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Czechoslovak Mathemat ica l Journal, 44 (119) 1994, P r aha 

OSCILLATION AND NONOSCILLATION OF NONHOMOGENEOUS 

THIRD ORDER DIFFERENTIAL EQUATIONS 

N. PARHI and P. DAS,* Berhampur 

(Received July 17, 1992) 

1. This paper is concerned with the study of oscillatory/nonoscillatory behaviour 

of solutions of nonhomogeneous third order differential equations of the form 

(1.1) y'"+a(t)y" + b(t)y'+c(t)y = f(t), 

where a, b, c and / are real-valued continuous functions on [<r, oo), a G IR, under the 
assumption that the associated homogeneous equation 

(1.2) y'"+a(t)y" + b(t)y' + c(t)y = 0 

is oscillatory/nonoscillatory. 
A great deal of work on oscillation theory of (1.2) has been done during the last 

several years (see Gregus [2], Hanan [3], Jones [4-6], Lazer [9], Parhi and Das [11,13] 
and the references therein). The first author and S. Parhi obtained sufficient condi
tions for oscillation and nonoscillation of (1.1) in [15-17]. However, the techniques 
employed here are different from the former ones. 

A continuous real-valued function y on [a, oo) is said to be oscillatory if it has 
arbitrarily large zeros in [O, oo); otherwise, it is said to be nonoscillatory. Eq. (1.1) 
or (1.2) is said to be oscillatory if it has an oscillatory solution, and it is said to be 
nonoscillatory if all of its solutions are nonoscillatory. 

Following Hanan [3], Eq. (1.2) is said to be of Class I or C\ if any solution y(t) 
of the equation with y(t0) = y'(t0) = 0, y"(t0) > 0, t0 > a, satisfies y(t) > 0 
for a ^ t < t0. It is said to be of Class II or CJI if any solution y(t) of it with 

y(t0) = y'(t0) = 0, y"(t0) > 0, t0 ^ a satisfies y(t) > 0 for t > t0. We say that 

'This work was done under a scheme supported by the U.G.C, India, under Grant No. 
F. 8-9/87(SR-III). 

443 



Eq. (1.1) has no solution with (2,2)-distribution of zeros if it has no solution with 
two consecutive double zeros. 

The motivation for the present work had come from the work of Sitter and Tefteller 
[19] and from certain observations of the properties of solutions of the third order 
differential equations with constant coefficients of the form 

(1.3) y'" + ay" + by' + cy = f 

and the associated homogeneous equations 

(1.4) y"' + ay" + by' + cy = 0, 

where a, b, c and / G R such that / / 0. Clearly, all solutions of (1.4) are nonoscil-
latory if and only if its characteristic equation 

(1.5) m3 + am3 + bm + c = 0 

has only real roots, say 7;, i = 1,2,3. Consequently, the general solution of (1.3) for 

c ^ 0, is given by 

f 3 

y{t) = J- + yXie^\ X{eR 
1 = 1 

which is nonoscillatory. Hence nonoscillation of (1.4) implies nonoscillation of (1.3). 

On the other hand, oscillation of (1.4) need not imply the oscillation of (1.3). Indeed, 

a solution basis of 

y"' - 2y' -4y = 0 

is given by 
{e~l cost, e~l sin t,e2t} . 

So the general solution of the corresponding nonhomogeneous equation 

y'" - 2y' - 4y = / , 

where / € U and / 7̂  0, is of the form 

y(t) = - - + Aie"£cosl + A2e_t sinl + A3e2t, 

which is nonoscillatory for all real A;,i = 1,2,3. However, for a ^ 0 (or < 0), b < 0 
and c > 0, oscillation of (1.4) implies the oscillation of (1.3). Indeed, oscillation of 
(1.4) implies that (1.5) admits two complex roots a + i/i and a — i/3 and a negative 
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real root 7. Clearly, b = -y(a + if3)+^(a + if3) +(a + i/3)(a + if3) implies that 2ci7 < b 

and hence a > 0. Consequently, y(t) = { + \eQtcos(Jt is an oscillatory solution of 

(1.3). Thus, for a ^ 0 (< 0), b < 0 and c > 0, (1.3) is oscillatory if and only if 

(1.4) is oscillatory. Further, under these conditions on coefficients, Eq. (1.5) admits 

complex roots, that is, (1.4) is oscillatory if and only if 

2a3 ab 2 fa2 \ 3 / 2

 n 

+c -= — -b) > 0. 
27 3 3\/3 V 3 

2. Equations (1.1) and (1.2) may be written, respectively, as 

(2.1) (r(t)y")' + q(t)y'+p(t)y = F(t) 

and 

(2.2) (r(t)y"У + q(t)y'+p(t)y = 0, 

where r{l.) = cxpf/J a(s) ds), q(t) = b(t)r(t), p(t) = c(t)r(t) and F(t) = f(t)r(t). 

