Czechoslovak Mathematical Journal

N. Parhi; Purna Candra Pas

Oscillation and nonoscillation of nonhomogeneous third order differential equations

Czechoslovak Mathematical Journal, Vol. 44 (1994), No. 3, 443-459

Persistent URL: http://dml.cz/dmlcz/128483

Terms of use:

© Institute of Mathematics AS CR, 1994

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

OSCILLATION AND NONOSCILLATION OF NONHOMOGENEOUS THIRD ORDER DIFFERENTIAL EQUATIONS

N. Parhi and P. Das,* Berhampur

(Received July 17, 1992)

1. This paper is concerned with the study of oscillatory/nonoscillatory behaviour of solutions of nonhomogeneous third order differential equations of the form

$$
\begin{equation*}
y^{\prime \prime \prime}+a(t) y^{\prime \prime}+b(t) y^{\prime}+c(t) y=f(t) \tag{1.1}
\end{equation*}
$$

where a, b, c and f are real-valued continuous functions on $[\sigma, \infty), \sigma \in \mathbb{R}$, under the assumption that the associated homogeneous equation

$$
\begin{equation*}
y^{\prime \prime \prime}+a(t) y^{\prime \prime}+b(t) y^{\prime}+c(t) y=0 \tag{1.2}
\end{equation*}
$$

is oscillatory/nonoscillatory.
A great deal of work on oscillation theory of (1.2) has been done during the last several years (see Greguš [2], Hanan [3], Jones [4-6], Lazer [9], Parhi and Das [11,13] and the references therein). The first author and S. Parhi obtained sufficient conditions for oscillation and nonoscillation of (1.1) in [15-17]. However, the techniques employed here are different from the former ones.

A continuous real-valued function y on $[\sigma, \infty)$ is said to be oscillatory if it has arbitrarily large zeros in $[\sigma, \infty)$; otherwise, it is said to be nonoscillatory. Eq. (1.1) or (1.2) is said to be oscillatory if it has an oscillatory solution, and it is said to be nonoscillatory if all of its solutions are nonoscillatory.

Following Hanan [3], Eq. (1.2) is said to be of Class I or C_{I} if any solution $y(t)$ of the equation with $y\left(t_{0}\right)=y^{\prime}\left(t_{0}\right)=0, y^{\prime \prime}\left(t_{0}\right)>0, t_{0}>\sigma$, satisfies $y(t)>0$ for $\sigma \leqslant t<t_{0}$. It is said to be of Class II or $C_{I I}$ if any solution $y(t)$ of it with $y\left(t_{0}\right)=y^{\prime}\left(t_{0}\right)=0, y^{\prime \prime}\left(t_{0}\right)>0, t_{0} \geqslant \sigma$ satisfies $y(t)>0$ for $t>t_{0}$. We say that

[^0]Eq. (1.1) has no solution with (2,2)-distribution of zeros if it has no solution with two consecutive double zeros.

The motivation for the present work had come from the work of Sitter and Tefteller [19] and from certain observations of the properties of solutions of the third order differential equations with constant coefficients of the form

$$
\begin{equation*}
y^{\prime \prime \prime}+a y^{\prime \prime}+b y^{\prime}+c y=f \tag{1.3}
\end{equation*}
$$

and the associated homogeneous equations

$$
\begin{equation*}
y^{\prime \prime \prime}+a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{1.4}
\end{equation*}
$$

where a, b, c and $f \in \mathbb{R}$ such that $f \neq 0$. Clearly, all solutions of (1.4) are nonoscillatory if and only if its characteristic equation

$$
\begin{equation*}
m^{3}+a m^{3}+b m+c=0 \tag{1.5}
\end{equation*}
$$

has only real roots, say $\gamma_{i}, i=1,2,3$. Consequently, the general solution of (1.3) for $c \neq 0$, is given by

$$
y(t)=\frac{f}{c}+\sum_{i=1}^{3} \lambda_{i} \mathrm{e}^{\gamma_{i} t}, \quad \lambda_{i} \in \mathbb{R}
$$

which is nonoscillatory. Hence nonoscillation of (1.4) implies nonoscillation of (1.3). On the other hand, oscillation of (1.4) need not imply the oscillation of (1.3). Indeed, a solution basis of

$$
y^{\prime \prime \prime}-2 y^{\prime}-4 y=0
$$

is given by

$$
\left\{\mathrm{e}^{-t} \cos t, \mathrm{e}^{-t} \sin t, \mathrm{e}^{2 t}\right\} .
$$

So the general solution of the corresponding nonhomogeneous equation

$$
y^{\prime \prime \prime}-2 y^{\prime}-4 y=f
$$

where $f \in \mathbb{R}$ and $f \neq 0$, is of the form

$$
y(t)=-\frac{f}{4}+\lambda_{1} \mathrm{e}^{-t} \cos t+\lambda_{2} \mathrm{e}^{-t} \sin t+\lambda_{3} \mathrm{e}^{2 t}
$$

which is nonoscillatory for all real $\lambda_{i}, i=1,2,3$. However, for $a \geqslant 0$ (or <0). $b<0$ and $c>0$, oscillation of (1.4) implies the oscillation of (1.3). Incleed, oscillation of (1.4) implies that (1.5) admits two complex roots $\alpha+\mathrm{i} \beta$ and $\alpha-\mathrm{i} \beta$ and a negative
real root γ. Clearly, $b=\gamma(\alpha+\mathrm{i} \beta)+\gamma(\alpha+\mathrm{i} \beta)+(\alpha+\mathrm{i} \beta)(\alpha+\mathrm{i} \beta)$ implies that $2 \alpha \gamma<b$ and hence $\alpha>0$. Consequently, $y(t)=\frac{f}{c}+\lambda \mathrm{e}^{\alpha t} \cos \beta t$ is an oscillatory solution of (1.3). Thus, for $a \geqslant 0(<0), b<0$ and $c>0$, (1.3) is oscillatory if and only if (1.4) is oscillatory. Further, under these conditions on coefficients, Eq. (1.5) adhits complex roots, that is, (1.4) is oscillatory if and only if

$$
\frac{2 a^{3}}{27}-\frac{a b}{3}+c-\frac{2}{3 \sqrt{3}}\left(\frac{a^{2}}{3}-b\right)^{3 / 2}>0
$$

2. Equations (1.1) and (1.2) may be written, respectively, as

$$
\begin{equation*}
\left(r(t) y^{\prime \prime}\right)^{\prime}+q(t) y^{\prime}+p(t) y=F(t) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(r(t) y^{\prime \prime}\right)^{\prime}+q(t) y^{\prime}+p(t) y=0 \tag{2.2}
\end{equation*}
$$

where $r(t)=\exp \left(\int_{\sigma}^{t} a(s) \mathrm{d} s\right), q(t)=b(t) r(t), p(t)=c(t) r(t)$ and $F(t)=f(t) r(t)$. Let $\left\{u_{1}, u_{2}, u_{3}\right\}$ be a solution basis for (2.2) such that

$$
W\left(u_{1}, u_{2}, u_{3}\right)(t) \equiv\left|\begin{array}{ccc}
u_{1}(t) & u_{2}(t) & u_{3}(t) \\
u_{1}^{\prime}(t) & u_{2}^{\prime}(t) & u_{3}^{\prime}(t) \\
r(t) u_{1}^{\prime \prime}(t) & r(t) u_{2}^{\prime \prime}(t) & r(t) u_{3}^{\prime \prime}(t)
\end{array}\right|=1
$$

