7], pp. 94, 383) 

(43) Z(t) = (X(I + i t)}-1 / 2
C(i + , ) , {X(I + , ) } - 1 / 2 = .*<*>, 

* = * + °( l) 

(concerning d\ see (12)), where Z(t) is real for real t. 

Lemma A. In the case (1) for T —» oo we iiave 

T+//„ 

/

I / -

|Z(í)|* dí £ { - + o(l)}Я* - | X_ У KWlf d 
T=1U 

k — 2 ,3 , . . . , ko• 

P r o o f . By virtue of (1) we obtain the following estimates for the integrals along 

the horizontal segments M M , M2 (see (2), (31), (32): 

(45) J {C(8)}i ds , J{C(s)}l ds = 0 ( T < * + * H ) = o(Hk). 

Mk.\ M2 

Further (see (15), (16), (30)) 

T+//k 

(46) J {C(5)}0*d5=-ie i A m. J {C(l+ -; + «)}* dt 

^ „ + i T 

T + / / * CO 

/ (n-E^-'O-= - i e i A " 
71 = 2 

oo 

= _ i e i - ю . я f c + c І Д ' " • У " n 7 {„-UГ+н.) _ П - І T } 

71 = 2 

= - i e i д m .Я f c + 0(1). 

<*n(k) 

П 1 T Ш ІПH 

However, {C0-0}o ^s a univalent analytic branch in the domain Dk(s) bounded 

by the contour Ck(e). Consequently, the Cauchy theorem implies that 

/ {C(5)}| . -. . in ds _ 0 

Cь(є) 

399 



and thus (for e —> 0, see (25)) 

(47) /{c(*m ds = 0 . 

ck 

By virtue of (45), (46) this implies 

/

in „ 

{C(s)}0

r as = ie i A" ' • Hk + o(Hk) - ^ j {C(*)}0* ^ 
г = 1 Lř 

Finally, passing to absolute values in (48) and using the identity \Z(t)\ = | C ( | + iT) | 
(sec (43)) we obtain (44). D 

7. T H E SECOND FUNDAMENTAL LEMMA 

For x(s) ( s e e (11)) w e have for t —> co in an arbitrary fixed strip Or ^ O" ^ O2 (see 
[7], p. 81) 

(49) X(S) = (^y+H-\e^v.{1+oQ)}. 

Let us consider a multivalued function {G'(s)}1//e (see (11)). Since ((s) / 0, 
5 G .Dfc(e) (see (23)) and, by (49), {\'(s)}~1/2 + 0, s G .Dfc(e), we have G(s) # 0, 
5 G Dk(s). Consequently, {C7(s)}1//c splits in the domain Dk(e) into k univalent 
analytic branches. 

Further, let us recall that (see (11), (43)) 

(50) G ( ^ + i * ) = Z ( 0 . 

In what follows we will study the case when Z(t) docs not change sign in the interval 
(T,T + Hk). 

(a) If 

(51) Z(t)>0, t£(T,T + Hk), Z(T)>0, 

then we fix the desired univalent branch of the function {G(s)}1^k—let us denote it 

by {G(s)}l/k—by the condition (cf. (24)) 

(52) { G ( i + i T ) } o = { Z ( T ) } * > 0 . 

400 



(b) If Z(t) ^ 0, t e (T,T + Hk) then we deal with {-G(s)}0
A and fix the branch 

{G(s)}l by the condition 

{ - G ( ì + i т ) } o

ł _ { - _ ( T ) } - > 0 . 

Lemma B. If the estimate (1) is valid and Z(t) does not change its sign in the 
interval (T,T + Hk) then for T -> oo we have 

P „ ^ ' • ' + i - + » « . 

(53) / |_T(*)|*dt + 5 _ e i A " - ' • / | . - ( 0 | * d t + e i A ° - / |z( j)l*di 
T ' = 1 7o,l 70,,.,, 

m . 

= o(Hk)+iJ2 {G(s)}£ ds, k = 2,3,..., ho. 
r = 1 4 

Proof. By virtue of (a), (b) it is sufficient to prove the case (51), (52). First of 
all we note that (see (47)) 

(54) J{G(s))lds =0. 
ck 

Since (see (42), (43), (49)) 

(55) W .»-» = ( i) "-"-rf - " • { l + 0 ( i ) } . 

we have (see (1), (2), (11); a < 1 + _ ) 

{G(s)}\ = 0(T---<--->+--<"+*>) 

= 0(r( i + -+«-)t)= 0 (H f c ) , s € _ V 

Consequently, the integrals along the horizontal segments satisfy (cf. (45)) 

(56) J {G(s)}\ds, J{G(s)}l ds = o(Hk). 