Let {ui, 112,113} be a solution basis for (2.2) such that 

щ(t) u-2(t) u3(t) 

u[(t) u!2(t) u'3(t) 

r(t)u'{(t) r(t)u'l(t) r(t)u'3\t) 
= 1 W(ui,u2,u3)(t) = 

Then the general solution of (2.1) is given by 

3 

(2-3) y(t) = ^2ciUi(t)+yp(t), 
i = i 

where CT, C'2, c3 are constants and yP(t) is a particular solution of (2.1) and is given 

by 
Ul(t) i/2 ( i) u3(t) 

УP(t) = I F(s) ds. ui(s) u2(s) u3(s) 

u[(s) u'2(s) u'3(s) 

Clearly, yp(a) = 0, y'p(a) = 0 and y'/^a) = 0. Following Sitter and Tefteller [19], 

Wi(t) denotes the determinant obtained from W(ui,u2,u3)(t) by replacing the ith-

colunin with the vector (0,0,1)T, i = 1,2,3. So 

3 , í 

Уp(t) = J2щ(t) / F(s)Wi(s)ds 
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and 

V (t) = ^щ(t) Ci+ í F(s)Wi(s)ds 
i=l - J a 

Lemma 2.1. If y(t) is a solution of (2.1) given by (2.3), then 

(2A) r(t)Wi(t)y"(t)~r(t)W!(t)y'(t) 

+ [q(t)Wi(t) + (r(t)W!(t))'}y(t) = a + [ F(s)Wi(s) ds , 
J a 

i = 1,2,3. 

P r o o f . We may see that S{(t) = c{ + J* F(s)W{(s) ds , i = 1,2,3, where S((t) 
denotes the determinant obtained by replacing the ith-cohimn of VV(Hi, 1/2,^3)(l) 
with the vector {y(t),yf(t),r(t)y"(t))1 . Indeed, for i = 1 we write 

Then 

implies that 

Si(ť) = 

S[(t) = 

У(t) u2(t) «3(ť) 
y'(t) u'2(t) «3(ť) 

r(t)y"(t) r(ť)м2'(ť) r(ť)u3'(ť) 

y(t) м2(ť) «3(ť) 
y'(t) «2(ť) «3(ť) 
F(ť) 0 0 

= F(ť)Ï i(ť) 

Sl(t) = S1(a)+ í Ғ(в)I^i(a)ds 
J(T 

But Si(cr) = CiVV(a) = c\_. Consequently, S[(t) = c\ + fa F(s)W\(s) ds . Expanding 

S\(t), we obtain (2.4) for i = 1. Similarly, one may obtain (2.4) for i = 2 and 3. • 

Lemma 2.2. Suppose that W\(t) 7-= 0 for t ^ to > O. If y(t) is a solution of (2.1) 

given by (2.3), tlion it is a solution of the second order nonhomogencous equation 

(2.5) 

wherc 

and 

(R(t)y')' + Q(t)y = G(t), t > t0, 

mt\ - _ L - nm - (iWV^t) + (r(t)W{(t))' 
H[t) - W^t)^^ - r(t)Wi(t) 

G(t) = [d + I F(S)W1(s)ds]/r(t)Wl(t). 

P r o o f . Dividing (2.4) with i = 1 by r(t)W?(t), we obtain (2.5) 
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Lemma 2.3. IfW\(t) 7- 0 for t^t0>a, then u2(t) and w3(/) satisfy 

(2.G) (R(t)y')' + Q(t)y = 0, í > ío 

where R(t) and Q(t) are the same as in Lemma 2.2. 

P r o o f . Clearly, u2(t) and u,3(t) are solutions of the second order differential 

equation 

u2(t) u3(t) x 

u'2(t) u'3(t) x' = 0 

r(t)u'm r(t)v'i(t) r(t)x" 

Expanding this determinant we obtain (2.6). D 

Theorem 2.4. If Wx(t) ^ 0 for t ^ tQ > o and 

(2.7) (R(t)y')' + Q(t)y = Gc(t), < > ío, 

is nonoscillatory for every constant c, where R(t) and Q(t) are the same as in Lemma 

2.2 and 

C + Ґғ(s) 
J а 

Wi(s)ds /r(í).VÍ(ť). Gc(t) = 

then (2.1) is nonoscillatory 

The p r o o f of the theorem follows from Lemma 2.2. 

R e m a r k 1. (i) The adjoint of (2.2) is given by 

l(r(t)y'У+q(t)y)'-p(t)y = 0. 

If q(t) is diflerentiablc, then it takes the form 

(2.8) (r(t)y')" + q(t)y' + (q'(t)-p(t))y = 0. 