Then the general solution of (2.1) is given by

$$
\begin{equation*}
y(t)=\sum_{i=1}^{3} c_{i} u_{i}(t)+y_{p}(t) \tag{2.3}
\end{equation*}
$$

where c_{1}, c_{2}, c_{3} are constants and $y_{p}(t)$ is a particular solution of (2.1) and is given by

$$
y_{p}(t)=\int_{\sigma}^{t}\left|\begin{array}{ccc}
u_{1}(t) & u_{2}(t) & u_{3}(t) \\
u_{1}(s) & u_{2}(s) & u_{3}(s) \\
u_{1}^{\prime}(s) & u_{2}^{\prime}(s) & u_{3}^{\prime}(s)
\end{array}\right| F(s) \mathrm{d} s
$$

Clearly, $y_{p}(\sigma)=0, y_{p}^{\prime}(\sigma)=0$ and $y_{p}^{\prime \prime}(\sigma)=0$. Following Sitter and Tefteller [19], $W_{i}(t)$ denotes the determinant obtained from $W\left(u_{1}, u_{2}, u_{3}\right)(t)$ by replacing the ithcolumn with the vector $(0,0,1)^{T}, i=1,2,3$. So

$$
y_{p}(t)=\sum_{i=1}^{3} u_{i}(t) \int_{\sigma}^{t} F(s) W_{i}(s) \mathrm{d} s
$$

and

$$
y(t)=\sum_{i=1}^{3} u_{i}(t)\left[c_{i}+\int_{\sigma}^{t} F(s) W_{i}(s) \mathrm{d} s\right] .
$$

Lemma 2.1. If $y(t)$ is a solution of (2.1) given by (2.3), then

$$
\begin{align*}
& r(t) W_{i}(t) y^{\prime \prime}(t)-r(t) W_{i}^{\prime}(t) y^{\prime}(t) \tag{2.4}\\
& +\left[q(t) W_{i}(t)+\left(r(t) W_{i}^{\prime}(t)\right)^{\prime}\right] y(t)=c_{i}+\int_{\sigma}^{t} F(s) W_{i}(s) \mathrm{d} s
\end{align*}
$$

$i=1,2,3$.
Proof. We may see that $S_{i}(t)=c_{i}+\int_{\sigma}^{t} F(s) V_{i}(s) \mathrm{d} s, i=1,2,3$, where $S_{i}(t)$ denotes the determinant obtained by replacing the ith-column of $W\left(u_{1}, u_{2}, u_{3}\right)(t)$ with the vector $\left(y(t), y^{\prime}(t), r(t) y^{\prime \prime}(t)\right)^{T}$. Indeed, for $i=1$ we write

$$
S_{1}(t)=\left|\begin{array}{ccc}
y(t) & u_{2}(t) & u_{3}(t) \\
y^{\prime}(t) & u_{2}^{\prime}(t) & u_{3}^{\prime}(t) \\
r(t) y^{\prime \prime}(t) & r(t) u_{2}^{\prime \prime}(t) & r(t) u_{3}^{\prime \prime}(t)
\end{array}\right|
$$

Then

$$
S_{1}^{\prime}(t)=\left|\begin{array}{ccc}
y(t) & u_{2}(t) & u_{3}(t) \\
y^{\prime}(t) & u_{2}^{\prime}(t) & u_{3}^{\prime}(t) \\
F(t) & 0 & 0
\end{array}\right|=F(t) W_{1}(t)
$$

implies that

$$
S_{1}(t)=S_{1}(\sigma)+\int_{\sigma}^{t} F(s) W_{1}(s) \mathrm{d} s
$$

But $S_{1}(\sigma)=c_{1} W(\sigma)=c_{1}$. Consequently, $S_{1}(t)=c_{1}+\int_{\sigma}^{t} F(s) W_{1}(s) \mathrm{d} s$. Expanding $S_{1}(t)$, we obtain (2.4) for $i=1$. Similarly, one may obtain (2.4) for $i=2$ and 3 .

Lemma 2.2. Suppose that $W_{1}(t) \neq 0$ for $t \geqslant t_{0}>\sigma$. If $y(t)$ is a solution of (2.1) given by (2.3), then it is a solution of the second order nonhomogeneous equation

$$
\begin{equation*}
\left(R(t) y^{\prime}\right)^{\prime}+Q(t) y=G(t), \quad t \geqslant t_{0} \tag{2.5}
\end{equation*}
$$

where

$$
R(t)=\frac{1}{W_{1}(t)}, Q(t)=\frac{q(t) W_{1}(t)+\left(r(t) W_{1}^{\prime}(t)\right)^{\prime}}{r(t) W_{1}^{2}(t)}
$$

and

$$
G(t)=\left[c_{1}+\int_{\sigma}^{t} F(s) W_{1}(s) \mathrm{d} s\right] / r(t) W_{1}^{2}(t)
$$

Proof. Dividing (2.4) with $i=1$ by $r(t) W_{1}^{2}(t)$, we obtain (2.5).

Lemma 2.3. If $W_{1}(t) \neq 0$ for $t \geqslant t_{0}>\sigma$, then $u_{2}(t)$ and $u_{3}(t)$ satisfy

$$
\begin{equation*}
\left(R(t) y^{\prime}\right)^{\prime}+Q(t) y=0, \quad t \geqslant t_{0} \tag{2.6}
\end{equation*}
$$

where $R(t)$ and $Q(t)$ are the same as in Lemma 2.2.
Proof. Clearly, $u_{2}(t)$ and $u_{3}(t)$ are solutions of the second order differential equation

$$
\left|\begin{array}{ccc}
u_{2}(t) & u_{3}(t) & x \\
u_{2}^{\prime}(t) & u_{3}^{\prime}(t) & x^{\prime} \\
r(t) u_{2}^{\prime \prime}(t) & r(t) u_{3}^{\prime \prime}(t) & r(t) x^{\prime \prime}
\end{array}\right|=0
$$

Expanding this determinant we obtain (2.6).

Theorem 2.4. If $W_{1}(t) \neq 0$ for $t \geqslant t_{0}>\sigma$ and

$$
\begin{equation*}
\left(R(t) y^{\prime}\right)^{\prime}+Q(t) y=G_{c}(t), \quad t \geqslant t_{0} \tag{2.7}
\end{equation*}
$$

is nonoscillatory for every constant c, where $R(t)$ and $Q(t)$ are the same as in Lemma 2.2 and

$$
G_{c}(t)=\left[c+\int_{\sigma}^{t} F(s) W_{1}(s) \mathrm{d} s\right] / r(t) W_{1}^{2}(t)
$$

then (2.1) is nonoscillatory.
The proof of the theorem follows from Lemma 2.2.
Remark1. (i) The adjoint of (2.2) is given by

$$
\left[\left(r(t) y^{\prime}\right)^{\prime}+q(t) y\right]^{\prime}-p(t) y=0
$$

If $q(t)$ is differentiable, then it takes the form

$$
\begin{equation*}
\left(r(t) y^{\prime}\right)^{\prime \prime}+q(t) y^{\prime}+\left(q^{\prime}(t)-p(t)\right) y=0 \tag{2.8}
\end{equation*}
$$

It is easy to verify that $W_{1}(t)$ satisfics (2.8). (ii) $W_{1}(t)$ satisfies the equation

$$
\left(r(t) z^{\prime}\right)^{\prime}+q(t) z=g(t)
$$

where $g(t)=r(t)\left(u_{2}^{\prime}(t) u_{3}^{\prime \prime}(t)-u_{3}^{\prime}(t) u_{2}^{\prime \prime}(t)\right)$.