Mkl M2 

Further, since 

t \ i + t /T\4+_- ^ / T H I -H, 
(Š)' T=(é)"+°( i rF i) . •«-*•+-•>. 
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we have (sec (55)) 

(57) {x(1 + ̂ u)}^ = Q^^^^-{l + 0(f)} 

and (see (11), (15), (57)) 

T\Tr; + 2t --—< c\n(k) jr (58) {G(l + u + it)}l = e - ' • ( i . ) łfc + a ь • £ ^ e - í *Г-*.--« 
n l + u ; " 

n = l 

+ 0 ( Г 1 + Ä + г . # * 

(A' is connected with the choice of the branch). Consequently (see (17), (58)), 

T+lh 

(59) J {G{s))l As = - i f {G(l+u + it)}ldt 

- ^ ' ( 5 ) W ' « 
+ 0(T-1-^+^.H2)-o(H,). 

D 

R e m a r k 6. Evidently, {G(s)}0' satisfies an analogue of Lemma 3—let us 

denote it by Lemma 3'—which is obtained by the substitution {C(5)}o ~~̂  {G(s)}o 

since the sets of zeros and of multiplicities of the functions £(s) and G(s) in Uk 

coincide. We denote the analogues of the relations (28)-(32) by (28')-(32'). 

From (54), by virtue of (5G), (59) we now obtain 

(60) / {G(s)}$ ds = o(Hk) -J2J {G(s)}l ds , 
rk r=lTk 
L() Lr 

where (by (28')) 

y i po-i ^ ™ 

(61) J{G(s)}lds=ij {G(± + it)YQdt+iJ2 <?*"•'' J + i e l A ° ' J • 
L0

: T 7o./ 7o.,.„ 

However, if (52) holds then 

a i - g { G ( | + i t ) } * = 0 , | { G ( ^ + i t ) } * | = {-7(0}*. *G<T,7o.i), 
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l . U . 

{ o ( ^ + i i ) } o " = { z W } * , *€<r,7o,i). 

and analogously to the case (35), (36) we conclude that 

{G(\ + it)}h
o = {Z(t)}t .e{*»-\ te (70,1,70,2),.... 

Hence (see (61)) 

(62) J{G(s)}Íds=iJ{Z{t)}idt 

t-íi T 

PO ^ ' ^ T +"-

+ i]£e i A"<- / {Z(t)}iút + ieiA°- / {Z(í)}*dí. 
/ _ 1 7o. 1 Tu./.o 

Finally, by virtue of (62), (60) implies (53). • 

8. PROOF OF THEOREM—CONCLUSION 

Since the zeros of the function £(s) are distributed symmetrically with respect to 
the line a = \ (see [7], p. 40), it suffices to consider rectangles (cf. (2)) 

Qk = {s:<re(\,l),t£(T,T + Hk)}; 

evidently Qk C Uk (see Sec 4). 

Let all zeros Q £ Qk satisfy the relation (cf. (3)) 

(63) 2k I n(g). 

On the one hand, using Lemma 3 (see (26), (29)) we obtain 

J{((S)}£ ds = 0, V = 1, . . . ,772, k = 2 , 3 , . . . ,k0 

Lf: 

and consequently, by Lemma A (see (4), (44)), 

T+Hk 

(64) J \Z(t)ftdtZ^Hkj k-=g,G + l , . . . ,k0 . 

403 



On the other hand, by virtue of Lemma 3', relation (29') (see Remark 6), (63) implies 

(65) f{G{s)}$ds = 0, r = 0 , l , . . . , m , k = q,q + 1 , . . . ,fc0. 

Lf: 

It follows from (63) that Z(£) does not change sign in the interval (T,T + Hk). 
Moreover, 

(66) e i A° ' = 1, eiA° = 1, 

and, by virtue of (50), (65), (66), Lemma B (see (53)) yields 

T+IIk 

J \Z(t)\idt =o(Hk), 
T 

a contradiction (see (64)). • 
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