It is easy to verify that W\(t) satisfies (2.8). (ii) W\(t) satisfies the equation 

(r(t)z')' + q(t)z = 9(t), 

where g(t) = r(t)(u'2(t)v!&t) - u'3(t)u^(t)). 
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Proposit ion 2.5. (i) If p(t) > 0 and q(t) <C 0, then (2.2) is ofCj. 

(ii) If(p(t) < 0 and q(t) ^ 0, then (2.2) is ofCjj. 

(hi) ff r'(i) ^ 0 ( ^ 0) and a G C l([O,oo), R) isa such that 2p(t) - q'(t) ^ 0(^ 0), 

then (2.2) is ofCj(Cjj). 

Tlie p r o o f in each case is straigthforward and hence is omitted. 

Theorem 2.6. Suppose that (2.2) is of Cj or CJJ and F(t) does not change sign 

for large t. If (2.2) is nonoscillatory, then (2.1) is nonoscillatory. 

P r o o f . As (2.2) is nonoscillatory, it follows from Theorem 4.7 due to Hanan 

[3] that (2.8) is nonoscillatory. So \\\(t) is nonoscillatory. Suppose \\\(t) / 0 for 

t ^ 'o ^ 0"- Further, from Lemma 2.3 and the fact that (2.2) is nonoscillatory it is 

clear that (2.C) is nonoscillatory. Suppose that F(t) > 0 or < 0 for t ^ t\ ^ to. For 

any constant c, 

h(t) = c+ I Wi(s)F(s)ds 
J а 

is nonoscillatory, because h'(t) > 0 or < 0 for t ^ t\. Hence it is clear from Theorem 

3 due to Keener [8] that (2.7) is nonoscillatory for every constant c. Thus the 

conclusion of the theorem follows from Theorem 2.4. • 

E x a m p l e . Consider the equation 

(2.9) y'" + e _ y + 2e~ty = 3 + e*, t > 0. 

Theorem 2.2 due to Hanan [3] and Theorem 3.5 due to Lazer [9] imply that the ho

mogeneous equation associated with (2.9) is of Cj and nonoscillatory Consequently, 

by Theorem 2.G, all solutions of (2.9) are nonoscillatory In particular, y(t) — c' is a 

nonoscillatory solution of (2.9). 

R e m a r k 2. (i) Hanan in [3] and Lazer in [9] have obtained various sufficient 

conditions for nonoscillation of (2.2). 

(ii) Although Keener [8] has proved his Theorem 3 for r(t) = l,p(i) ^ 0 and 

f(t) ^ 0, his result holds good for 

(r(t)y'Y+p(t)y = f(th 

where r(t) > 0 and f(t) does not change sign for large t. There is no sign restriction 

on p(t). 
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If F(t) is allowed to change sign for large t, then (2.7) is nonoscillatory provided 
(2.6) is nonoscillatory and 

fa. 
J a 

(2.10) / Gc(s)^(s)ds 
J a 

is nonoscillatory, where $(t) is a solution of (2.6) (see [14], Theorem 4.1). Hence we 
have the following result: 

Theorem 2.7. Suppose that (2.2) is of Ci or Cu and (2.10) is nonoscillatory, 

where <b(t) is a solution of (2.6). Then (2.2) is nonoscillatory implies that (2.1) is 

nonoscillatory. 

The following result due to Leighton and Nehari [10, Lemma 1.2] is used in the 
sequel. 

Lemma 2.8. Let u and v e Cl ((a, b), U), and let v(t) be of constant sign in (a, b). 
If a and /3(a < a < ft < b) are consecutive zeros ofu(t), then there exists a nonzero 
constant X such that the function u(t) — Xv(t) has a double zero in (a, (5). 

Theorem 2.9. 1/(2.2) is of Ci and Cu, then it is nonoscillatory. 

P r o o f . Since (2.2) is of Cu, the solution y(t) of (2.2) with initial conditions 
y(o) — y'(a) = 0,y"(a) > 0 has the property that y(t) > 0 for t > a. If possible, let 
z(t) he an oscillatory solution of (2.2). Let a\,[3\, a2,/32(O < a i < /3\ < a2 < /32) be 
succcsive zeros of z(t) such that z(t) > 0 for t G (a\,(5\) U (a2,/32). By Lemma 2.8, 
there exists non-zero constants A] and A2 such that z\(t) = z(t) — X\y(t) has a double 
zero at t\ G (c\\Jh) and z2(t) — z(t) — X2y(t) has a double zero at t2 G (a2,/32). 
Since z(t) > 0 in (a\,(3\) and (a2,/J2) and y(t) > 0 for t > a, we have Ai > 0 and 
A2 > 0. If Ai > A2, then z2(h) = z(t\) - X2y(t\) > z(t\) - AiH(li) = z\(t\) = 0 and 
z2(lh) = z(fh) - A2H(A) = -X2y((3\) < 0. Thus z2(t) is a solution of (2.2) with a 
zero in (ii,/3i) and a double zero at l2, which constradicts the assumption that (2.2) 
is of C7. If X\ <: A2, then z\(t2) = z(t2) - X\y(t2) ^ z(t2) - X2y(t2) = z2(t2) - 0 
and z\(P\) = z((5\) - X\y([3\) = -X\y((3\) < 0. Hence z\(t) is a solution of (2.2) 
with a zero in (fi\,t2] and a double zero at t\, a contradiction to the assumption 
that (2.2) is of Cu. Hence (2.2) cannot have an oscillatory solution. Thus (2.2) is 
nonoscillatory This completes the proof of the theorem. • 