Proposition 2.5. (i) If $p(t)>0$ and $q(t) \leqslant 0$, then (2.2) is of C_{I}.
(ii) If $\left(p(t)<0\right.$ and $q(t) \leqslant 0$, then (2.2) is of $C_{I I}$.
(iii) If $r^{\prime}(t) \geqslant 0(\leqslant 0)$ and $q \in C^{1}([\sigma, \infty)$, $\mathbb{P})$ isa such that $2 p(t)-q^{\prime}(t) \geqslant 0(\leqslant 0)$, then (2.2) is of $C_{I}\left(C_{I I}\right)$.

The proof in each case is straigthforward and hence is omitted.

Theorem 2.6. Suppose that (2.2) is of C_{I} or $C_{I I}$ and $F(t)$ does not change sign for large t. If (2.2) is nonoscillatory, then (2.1) is nonoscillatory.

Proof. As (2.2) is nonoscillatory, it follows from Theorem 4.7 due to Hanan [3] that (2.8) is nonoscillatory. So $W_{1}(t)$ is nonoscillatory. Suppose $W_{1}(t) \neq 0$ for $t \geqslant t_{0} \geqslant \sigma$. Further, from Lemma 2.3 and the fact that (2.2) is nonoscillatory it is clear that (2.6) is nonoscillatory. Suppose that $F(t)>0$ or <0 for $t \geqslant t_{1} \geqslant t_{0}$. For any constant c,

$$
h(t)=c+\int_{\sigma}^{t} W_{1}(s) F(s) \mathrm{d} s
$$

is nonoscillatory, because $h^{\prime}(t)>0$ or <0 for $t \geqslant t_{1}$. Hence it is clear from Theorem 3 due to Keener [8] that (2.7) is nonoscillatory for every constant c. Thus the conclusion of the theorem follows from Theorem 2.4.

Example. Consider the equation

$$
\begin{equation*}
y^{\prime \prime \prime}+\mathrm{e}^{-t} y^{\prime}+2 \mathrm{e}^{-t} y=3+\mathrm{e}^{t}, \quad t \geqslant 0 \tag{2.9}
\end{equation*}
$$

Theorem 2.2 due to Hanan [3] and Theorem 3.5 due to Lazer [9] imply that the homogencous equation associated with (2.9) is of C_{I} and nonoscillatory. Consequently; by Theorem 2.6, all solutions of (2.9) are nonoscillatory. In particular, $y(t)=e^{t}$ is a nonoscillatory solution of (2.9).

Remark 2. (i) Hanan in [3] and Lazer in [9] have obtaincd various sufficient conditions for nonoscillation of (2.2).
(ii) Although Keener [8] has proved his Theorem 3 for $r(t)=1, p(t) \geqslant 0$ and $f(t) \geqslant 0$, his result holds good for

$$
\left(r(t) y^{\prime}\right)^{\prime}+p(t) y=f(t)
$$

where $r(t)>0$ and $f(t)$ does not change sign for large t. There is no sign restriction on $p(t)$.

If $F(t)$ is allowed to change sign for large t, then (2.7) is nonoscillatory provided (2.6) is nonoscillatory and

$$
\begin{equation*}
\int_{\sigma}^{t} G_{c}(s) \Phi(s) \mathrm{d} s \tag{2.10}
\end{equation*}
$$

is nonoscillatory, where $\Phi(t)$ is a solution of (2.6) (see [14], Theorem 4.1). Hence we have the following result:

Theorem 2.7. Suppose that (2.2) is of C_{I} or $C_{I I}$ and (2.10) is nonoscillatory, where $\Phi(t)$ is a solution of (2.6). Then (2.2) is nonoscillatory implies that (2.1) is nonoscillatory.

The following result due to Leighton and Nehari [10, Lemma 1.2] is used in the sequel.

Lemma 2.8. Let u and $v \in C^{1}((a, b), \mathbb{R})$, and let $v(t)$ be of constant sign in (a, b). If α and $\beta(a<\alpha<\beta<b)$ are consecutive zeros of $u(t)$, then there exists a nonzero constant λ such that the function $u(t)-\lambda v(t)$ has a double zero in (α, β).

Theorem 2.9. If (2.2) is of C_{I} and $C_{I I}$, then it is nonoscillatory.
Proof. Since (2.2) is of $C_{I I}$, the solution $y(t)$ of (2.2) with initial conditions $y(\sigma)=y^{\prime}(\sigma)=0, y^{\prime \prime}(\sigma)>0$ has the property that $y(t)>0$ for $t>\sigma$. If possible, let $z(t)$ be an oscillatory solution of (2.2). Let $\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}\left(\sigma<\alpha_{1}<\beta_{1}<\alpha_{2}<\beta_{2}\right)$ be succesive zeros of $z(t)$ such that $z(t)>0$ for $t \in\left(\alpha_{1}, \beta_{1}\right) \cup\left(\alpha_{2}, \beta_{2}\right)$. By Lemma 2.8, there exists non-zero constants λ_{1} and λ_{2} such that $z_{1}(t)=z(t)-\lambda_{1} y(t)$ has a couble zero at $t_{1} \in\left(\alpha_{1}, \beta_{1}\right)$ and $z_{2}(t)=z(t)-\lambda_{2} y(t)$ has a double zero at $t_{2} \in\left(\alpha_{2}, \beta_{2}\right)$. Since $z(t)>0$ in $\left(\alpha_{1}, \beta_{1}\right)$ and $\left(\alpha_{2}, \beta_{2}\right)$ and $y(t)>0$ for $t>\sigma$, we have $\lambda_{1}>0$ and $\lambda_{2}>0$. If $\lambda_{1}>\lambda_{2}$, then $z_{2}\left(t_{1}\right)=z\left(t_{1}\right)-\lambda_{2} y\left(t_{1}\right)>z\left(t_{1}\right)-\lambda_{1} y\left(t_{1}\right)=z_{1}\left(t_{1}\right)=0$ and $z_{2}\left(\beta_{1}\right)=z\left(\beta_{1}\right)-\lambda_{2} y\left(\beta_{1}\right)=-\lambda_{2} y\left(\beta_{1}\right)<0$. Thus $z_{2}(t)$ is a solution of (2.2) with a zero in $\left(t_{1}, \beta_{1}\right)$ and a double zero at t_{2}, which constradicts the assumption that (2.2) is of C_{1}. If $\lambda_{1} \leqslant \lambda_{2}$, then $z_{1}\left(t_{2}\right)=z\left(t_{2}\right)-\lambda_{1} y\left(t_{2}\right) \geqslant z\left(t_{2}\right)-\lambda_{2} y\left(t_{2}\right)=z_{2}\left(t_{2}\right)=0$ and $z_{1}\left(\beta_{1}\right)=z\left(\beta_{1}\right)-\lambda_{1} y\left(\beta_{1}\right)=-\lambda_{1} y\left(\beta_{1}\right)<0$. Hence $z_{1}(t)$ is a solution of (2.2) with a zero in $\left(\beta_{1}, t_{2}\right]$ and a double zero at t_{1}, a contradiction to the assumption that (2.2) is of $C_{I I}$. Hence (2.2) cannot have an oscillatory solution. Thus (2.2) is nonoscillatory. This completes the proof of the theorem.