R e m a r k 3. (i) If p(t) > 0,q(t) <: 0 and p(t) - q'(t) ^ 0, then (2.2) is of C/ 
and C//. Indeed, Proposition 2.5 (i) yields that (2.2) is of C\. Next wre show that 
the adjoint of (2.2), given by (2.8), is of C\. If not, then y(t) is a solution of (2.8) 
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with y(a) = y'(a) = 0,yf,(a) > 0 and y(t0) = 0 for some a < t0 < a. Consequently, 
there exists a /3 G (t0,a) such that y'(/3) = 0 and y(t) > 0,y'(t) < 0 for t G (/J, a) . 
Multiplying (2.8) by r(t)y'(t) and integrating the resulting identity from f i t o a we 
obtain 

0 = - r({r(t)y'(t))')2dt + f r(t)q(t)(y'(t))2dt 
Jp Jp 

+ I" r(t)(q'(t)-p(t))y(t)y'(t)dt < 0, 
•/£ 

a contradiction. Hence (2.8) is of C/. Consequently, by Lemma 2.9 due to Hanan 

[3], (2.2) is of C//. 
(ii) lip(t) ^ 0,a(i) <C 0 and p(t) - q'(t) ^ 0, then (2.2) is of C/ and C / 7 . Indeed, it 

follows from Proposition 2.5 (ii) that (2.2) is of C//. Now we show that the adjoint 
of (2.2), that is, (2.8) is of C//. If not, suppose that y(t) is a solution of (2.8) with 
the property y(a) = y'(a) = 0,y"(a) > 0 and y(t0) = 0 for some t0 > a > a. 

Consequently, there exists a f3 > a such that y'(f3) = 0 and y(t) > 0,y'(t) > 0 for 
t G (a,(J). Multiplying (2.8) by r(t)y'(t) and integrating the resulting identity from 
a to P we obtain a contradiction. Hence, by Lemma 2.9 due to Hanan [3], (2.2) is of 
C/. 

Corollary 2.10. Suppose that conditions of Theorem 2.9 are satisfied and F(t) 

does not change sign for large t. Then (2.1) is nonoscillatory. 

The p r o o f follows from Theorem 2.6 and 2.9. 

R e m a r k 4. In [16, Theorem 2.1], Parhi and Parhi have proved that F(t) ^ 
0, p(t) > 0, q(t) ^ 0 and p(t) - q'(t) ^ 0 imply that all solutions of (2.1) are 
nonoscillatory. Remark 2(i) implies that Corollary 2.10 is a generalization of their 
result. 

Lemma 2.11. If W\(t) is nonoscillatory, then every solution of (2.7) is a solution 

of (2.1). 

P r o o f . From the discussions at the begining of this section it folows that 
Xu\(t) -f yp(t), X G U, is a solution of (2.1) and (2.7). Since {u2,u3} forms a fun
damental set of solutions of (2.G) (see Lemma 2.3), the general solution of (2.7) is 
given by 

y(t) = Xu} (t) + yP(t) + A2H2(l) + X3u3(t) 

= XUl(t) + X2u2(t) + X3u3(t) + yp(t), X2, X3 G R, 

which is a solution of (2.1). • 
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Theorem 2.12. If W\(t) is nonoscillatory and, for some constant c, Eq. (2.7) has 
an oscillatory solution, then (2A) is oscillatory. 

The p r o o f follows from Lemma 2.11. 

Theorem 2.13. Suppose that (2.2) either is of Cj or is of Cu and oscillatory. 
Further, assume that the second order nonhomogeneous equation 

(2.11) z"+9l{t)z = hl{t), 

q{t) (r(t)W{(t))' 1 W{'(t) 3 (W[{t)f 
fllW = 1777+ _MU;r/ u\ + 

and 

r(t) r(ť)Wi(ť) 2 IV! (í) 4 W'{ (í) 

MO = ^wJ ( ž ) )3/2 / ' -^WW d* > r(*)W 
has an oscillatory solution. Then (2.1) is oscillatory. 

P r o o f . Suppose that (2.2) is of CI. Let the solution basis {1/4,̂ 2,1x3} of (2.2) 
satisfy the initial conditions 

Hi(O-) = 1, u[(a) = 0, u'{(a) = 0, 
u2(a)=0, u'2(a) = l, u'.2\a) = 0, 
u3(a)=0, u'3(a)=0, u'^a) = l/r(a). 

D 

It may be easily verified that the Wronskian W(u\,u,2,U3)(t) = 1 and W\(t) = 
U2(t)u'3(t) - u'2(t)u3(t) is a solution of (2.8) with the properties W\(a) = W[(a) = 0, 
W['(a) = 1. From Lemma 2.9 due to Hanan [3], it follows that (2.8) is of C//. Hence 
IV! (t) > 0 for t > a. The transformation y(t) = z(t)(W\(t))1/'2 transforms (2.7) 
with c = 0 to (2.11). Hence the given hypotheses imply that (2.7) with c = 0 has 
an oscillatory solution. Consequently, the oscillation of (2.1) follows from Theorem 
2.12. Thus the proof of the theorem is completed when (2.2) is of C\. 

Next, suppose that Eq. (2.2) is of Cu and oscillatory. To complete the proof of 
the theorem it is sufficient to construct a solution basis {^1,^2,^3} of (2-2) such 
that W\(t) = ii2(t)u'3(t) — u'2(t)u3(t) > 0 for large t. Indeed, in that case we use 
the transformation y(t) = z(t)(W\(t))1/'2 and proceed as above to arrive at the 
conclusion. 

Let y\(t) be an oscillatory solution of (2.2). Let (3 ^ a be such that y\(f3) ^ 0. 
Suppose that (tn)^=l is a sequence of zeros of y\(t) in ([3, 00) such that tn -» oo as 

451 



n —> oo. Define a sequence (xn(t))n
<L1 of nontrivial solutions of (2.2) on [/i, oo) with 

tlie boundary conditions 
xn(0)=xn(tn)=Q. 

3 

Tlien there exist real constants c\n, c2n and C3n such that xn(t) — ^ C{nVi(t) with 
7 = 1 

3 

Y^ c'in — 1' where {v\,v2,v^} is a solution basis of (2.2). We claim that the zeros of 
i=i 

y\(t) and xn(t) separate each other in (f3,tn). If possible, let a\ and a 2 (a i < a2) 
be consecutive zeros of y\(t) in (fl,tn) and let xn(t) > 0 or < 0 for t G [a i , a 2 ] . It 
follows from Lemma 2.8 that there exists a constant A such that y\(t) — Xxn(t) has 
a double zero in ( a i , a 2 ) . This contradicts the fact that (2.2) is of C\\ because the 
solution y\(t) — Xxn(t) of (2.2) has a zero at t = tn. Since y\(t) and xn(t) are linearly 
independent solutions of (2.2) and tn is a common zero, Theorem 2.10 due to Hanan 
[3] yields that xn(t) cannot vanish at a i or a2. Hence xn(t) has a zero in (a\,a2). 

Similarly, it may be shown that y\(t) has a zero between two consecutive zeros of 
xn(t) in (p,tn). Thus our claim holds. Since the sequence (cin)

<
n

<
=l, i = 1,2,3, is 

bounded, it admits a convergent subsequence ( c in , . ) ^ , say, with limit a, i = I, 2, 3. 
3 

So {xUk } converges uniformly to a solution y2(t) = ^ Wi of (2.2). Thus y2(fi) = 0 
i=\ 

and hence y\(t) and y2(t) are linearly independent. We claim that the zeros of 
y\(t) and y2(t) separate each other in (M, oo) for some M > (5. From Theorem 
2.10 due to Hanan [3], it is clear that y\(t) and y2(t) can have at most one zero in 
common. Hence there exists M > (3 such that y\(t) and y2(t) have no common zero 
in (M, oo). Suppose that a\ and a2 G (M, oo) (ai < a2) are consecutive zeros of 
y\(t). Clearly, y2(t) does not vanish at a i and a2. Suppose that y2(t) > 0 or < 0 for 
t G [a i ,a 2 ] . Without any loss of generality, we may take y2(t) > 0 for t G [a i ,a 2 ] . 
Then there exists an e > 0 such that y2(t) ^ e > 0 for t G [ Q I , ^ ] - Since the 
sequence (x1lk) converges uniformly to y2 on [ai ,a 2] , there exists an integer N > 0 
such that \y2(t) - x1lk(t)\ < e/2 for t G [ai ,a2] and ilk > N. Thus, for nk > N such 
that tnk > a2 , 

xn,(t)>y2(t)-e/2Ze-e/2 = e/2 for lG[ai,a2], 

which contradicts the fact that xnk (t) has a zero between any two consecutive zeros 
of y\(t) in (f3,tnk). Hence y2(t) has a zero in ( a i , a 2 ) . Next we show that y\(t) has 
a zero between two consecutive zeros of y2(t). Let a i and a2 G (M, oo), a i < a2, 
be consecutive zeros of y2(t). We may assume, without any loss of generality, that 
y2(t) > 0 for t G ( a i , a 2 ) . Suppose that y\(t) ^ 0 for t G [a i ,a 2 ] . Since y\(t) is 
oscillatory it is possible to find f3\ and fl2 such that f3\ < a\ < a2 < P-i,y\(ih) — 