Remark 3. (i) If $p(t)>0, q(t) \leqslant 0$ and $p(t)-q^{\prime}(t) \leqslant 0$, then (2.2) is of C_{I} and $C_{I I}$. Indeed, Proposition 2.5 (i) yields that (2.2) is of C_{I}. Next we show that the adjoint of (2.2), given by (2.8), is of C_{I}. If not, then $y(t)$ is a solution of (2.8)
with $y(\alpha)=y^{\prime}(\alpha)=0, y^{\prime \prime}(\alpha)>0$ and $y\left(t_{0}\right)=0$ for some $\sigma<t_{0}<\alpha$. Consequently, there exists a $\beta \in\left(t_{0}, \alpha\right)$ such that $y^{\prime}(\beta)=0$ and $y(t)>0, y^{\prime}(t)<0$ for $t \in(\beta, \alpha)$. Multiplying (2.8) by $r(t) y^{\prime}(t)$ and integrating the resulting identity from β to α we obtain

$$
\begin{aligned}
0=- & \int_{\beta}^{\alpha}\left(\left(r(t) y^{\prime}(t)\right)^{\prime}\right)^{2} \mathrm{~d} t+\int_{\beta}^{\alpha} r(t) q(t)\left(y^{\prime}(t)\right)^{2} \mathrm{~d} t \\
& +\int_{\mathcal{\beta}}^{\alpha} r(t)\left(q^{\prime}(t)-p(t)\right) y(t) y^{\prime}(t) \mathrm{d} t<0,
\end{aligned}
$$

a contradiction. Hence (2.8) is of C_{I}. Consequently, by Lemma 2.9 due to Hanan [3], (2.2) is of $C_{I I}$.
(ii) If $p(t) \leqslant 0, q(t) \leqslant 0$ and $p(t)-q^{\prime}(t) \geqslant 0$, then (2.2) is of C_{I} and $C_{I I}$. Indeed, it follows from Proposition 2.5 (ii) that (2.2) is of $C_{I I}$. Now we show that the adjoint of (2.2), that is, (2.8) is of $C_{I I}$. If not, suppose that $y(t)$ is a solution of (2.8) with the property $y(\alpha)=y^{\prime}(\alpha)=0, y^{\prime \prime}(\alpha)>0$ and $y\left(t_{0}\right)=0$ for some $t_{0}>\alpha>\sigma$. Consequently, there exists a $\beta>\alpha$ such that $y^{\prime}(\beta)=0$ and $y(t)>0, y^{\prime}(t)>0$ for $t \in(\alpha, \beta)$. Multiplying (2.8) by $r(t) y^{\prime}(t)$ and integrating the resulting identity from α to β we obtain a contradiction. Hence, by Lemma 2.9 due to Hanan [3], (2.2) is of C_{I}.

Corollary 2.10. Suppose that conditions of Theorem 2.9 are satisfied and $F(t)$ does not change sign for large t. Then (2.1) is nonoscillatory.

The proof follows from Theorem 2.6 and 2.9.
Remark 4. In [16, Theorem 2.1], Parhi and Parhi have proved that $F(t) \geqslant$ $0, p(t)>0, q(t) \leqslant 0$ and $p(t)-q^{\prime}(t) \leqslant 0$ imply that all solutions of (2.1) are nonoscillatory. Remark 2(i) implies that Corollary 2.10 is a generalization of their result.

Lemma 2.11. If $W_{1}(t)$ is nonoscillatory, then every solution of (2.7) is a solution of (2.1).

Proof. From the discussions at the begining of this section it folows that $\lambda u_{1}(t)+y_{p}(t), \lambda \in \mathbb{R}$, is a solution of (2.1) and (2.7). Since $\left\{u_{2}, u_{3}\right\}$ forms a fundamental set of solutions of (2.6) (see Lemma 2.3), the general solution of (2.7) is given by

$$
\begin{aligned}
y(t) & =\lambda u_{1}(t)+y_{p}(t)+\lambda_{2} u_{2}(t)+\lambda_{3} u_{3}(t) \\
& =\lambda u_{1}(t)+\lambda_{2} u_{2}(t)+\lambda_{3} u_{3}(t)+y_{p}(t), \lambda_{2}, \lambda_{3} \in \mathbb{R}
\end{aligned}
$$

which is a solution of (2.1).

Theorem 2.12. If $W_{1}(t)$ is nonoscillatory and, for some constant c, Eq. (2.7) has an oscillatory solution, then (2.1) is oscillatory.

The proof follows from Lemma 2.11.

Theorem 2.13. Suppose that (2.2) either is of C_{I} or is of $C_{I I}$ and oscillatory. Further, assume that the second order nonhomogeneous equation

$$
\begin{equation*}
z^{\prime \prime}+g_{1}(t) z=h_{1}(t) \tag{2.11}
\end{equation*}
$$

where

$$
g_{1}(t)=\frac{q(t)}{r(t)}+\frac{\left(r(t) W_{1}^{\prime}(t)\right)^{\prime}}{r(t) W_{1}(t)}+\frac{1}{2} \frac{W_{1}^{\prime \prime}(t)}{W_{1}(t)}-\frac{3}{4} \frac{\left(W_{1}^{\prime}(t)\right)^{2}}{W_{1}^{2}(t)}
$$

and

$$
h_{1}(t)=\frac{1}{r(t)\left(W_{1}(t)\right)^{3 / 2}} \int_{\sigma}^{t} F(s) W_{1}(s) \mathrm{d} s
$$

has an oscillatory solution. Then (2.1) is oscillatory.
Proof. Suppose that (2.2) is of C_{I}. Let the solution basis $\left\{u_{1}, u_{2}, u_{3}\right\}$ of (2.2) satisfy the initial conditions

$$
\begin{aligned}
& u_{1}(\sigma)=1, \quad u_{1}^{\prime}(\sigma)=0, \quad u_{1}^{\prime \prime}(\sigma)=0, \\
& u_{2}(\sigma)=0, \quad u_{2}^{\prime}(\sigma)=1, \quad u_{2}^{\prime \prime}(\sigma)=0, \\
& u_{3}(\sigma)=0, \quad u_{3}^{\prime}(\sigma)=0, \quad u_{3}^{\prime \prime}(\sigma)=1 / r(\sigma) .
\end{aligned}
$$

It may be easily verified that the Wronskian $W\left(u_{1}, u_{2}, u_{3}\right)(t)=1$ and $W_{1}(t)=$ $u_{2}(t) u_{3}^{\prime}(t)-u_{2}^{\prime}(t) u_{3}(t)$ is a solution of (2.8) with the properties $W_{1}(\sigma)=W_{1}^{\prime}(\sigma)=0$, $W_{1}^{\prime \prime}(\sigma)=1$. From Lemma 2.9 due to Hanan [3], it follows that (2.8) is of $C_{I I}$. Hence $W_{1}(t)>0$ for $t>\sigma$. The transformation $y(t)=z(t)\left(W_{1}(t)\right)^{1 / 2}$ transforms (2.7) with $c=0$ to (2.11). Hence the given hypotheses imply that (2.7) with $c=0$ has an oscillatory solution. Consequently, the oscillation of (2.1) follows from Theorem 2.12. Thus the proof of the theorem is completed when (2.2) is of C_{I}.

Next, suppose that Eq. (2.2) is of $C_{I I}$ and oscillatory. To complete the proof of the theorem it is sufficient to construct a solution basis $\left\{u_{1}, u_{2}, u_{3}\right\}$ of (2.2) such that $W_{1}(t)=u_{2}(t) u_{3}^{\prime}(t)-u_{2}^{\prime}(t) u_{3}(t)>0$ for large t. Indeed, in that case we use the transformation $y(t)=z(t)\left(W_{1}(t)\right)^{1 / 2}$ and proceed as above to arrive at the conclusion.