0 = Hi(/32) and y\(t) ^ 0 for t G (/ii,/}2). (If such a f3\ does not exist, then we 
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choose M to be the zero of y2(t) which is just before the first zero of 2/1 (00 Since 
(2.2) is of C11, tlie zeros a i and a2 of y2(t) are simple. Hence it is possible to 
find a positive number e,ti G (f5i,ai) and t2 G (ai,a2) such that 2/2(̂ 1) < -£ and 
2/2(̂ 2) > £• It follows from the definition of y2(t) that there exists an integer Ni > 0 

such that \xnk(t) - 2/2(01 < e for nA; ^ Ni a n d ^ ^ ^ - This in turn implies that 
xn,(ti) < ij2(ti) -f e < 0 and xnk(t2) > 2/2(̂ 2) - e > 0 for n* ^ Ni- Thus x7lk(t) has 
a zero in (ti,t2) for 7ifc ^ NV Similarly, there exist an integer N2 > 0, t3 e ( a i , a 2 ) 
and i4 G (a2,p2) such that xnk(t) has a zero in (£3,^4) for nk ^ N2- Choosing iik 

large enough such that nk > max{Ni, N2} and tnk > fc, we see that xnk(t) has two 
zeros in (Pi,fl2), a contradiction to the fact that the zeros of xnk(t) and yi(t) are 
interlaced in (f3,tnk). Hence 2/1 (0 n a s a z e r o m (^1^2)- Thus we have shown that 
the zeros of 2/1 (0 a n d 2/2(0 a r e interlaced in (M, 00), M > /?. 

Next we claim that every linear combination of 2/1 (0 ai-d 2/2(0 *s oscillatory If 
possible, suppose that /Ii2/i(0 + A*2 2/2(0 *s nonoscillatory for some nonzero relas //i 
and //2. Without any loss of generality, we may assume that Liiyi(t) -f- /42 2/2(0 > 0 
for t ^ t0 > M. If £1, l2, £3 (£1 < £2 < £3) are succesive zeros of yi(t) in [l0,oc), 
then //22/2(̂ 1) > 0, i = 1,2,3. This contradicts the fact that the zeros of 2/1 (0 
and 2/2(0 a r e interlaced in (M, 00). Hence oiir claim holds. Now we show that 
2/i(02/2(0 ~ 2/i(02/2(0 7̂  0 f° r * > -W- Otherwise, there exists a 7 > M such 
that 2/1(7)2/2(7) ~ 2/1(7)2/2(7) = 0. Since the zeros of yi(t) and 2/2(0 a r e interlaced in 
(M, 00), then 2/1(7) and 2/2(7) are not zeros simultaneously. Hence v(t) = yi(7)2/2(0~~ 
2/2(7)2/1(0 is a nontrivial solution of (2.2) with ^(7) = 1/(7) = 0 and ^"(7) / 0. 
Consequently, (2.2) is of C// impplies that v(t) > 0 or < 0 for t > 7, a contradiction 
to the fact that every linear combination of yi(t) and 2/2(0 ls oscillatory. Hence 
2/i(02/2(0 _ 2/i(02/2(0 7̂  ° f° r t > M. We assume, without any loss of generality, 
that 2/i(02/2(0 - 2/i(02/2(0 > 0 for t > M. 

Let 2/3(0 be a solution of (2.2) with y3((3) = y'3(/3) = 0,y'3
f(f5) = 1. Clearly 

y\(t),y-i(t) and 2/3(0 a r e linearly independent. Hence IV(Hi,2/2,2/3)(0 = k 7̂  0. Now 
setting 

ui(t) = y3(t),u2(t) = 2/i(0 ar-d u3(t) = 2/2 (0 

we see that {ui,u2,u3} is a solution basis of (2.2) with JVi(0 = u2(t)u3(t) -
u'2(t)u3(t) > 0 for large t. 

Hence the theorem is proved. 

R e m a r k 5. Eq. (1.2) admits a nontrivial solution y(t) with the property y (a) = 
2/(/i) — 0 where a ^ a < p. Indeed, the solutions yi(t) and y2(t) of (2.2) with initial 
conditions 

2/i(a)=0,2/;(a)=0,2/i ' (a) = l 

2/2(a)=0,2/2(a) = V2/^(a) = 0 
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are linearly independent. If either yi((3) = 0 or y2((3) = 0, then there is nothing to 

prove. Otherwise, 

y(t) = yi(t)-^y2(t) 

is the required nontrivial solution of (2.2) with the property y(a) = y(/3) — 0. 