Let $y_{1}(t)$ be an oscillatory solution of (2.2). Let $\beta \geqslant \sigma$ be such that $y_{1}(\beta) \neq 0$. Suppose that $\left\langle t_{n}\right\rangle_{n=1}^{\infty}$ is a sequence of zeros of $y_{1}(t)$ in (β, ∞) such that $t_{n} \rightarrow \infty$ as
$n \rightarrow \infty$. Define a seçuence $\left\langle x_{n}(t)\right\rangle_{n=1}^{\infty}$ of nontrivial solutions of (2.2) on $[\beta, \infty)$ with the boundary conditions

$$
x_{n}(\beta)=x_{n}\left(t_{n}\right)=0 .
$$

Then there exist real constants $c_{1 n}, c_{2 n}$ and $c_{3 n}$ such that $x_{n}(t)=\sum_{i=1}^{3} c_{i n} v_{i}(t)$ with $\sum_{i=1}^{3} c_{i n}^{2}=1$, where $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a solution basis of (2.2). We claim that the zeros of $y_{1}(t)$ and $x_{n}(t)$ separate each other in $\left(\beta, t_{n}\right)$. If possible, let α_{1} and $\alpha_{2}\left(\alpha_{1}<\alpha_{2}\right)$ be consecutive zeros of $y_{1}(t)$ in $\left(\beta, t_{n}\right)$ and let $x_{n}(t)>0$ or <0 for $t \in\left[\alpha_{1}, \alpha_{2}\right]$. It follows from Lemma 2.8 that there exists a constant λ such that $y_{1}(t)-\lambda x_{n}(t)$ has a double zero in $\left(\alpha_{1}, \alpha_{2}\right)$. This contradicts the fact that (2.2) is of $C_{I I}$ because the solution $y_{1}(t)-\lambda x_{n}(t)$ of (2.2) has a zero at $t=t_{n}$. Since $y_{1}(t)$ and $x_{n}(t)$ are linearly independent solutions of (2.2) and t_{n} is a common zero, Theorem 2.10 due to Hanan [3] yields that $x_{n}(t)$ cannot vanish at α_{1} or α_{2}. Hence $x_{n}(t)$ has a zero in (α_{1}, α_{2}). Similarly, it may be shown that $y_{1}(t)$ has a zero between two consecutive zeros of $x_{n}(t)$ in $\left(\beta, t_{n}\right)$. Thus our claim holds. Since the sequence $\left\langle c_{i n}\right\rangle_{n=1}^{\infty}, i=1,2,3$, is bounded, it admits a convergent subsequence $\left\langle c_{i n_{k}}\right\rangle_{k=1}^{\infty}$, say, with limit $c_{i}, i=1,2,3$. So $\left\{x_{n_{k}}\right\}$ converges uniformly to a solution $y_{2}(t)=\sum_{i=1}^{3} c_{i} v_{i}$ of (2.2). Thus $y_{2}(\beta)=0$ and hence $y_{1}(t)$ and $y_{2}(t)$ are linearly independent. We claim that the zeros of $y_{1}(t)$ and $y_{2}(t)$ separate each other in (M, ∞) for some $M>\beta$. From Theorem 2.10 due to Hanan [3], it is clear that $y_{1}(t)$ and $y_{2}(t)$ can have at most one zero in common. Hence there exists $M>\beta$ such that $y_{1}(t)$ and $y_{2}(t)$ have no common zero in (M, ∞). Suppose that α_{1} and $\alpha_{2} \in(M, \infty)\left(\alpha_{1}<\alpha_{2}\right)$ are consecutive zeros of $y_{1}(t)$. Clearly, $y_{2}(t)$ does not vanish at α_{1} and α_{2}. Suppose that $y_{2}(t)>0$ or <0 for $t \in\left[\alpha_{1}, \alpha_{2}\right]$. Without any loss of generality, we may take $y_{2}(t)>0$ for $t \in\left[\alpha_{1}, \alpha_{2}\right]$. Then there exists an $\varepsilon>0$ such that $y_{2}(t) \geqslant \varepsilon>0$ for $t \in\left[\alpha_{1}, \alpha_{2}\right]$. Since the secquence $\left\langle x_{n_{k}}\right\rangle$ converges uniformly to y_{2} on $\left[\alpha_{1}, \alpha_{2}\right]$, there exists an integer $N>0$ such that $\left|y_{2}(t)-x_{n_{k}}(t)\right|<\varepsilon / 2$ for $t \in\left[\alpha_{1}, \alpha_{2}\right]$ and $n_{k}>N$. Thus, for $n_{k}>N$ such that $t_{n_{k}}>\alpha_{2}$,

$$
x_{n_{k}}(t)>y_{2}(t)-\varepsilon / 2 \geqslant \varepsilon-\varepsilon / 2=\varepsilon / 2 \quad \text { for } \quad t \in\left[\alpha_{1}, \alpha_{2}\right] \text {, }
$$

which contradicts the fact that $x_{n_{k}}(t)$ has a zero between any two consccutive zeros of $y_{1}(t)$ in $\left(\beta, t_{n_{k}}\right)$. Hence $y_{2}(t)$ has a zero in $\left(\alpha_{1}, \alpha_{2}\right)$. Next we show that $y_{1}(t)$ has a zero between two consecutive zeros of $y_{2}(t)$. Let α_{1} and $\alpha_{2} \in(M, \infty), \alpha_{1}<\alpha_{2}$, be consecutive zeros of $y_{2}(t)$. We may assume, without any loss of generality, that $y_{2}(t)>0$ for $t \in\left(\alpha_{1}, \alpha_{2}\right)$. Suppose that $y_{1}(t) \neq 0$ for $t \in\left[\alpha_{1}, \alpha_{2}\right]$. Since $y_{1}(t)$ is oscillatory it is possible to find β_{1} and β_{2} such that $\beta_{1}<\alpha_{1}<\alpha_{2}<\beta_{2}, y_{1}\left(\beta_{1}\right)=$ $0=y_{1}\left(\beta_{2}\right)$ and $y_{1}(t) \neq 0$ for $t \in\left(\beta_{1}, \beta_{2}\right)$. (If such a β_{1} does not exist, then we
choose M to be the zero of $y_{2}(t)$ which is just before the first zero of $y_{1}(t)$.) Since (2.2) is of $C_{I I}$, the zeros α_{1} and α_{2} of $y_{2}(t)$ are simple. Hence it is possible to find a positive number $\varepsilon, t_{1} \in\left(\beta_{1}, \alpha_{1}\right)$ and $t_{2} \in\left(\alpha_{1}, \alpha_{2}\right)$ such that $y_{2}\left(t_{1}\right)<-\varepsilon$ and $y_{2}\left(t_{2}\right)>\varepsilon$. It follows from the definition of $y_{2}(t)$ that there exists an integer $N_{1}>0$ such that $\left|x_{n k}(t)-y_{2}(t)\right|<\varepsilon$ for $n_{k} \geqslant N_{1}$ and $t \geqslant M$. This in turn implies that $x_{n_{k}}\left(t_{1}\right)<y_{2}\left(t_{1}\right)+\varepsilon<0$ and $x_{n_{k}}\left(t_{2}\right)>y_{2}\left(t_{2}\right)-\varepsilon>0$ for $n_{k} \geqslant N_{1}$. Thus $x_{n_{k}}(t)$ has a zero in $\left(t_{1}, t_{2}\right)$ for $n_{k} \geqslant N_{1}$. Similarly, there exist an integer $N_{2}>0, t_{3} \in\left(\alpha_{1}, \alpha_{2}\right)$ and $t_{4} \in\left(\alpha_{2}, \beta_{2}\right)$ such that $x_{n_{k}}(t)$ has a zero in $\left(t_{3}, t_{4}\right)$ for $n_{k} \leqslant N_{2}$. Choosing n_{k} large enough such that $n_{k}>\max \left\{N_{1}, N_{2}\right\}$ and $t_{n_{k}}>\beta_{2}$, we see that $x_{n_{k}}(t)$ has two zeros in $\left(\beta_{1}, \beta_{2}\right)$, a contradiction to the fact that the zeros of $x_{n_{k}}(t)$ and $y_{1}(t)$ are interlaced in $\left(\beta, t_{n_{k}}\right)$. Hence $y_{1}(t)$ has a zero in $\left(\alpha_{1}, \alpha_{2}\right)$. Thus we have shown that the zeros of $y_{1}(t)$ and $y_{2}(t)$ are interlaced in $(M, \infty), M>\beta$.

Next we claim that every linear combination of $y_{1}(t)$ and $y_{2}(t)$ is oscillatory. If possible, suppose that $\mu_{1} y_{1}(t)+\mu_{2} y_{2}(t)$ is nonoscillatory for some nonzero relas μ_{1} and μ_{2}. Without any loss of generality, we may assume that $\mu_{1} y_{1}(t)+\mu_{2} y_{2}(t)>0$ for $t \geqslant t_{0}>M$. If $t_{1}, t_{2}, t_{3}\left(t_{1}<t_{2}<t_{3}\right)$ are succesive zeros of $y_{1}(t)$ in $\left[t_{0}, \infty\right)$, then $\mu_{2} y_{2}\left(t_{i}\right)>0, i=1,2,3$. This contradicts the fact that the zeros of $y_{1}(t)$ and $y_{2}(t)$ are interlaced in (M, ∞). Hence our claim holds. Now we show that $y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t) \neq 0$ for $t>M$. Otherwise, there exists a $\gamma>M$ such that $y_{1}(\gamma) y_{2}^{\prime}(\gamma)-y_{1}^{\prime}(\gamma) y_{2}(\gamma)=0$. Since the zeros of $y_{1}(t)$ and $y_{2}(t)$ are interlaced in (M, ∞), then $y_{1}(\gamma)$ and $y_{2}(\gamma)$ are not zeros simultaneously. Hence $v(t)=y_{1}(\gamma) y_{2}(t)-$ $y_{2}(\gamma) y_{1}(t)$ is a nontrivial solution of (2.2) with $v(\gamma)=v^{\prime}(\gamma)=0$ and $v^{\prime \prime}(\gamma) \neq 0$. Consequently, (2.2) is of $C_{I I}$ impplies that $v(t)>0$ or <0 for $t>\gamma$, a contradiction to the fact that every linear combination of $y_{1}(t)$ and $y_{2}(t)$ is oscillatory. Hence $y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t) \neq 0$ for $t>M$. We assume, without any loss of generality, that $y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)>0$ for $t>M$.

Let $y_{3}(t)$ be a solution of (2.2) with $y_{3}(\beta)=y_{3}^{\prime}(\beta)=0, y_{3}^{\prime \prime}(\beta)=1$. Clearly $y_{1}(t), y_{2}(t)$ and $y_{3}(t)$ are linearly independent. Hence $W\left(y_{1}, y_{2}, y_{3}\right)(t)=k \neq 0$. Now setting

$$
u_{1}(t)=y_{3}(t), u_{2}(t)=y_{1}(t) \quad \text { and } \quad u_{3}(t)=y_{2}(t)
$$

we see that $\left\{u_{1}, u_{2}, u_{3}\right\}$ is a solution basis of (2.2) with $W_{1}(t)=u_{2}(t) u_{3}^{\prime}(t)-$ $u_{2}^{\prime}(t) u_{3}(t)>0$ for large t.

Hence the theorem is proved.
Remark5. Eq. (1.2) admits a nontrivial solution $y(t)$ with the property $y(\alpha)=$ $y(\beta)=0$ where $\sigma \leqslant \alpha<\beta$. Indeed, the solutions $y_{1}(t)$ and $y_{2}(t)$ of (2.2) with initial conditions

$$
\begin{aligned}
& y_{1}(\alpha)=0, y_{1}^{\prime}(\alpha)=0, y_{1}^{\prime \prime}(\alpha)=1 \\
& y_{2}(\alpha)=0, y_{2}^{\prime}(\alpha)=1, y_{2}^{\prime \prime}(\alpha)=0
\end{aligned}
$$

are linearly independent. If either $y_{1}(\beta)=0$ or $y_{2}(\beta)=0$, then there is nothing to prove. Otherwise,

$$
y(t)=y_{1}(t)-\frac{y_{1}(\beta)}{y_{2}(\beta)} y_{2}(t)
$$

is the required nontrivial solution of (2.2) with the property $y(\alpha)=y(\beta)=0$.
Theorem 2.14. Suppose that (2.2) is of C_{I}. If (2.1) does not admit a solution with (2,2)-clistribution of zeros and $F(t)$ does not change sign for large t, then a necessary and sufficient condition for (2.1) to be oscillatory is that (2.11) has an oscillatory solution.

Proof. If (2.1) is oscillatory, then by Theorem 2.6 (2.2) is oscillatory. From Theorem 2.12 due to Parhi and Das [12], it follows that $y_{p}(t)$ is oscillatory. Procceding as in the first part of Theorem 2.13, we obtain $W_{1}(t)>0$. Since $y_{p}(t)$ is a solution of (2.7) for $c=0$, then $z(t)=y_{p}(t)\left(W_{1}(t)\right)^{-1 / 2}$ is an oscillatory solution of (2.11). The sufficiency part follows from Theorem 2.13.

Hence the proof of the theorem is complete.
Remark6. (i) (Sce Theorem 2.8 [12].) Suppose that $p(t) \geqslant 0, p^{\prime}(t) \geqslant 0, F(t) \geqslant$ 0 and $F^{\prime}(t) \leqslant 0$. If

$$
\begin{equation*}
\left(r(t) z^{\prime}\right)^{\prime}+q(t) z=0 \tag{2.12}
\end{equation*}
$$

is nonoscillatory, then (2.2) is of C_{I} and (2.1) does not admit a solution with (2,2)distribution of zeros.
(ii) (See Theorem 2.10 [12].) Suppose that $p(t) \leqslant 0, p^{\prime}(t) \geqslant 0, F(t) \geqslant 0, F^{\prime}(t) \geqslant 0$, $r^{\prime}(t) \geqslant 0$ and $2 p(t)-q^{\prime}(t)>0$. If (2.12) is nonoscillatory, then (2.2) is of C_{I} and (2.1) does not admit a solution with (2,2)-distribution of zeros.

Corollary 2.15. Suppose that $p(t) \geqslant 0, p^{\prime}(t) \geqslant 0, q(t) \leqslant 0, F(t)>0, F^{\prime}(t) \leqslant 0$. Then a necessary and sufficient condition for (2.1) to be oscillatory is that Eq. (2.11) has an oscillatory solution.

Proof. Theorem 2.8 due to Parhi and Das [12] implies that (2.2) is of C_{I} and (2.1) docs not admit a solution with (2,2)-distribution of zeros. Hence the proof follows from Theorem 2.14.