T h e o r e m 2 .14 . Suppose that (2.2) is ofC\. If (2.1) does not admit a solution 

with (2,2)-distribution of zeros and F(t) does not change sign for large t, then a 

necessary and sufficient condition for (2.1) to be oscillatory is that (2.11) lias an 

oscillatory solution. 

P r o o f . If (2.1) is oscillatory, then by Theorem 2.6 (2.2) is oscillatory. From 

Theorem 2.12 due to Parhi and Das [12], it follows that yp(t) is oscillatory. Pro

ceeding as in the first par t of Theorem 2.13, we obtain Wi(t) > 0. Since yp(t) is a 

solution of (2.7) for c = 0, then z(t) = yv(t)(W\(t))~1/2 is an oscillatory solution of 

(2.11). The sufficiency part follows from Theorem 2.13. 

Hence the proof of the theorem is complete. • 

R e m a r k 6. (i) (See Theorem 2.8 [12].) Suppose that p(t) ^ 0,p'(t) ^ 0,F(t) ^ 

0 and F'(t) ^ 0. If 

(2.12) (r(t)z')' + q(t)z = 0 

is nonoscillatory, then (2.2) is of C\ and (2.1) does not admit a solution with (2,2)-

distribution of zeros. 

(ii) (See Theorem 2.10 [12].) Suppose that p(t) ^ 0, p'(t) ^ 0, F(t) ^ 0, F'(t) ^ 0, 

r'(t) ^ 0 and 2p(t) - q'(t) > 0. If (2.12) is nonoscillatory, then (2.2) is of C/ and 

(2.1) does not admit a solution with (2,2)-distribution of zeros. 

Corol lary 2 .15 . Suppose that p(t) ^ 0, p'(t) ^ 0, q(t) ^ 0, F(t) > 0, F'(t) ^ 0. 

Then a necessary and sufficient condition for (2.1) to be oscillatory is that Eq. (2.11) 

lias an oscillatory solution. 

P r o o f . Theorem 2.8 due to Parhi and Das [12] implies that (2.2) is of C\ and 

(2.1) does not admit a solution with (2, 2)-distribution of zeros. Hence the proof 

follows from Theorem 2.14. • 

R e m a r k 7. If p, a, r and F are real constants such that q ^ 0 or > 0, p > 0 

and F > 0 and (2.2) is oscillatory, then (2.11) has an oscillatory solution. Indeed, in 

this case (2.1), (2.2) and (2.8) are reduced, respectively, to 

y'" + qiy'+ Piy = Fu 

(2.13) y"' + qiy'+Piy = 0, 

(2.14) y'" + qiy'- Piy = 0, 
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t ^ O, where pi — p/r, ai = q/r and Fi = F/r. The characteristic equations of 

(2.13) and (2.14) are given respectively by 

(2.15) m* + qim+px = 0 , 

n3 + q\ii - p\ = 0. 

Since (2.13) is assumed to be oscillatory, Eq. (2.15) admits two complex roots, say 

a + iff and a - i/3, and a real root, say 7. Without any loss of generality, we may 

assume that (5 > 0. Clearly, 

(2-16) {e11 /k,eat cosßt,eat siwßt} 

forms a basis for the solution space of (2.13), where k -/-= 0 is the value of the 

Wronskian of {e^/k,eat cos0t,eat sin/ft}. Writing ux(t) = e^/k,u2(t) = eatcos fit, 

and u3(t) = eatsin0t, we see that W(ui,u2,u3)(t) = 1 and W\(t) = u2(£)^3(0 -

u'2(t)u3(t) = /3e2ofi > 0. Since pi > 0, we have 7 < 0 and hence (a + i/3) + 

(a - 0) + 7 = 0 implies that a > 0. Consequently, Gi(£) = qi + 3a2Jii(t) = 

TVr:V2(*)Pi £ Wx(s) ds > 0 and 

Лi(í) = 
FlЄ 

2/31/2 [Зe: ,2a(cт-0 _ 1] < 0 

for sufficiently large t. Clearly, u2(t) and u3(t) are linearly independent oscillatory 

solutions of 

u2(t) u3(t) x 

u'2(t) u'3(t) x' = 0 

u'.2'(t) u'i(t) x" 
that is, of 

(2.17) + 
W{'(t) + q1W1(t) 

• 0 . 

^iwy ' v wut) 
Since the transformation x(t) = z(t)(W7i(0)1 / r 2 transforms (2.17) to 

(2.18) z" + gi(t)z = 0 

this eciuation is oscillatory and hence g\(t) > 0. From Theorem 2.4 due to Skidmore 

and Leighton [18], it follows that (2.11) has an oscillatory solution. Hence we have 

the following proposition. 

Proposition 2.16. Consider (2.1) and (2.2) with p, q, r and F are constants such 

that p > 0 and F > 0. Then (2.2) is oscillatory implies that (2.1) is oscillatory. 