Remark 7. If p, q, r and F are real constants such that $q \leqslant 0$ or $>0, p>0$ and $F>0$ and (2.2) is oscillatory, then (2.11) has an oscillatory solution. Indeed, in this case (2.1), (2.2) and (2.8) are reduced, respectively, to

$$
\begin{align*}
& y^{\prime \prime \prime}+q_{1} y^{\prime}+p_{1} y=F_{1}, \\
& y^{\prime \prime \prime}+q_{1} y^{\prime}+p_{1} y=0 \tag{2.13}\\
& y^{\prime \prime \prime}+q_{1} y^{\prime}-p_{1} y=0, \tag{2.14}
\end{align*}
$$

$t \geqslant \sigma$, where $p_{1}=p / r, q_{1}=q / r$ and $F_{1}=F / r$. The characteristic equations of (2.13) and (2.14) are given respectively by

$$
\begin{align*}
m^{3}+q_{1} m+p_{1} & =0 \tag{2.15}\\
n^{3}+q_{1} n-p_{1} & =0
\end{align*}
$$

Since (2.13) is assumed to be oscillatory, Eq. (2.15) admits two complex roots, say $\alpha+\mathrm{i} \beta$ and $\alpha-\mathrm{i} \beta$, and a real root, say γ. Without any loss of generality, we may assume that $\beta>0$. Clearly,

$$
\begin{equation*}
\left\{\mathrm{e}^{\gamma t} / k, \mathrm{e}^{\alpha t} \cos \beta t, \mathrm{e}^{\alpha t} \sin \beta t\right\} \tag{2.16}
\end{equation*}
$$

forms a basis for the solution space of (2.13), where $k \neq 0$ is the value of the Wronskian of $\left\{\mathrm{e}^{\gamma t} / k, \mathrm{e}^{\alpha t} \cos \beta t, \mathrm{e}^{\alpha t} \sin \beta t\right\}$. Writing $u_{1}(t)=\mathrm{e}^{\gamma t} / k, u_{2}(t)=\mathrm{e}^{\alpha t} \cos \beta t$, and $u_{3}(t)=\mathrm{e}^{\alpha t} \sin \beta t$, we see that $W\left(u_{1}, u_{2}, u_{3}\right)(t) \equiv 1$ and $W_{1}(t)=u_{2}(t) u_{3}^{\prime}(t)-$ $u_{2}^{\prime}(t) u_{3}(t)=\beta \mathrm{e}^{2 \alpha t}>0$. Since $p_{1}>0$, we have $\gamma<0$ and hence $(\alpha+\mathrm{i} \beta)+$ $(\alpha-\beta)+\gamma=0$ implies that $\alpha>0$. Consequently, $g_{1}(t)=q_{1}+3 \alpha^{2}, h_{1}(t)=$ $W_{1}^{-3 / 2}(t) F_{1} \int_{\sigma}^{t} W_{1}(s) \mathrm{d} s>0$ and

$$
h_{1}^{\prime}(t)=\frac{F_{1} \mathrm{e}^{-\alpha t}}{2 \beta^{1 / 2}}\left[3 \mathrm{e}^{2 \alpha(\sigma-t)}-1\right]<0
$$

for sufficiently large t. Clearly, $u_{2}(t)$ and $u_{3}(t)$ are linearly independent oscillatory solutions of

$$
\left|\begin{array}{ccc}
u_{2}(t) & u_{3}(t) & x \\
u_{2}^{\prime}(t) & u_{3}^{\prime}(t) & x^{\prime} \\
u_{2}^{\prime \prime}(t) & u_{3}^{\prime \prime}(t) & x^{\prime \prime}
\end{array}\right|=0
$$

that is, of

$$
\begin{equation*}
\left(\frac{x^{\prime}}{W_{1}(t)}\right)^{\prime}+\left(\frac{W_{1}^{\prime \prime}(t)+q_{1} W_{1}(t)}{W_{1}^{2}(t)}\right) x=0 \tag{2.17}
\end{equation*}
$$

Since the transformation $x(t)=z(t)\left(W_{1}(t)\right)^{1 / 2}$ transforms (2.17) to

$$
\begin{equation*}
z^{\prime \prime}+g_{1}(t) z=0 \tag{2.18}
\end{equation*}
$$

this equation is oscillatory and hence $g_{1}(t)>0$. From Theorem 2.4 due to Skidmore and Leighton [18], it follows that (2.11) has an oscillatory solution. Hence we have the following proposition.

Proposition 2.16. Consider (2.1) and (2.2) with p, q, r and F are constants such that $p>0$ and $F>0$. Then (2.2) is oscillatory implies that (2.1) is oscillatory.

Proof. If $q<0$, then the proof follows from Corollary 2.15 and Remark 7 (we may note that this fact has been observed at the beginning of the paper).

If $q \geqslant 0$ then the proof follows from Proposition 2.5 (iv) and Theorem 2.13.
3. In this section we obtain sufficient conditions in terms of coefficients and the forcing terms for Eq. (1.1) to be oscillatory. First we state a result due to present authors [12] to be used in the sequel.

Theorem 3.1 (Theorem 2.6 [12]). Suppose that (1.2) is of C_{I} and (1.1) does not admit a solution with $(2,2)$-distribution of zeros. If (1.2) is oscillatory, then (1.1) is oscillatory.

Theorem 3.2. Suppose that $b(t) \leqslant 0, c(t)>0, c^{\prime}(t) \geqslant 0, f(t) \geqslant 0, f^{\prime}(t) \leqslant 0$, and $2 b(t)-a^{\prime}(t) \leqslant 0$. Then (1.2) is of C_{I} and (1.1) does not admit a solution with $(2,2)$-distribution of zeros.

Proof. The proof that (1.2) is of C_{I} is straightforward and hence is omitted. Let $y(t)$ be a solution of (1.1) with consecutive double zeros at $t=\alpha$ and $t=\beta$. Suppose that $y(t)>0$ for $t \in(\alpha, \beta)$. Multiplying (1.1) by $y^{\prime}(t)$ and then integrating the resulting identity from α to β we have

$$
\begin{aligned}
0>\int_{\alpha}^{\beta}\left[-\left(y^{\prime \prime}(t)\right)^{2}\right. & \left.+\frac{\left(2 b(t)-a^{\prime}(t)\right)}{2}\left(y^{\prime}(t)\right)^{2}-\frac{c^{\prime}(t)}{2} y^{2}(t)\right] \mathrm{d} t \\
& =-\int_{\alpha}^{\beta} f^{\prime}(t) y(t) \mathrm{d} t>0
\end{aligned}
$$

a contradiction.
Now suppose that $y(t)<0$ for $t \in(\alpha, \beta)$. Then there exists a point $\gamma \in(\alpha, \beta)$ such that $y^{\prime}(\gamma)=0$ and $y^{\prime}(t)>0$ for $t \in(\gamma, \beta)$. Eq. (1.1) may be written as (2.1). Multiplying (2.1) by $y^{\prime}(t)$ and integrating the resulting identity from γ to β we olstain

$$
\begin{array}{r}
0=\int_{\gamma}^{\beta}\left[r(t)\left(y^{\prime \prime}(t)\right)^{2}-q(t)\left(y^{\prime}(t)\right)^{2}-p(t) y(t) y^{\prime}(t)\right. \\
\left.+r(t) f(t) y^{\prime}(t)\right] \mathrm{d} t>0
\end{array}
$$

a contradiction. Hence the proof is completed.
Theorem 3.3. Suppose that $a(t) \geqslant 0, b(t) \leqslant 0, c(t)>0$ and $b(t)-a^{\prime}(t) \leqslant 0$. If

$$
\begin{align*}
\int_{\sigma}^{\infty}\left[\frac{2 a^{3}(t)}{27}\right. & -\frac{a(t)\left(b(t)-a^{\prime}(t)\right)}{3}+c(t) \tag{3.1}\\
& \left.-\frac{2}{3 \sqrt{3}}\left(\frac{a^{2}(t)}{3}-\left(b(t)-a^{\prime}(t)\right)\right)^{3 / 2}\right] \mathrm{d} t=\infty
\end{align*}
$$

then equation (1.2) is oscillatory.

Proof. Let $u(t)$ be a nonoscillatory solution of (1.2). By Lemma 2.2 due to Erbe [1], $u(t) u^{\prime}(t) \geqslant 0$ or $\leqslant 0$ and $u(t)>0$ for large t, say, for $t \geqslant t_{0} \geqslant \sigma$. In view of Lemma 2.3 due to Erbe [1], to complete the proof of the theorem it is enough to show that $u(t) u^{\prime}(t) \geqslant 0$ is not possible.

Suppose that $u(t) u^{\prime}(t) \geqslant 0$ for $t \geqslant t_{0} \geqslant \sigma$. Clearly $z(t)=u^{\prime}(t) / u(t)$ satisfies the Riccati equation

$$
\begin{equation*}
z^{\prime \prime}+3 z z^{\prime}+a(t) z^{\prime}=-\left[z^{3}+a(t) z^{2}+b(t) z+c(t)\right] \tag{3.2}
\end{equation*}
$$

Integrating (3.2) from t_{0} to t we have

$$
\begin{align*}
z^{\prime}(t) & +\frac{3 z^{2}(t)}{2}+a(t) z(t)=z^{\prime}\left(t_{0}\right)+\frac{3 z^{2}\left(t_{0}\right)}{2}+a\left(t_{0}\right) z\left(t_{0}\right) \tag{3.3}\\
& -\int_{t_{0}}^{t}\left[z^{3}(s)+a(s) z^{2}(s)+\left(b(s)-a^{\prime}(s)\right) z(s)+c(s)\right] \mathrm{d} s
\end{align*}
$$

The minimum of $\left[z^{3}(s)+a(s) z^{2}(s)+\left(b(s)-a^{\prime}(s)\right) z(s)+c(s)\right]$ for positive $z(s)$ is given by

$$
\frac{2 a^{3}(s)}{27}-\frac{a(s)\left(b(s)-a^{\prime}(s)\right)}{3}+c(s)-\frac{2}{3 \sqrt{3}}\left(\frac{a^{2}(s)}{3}-\left(b(s)-a^{\prime}(s)\right)\right)^{3 / 2}
$$

Subsituting this value into (3.3) we see that $\lim _{t \rightarrow \infty} z^{\prime}(t)=-\infty$. Consequently, $z(t)<0$ for large t, a contradiction.

This completes the proof of the theorem.
Corollary 3.4. Suppose that $a(t) \geqslant 0, b(t) \leqslant 0, c(t)>0, b(t)-a^{\prime}(t) \leqslant 0$, $c^{\prime}(t) \geqslant 0, f(t)>0$ and $f^{\prime}(t) \leqslant 0$. If (3.1) holds, then (1.1) is oscillatory.

The pro of of the Corollary follows from Theorems 3.1, 3.2 and 3.3.
Theorem 3.5. Suppose that $a(t) \leqslant 0, b(t) \leqslant 0, c(t)>0$ and $b(t)-a^{\prime}(t) \leqslant 0$. If

$$
\begin{equation*}
\int_{\sigma}^{\infty}\left[\frac{2 a^{3}(t)}{27}-\frac{a(t) b(t)}{3}+c(t)-\frac{2}{3 \sqrt{3}}\left(\frac{a^{2}(t)}{3}-\left(b(t)-a^{\prime}(t)\right)\right)^{3 / 2}\right] \mathrm{d} t=\infty \tag{3.4}
\end{equation*}
$$

then (1.2) is oscillatory.
This is Theorem 2.1 in [13] due to the present authors.
Corollary 3.6. Suppose that $a(t) \leqslant 0, b(t) \leqslant 0, c(t)>0, b(t)-a^{\prime}(t) \leqslant 0$. $c^{\prime}(t) \geqslant 0, f(t) \geqslant 0$ and $f^{\prime}(t) \leqslant 0$. If (3.4) holds, then (1.1) is oscillatory.

The pro of of the Corollary follows from Theorems 3.1, 3.2 and 3.5.

Acknowledgement. The authors are thankful to the referee for his remarks.

References

[1] L. Erbe: Existence of oscillatory solutions and asymptotic behaviour for a class of third order linear differential equations. Pacific J. Math. 64 (1976), 369-385.
[2] M. Gregus: Third Order Differential Equations. D. Reidel Pub. Co., Buston, Tokyo. 1987.
[3] M. Hanan: Oscillation criteria for third order linear differential equations. Pacific J. Math. 11 (1961), 919-944. MR 26 \# 2695.
[4] G.D. Jones: Oscillation criteria for third order differential equations. SIAM J. Math. Anal. 7(1976), 13-15.
[5] G. D. Joncs: An asymptotic property of solutions of $y^{\prime \prime \prime}+p y^{\prime}+q y=0$. Pacific J. Math. 48 (1973), 135-138.
[6] G.I). Jones: Oscillation properties of third order differential equations. Rocky Mountain J. Math. 3 (1973), 507-513.
[7] G.D. Jones: Oscillation properties of $y^{\prime \prime}+p(x) y=f(x)$. Accademia Nazionale Del Lincei 57 (1974), 337-341.
[8] M.S. Kcener: On the solutions of certain linear nonhomogeneous second order differential equations. Applicable Analysis 1 (1971), 57-63.
[9] A.C. Lazer: The behaviour of solutions of the differential equation $y^{\prime \prime \prime}+p(x) y^{\prime}+$ $q(x) y=0$. Pacific J. Math. 17 (1966), 435 166. MR \# 1552.
[10] W. Leighton and Z. Nchari: On the oscillation of solutions of self adjoint lincar differential equations of the fourth order. Trans. Amer. Math. Soc. 89 (1958), 325-377.
[11] N. Parhi and P. Das: On asymptotic property of solutions of a class of third order differential equations. Proc. Amer. Math. Soc. 110 (1990), 387-393.
[12] N. Parhi and P. Das: On zeros of solutions of nonhomogeneous third order differential equations. Czech. Math. J. 41 (1991), 641-652.
[13] N. Parhi and P. Das: On asymptotic property of solutions of linear homogeneous third order differential equations. Boll. Un. Mat. Ital.. To appear.
[14] N. Parhi and S.K. Nayak: Nonoscillation of second order nonhomogencous differential equations. J. Math. Anal. $\Lambda_{\text {ppl }} 102$ (1984), 62-74. MR \# 85k:34077, Zentrallblatt Band 544, \# 34025.
[15] N. Parhi and S. Parhi: Oscillation and nonoscillation theorems for nonhomogencous third order differential equations. The Bulletin of the Institute of Mathematics. Academia Sinica 11 (1983), 125-139. MR \# 85m:34056, Zentralblatt Band 522, \# 34028.
[16] N. Parhi and S. Parhi: Nonoscillation and asymptotic behaviour for forced nonlinear third order differential equations. The Bull. of the Institute of Mathematics. Academia Sinica 13 (1985), 367-38.4.
[17] N. Parth and S. Parhi: On the behaviour of solutions of the differential equation $\left(r(t) y^{\prime \prime}\right)^{\prime}+q(t)\left(y^{\prime}\right)^{\beta}+p(t) y^{\alpha}=f(t)$. Annales Polonici Mathematici $47(1986), 137-148$. MR \# 88i:34065 Zentralllatt Band 628, \# 34036.
[18] A. Skidmore and W. Leighton: On the differential equation $y^{\prime \prime}+p(x) y=f(x)$. J. Math. Anal. Appl. 13 (1973), 46-55.
[19] R.E. Sitter and S.C. Tefteller: Oscillation of a fourth order nonhomogencous differential equation. J. Math. Anal. Appl. 59 (1977), 93-104.
[20] S.C. Tefteller: Oscillation of second order nonhomogeneous linear differential equation. SlAM J. Appl. Math. 31 (1976), 461-467.

Authors' address: N. Parhi and P. Das, Department of Mathematics Berhampur University, Berhampur-760007, India.

[^0]: * This work was done under a scheme supported by the U.G.C., India, under Grant No. F. 8-9/87(SR-III).