P r o o f . I f O < 0 , then the proof follows from Corollary 2.15 and Remark 7 (we 

may note that this fact has been observed at the beginning of the paper). 

If q ^ 0 then the proof follows from Proposition 2.5 (iv) and Theorem 2.13. • 
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3. In this section we obtain sufficient conditions in terms of coefficients and the 
forcing terms for Eq. (VI) to be oscillatory First we state a result due to present 
authors [12] to be used in the sequel. 

Theo rem 3.1 (Theorem 2.6 [12]). Suppose that (V2) is ofCi and (VI) does not 
admit a solution with (2, 2) -distribution of zeros. If (1.2) is oscillatory, then (VI) is 
oscillatory. 

Theorem 3.2. Suppose that b(t) ^ 0, c(t) > 0, c'(t) ^ 0, f(t) ^ 0, f'(t) ^ 0, 
and 2b(t) - a'(t) ^ 0. Then (V2) is of Ci and (VI) does not admit a solution with 

(2, 2)-distribution of zeros. 

P r o o f . The proof that (V2) is of C\ is straightforward and hence is omitted. 
Let y(t) be a solution of (VI) with consecutive double zeros at t = a and t = (1. 
Suppose that y(t) > 0 for t G (a,/J). Multiplying (VI) by y'(t) and then integrating 
the resulting identity from a to (3 we have 

o > [ [ - ( ! /w + SMQVw)* - fVe>] * 

• / . 

ß 
f'(t)y(t)dt >0 , 

a contradiction. 

Now suppose that y(t) < 0 for t G (ex,(5). Then there exists a point 7 G (c\,(l) 

such that 7/(7) = 0 and y'(t) > 0 for t G (7,/?). Eq. (VI) may be written as (2.1). 

Multiplying (2.1) by y'(t) and integrating the resulting identity from 7 to fi we obtain 

0 = / \r(t)(y"(t))2 - q(t)(y'(t))2 - p(t)y(t)y'(t) 

+ r(t)f(t)y'(t)]dt >0, 

a contradiction. Hence the proof is completed. • 

(3.1 

Theorem 3.3. Suppose that a(t) > Q,b(t) ^ 0,c(t) > 0 and b(t) - a'(t) <C 0. / / 

2a3(t) a(t)(b(t)-a'(t)) 

/ 
JO 

27 3 

2 (a2(t) 

3\/3 V 3 

then equation (1.2) is oscillatory. 
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P r o o f . Let u(t) be a nonoscillatory solution of (1.2). By Lemma 2.2 due to 

Elbe [1], u,(t)u'(t) ^ 0 or ^ 0 and u(t) > 0 for large t, say, for t ^ t0 ^ a. In view 

of Lemma 2.3 clue to Elbe [1], to complete the proof of the theorem it is enough to 

show that u(t)u'(t) > 0 is not possible. 

Suppose that u(t)u'(t) ^ 0 for t ^ t0 ^ a. Clearly z(t) = u'(t)/u(t) satisfies the 

Riccati equation 

(3.2) z" + 3zzf + a(t)z' = - [z3 + a(t)z2 + b(t)z + c(t)]. 

Integrating (3.2) from t0 to t we have 

(3.3) z'(t) + ̂ 1 + a(t)z(t) = z'(t0) + ̂ ^ + a(t0)z(t0) 

- f[z\s) + a(s)z2(s) + (b(s) - a'(s))z(s) + c(s)] As . 
Jf-o 

The minimum of [z^(s) + a(s)z2(s) + (b(s) — a'(s))z(s) + c(s)] for positive z(s) is 

given by 

2a*(s) a(s)(b(s)-a'(s)) 2 / a 2 ( s ) 0/2 

~27 3 + t ( 5 ) " 37! \~T ~ {1>{S) ~ ° { S ) ) ) 

Subsituting this value into (3.3) we see that lim z'(t) = -oo. Consequently, z(t) < 0 
t—>oo 

for large /, a contradiction. 
This completes the proof of the theorem. D 

Corollary 3.4. Suppose that a(t) ^ 0, b(t) ^ 0, c(t) > 0, b(t) - a'(t) < 0, 

c'(t) J> 0, f(t) > 0 and f'(t) ^ 0. If (3.1) holds, then (1.1) is oscillatory 

The p r o o f of the Corollary follows from Theorems 3.1, 3.2 and 3.3. 

T h e o r e m 3.5. Suppose that a,(t) ^ 0, b(t) ^ 0, c(t) > 0 and b(t) - a'(t) ^ 0. If 

2a3(t) a(t)b(t) , . 2 fa2(t) ., . . , , X N \ 3 / 2 ] 
(3-4) f°° 2aJ(0 a(tЩt) 2 ( aҢt) y 

X "27 —+C{t)-j7î(—-m-a{t))) 
dt — oo. 

then (1.2) is oscillatory 

This is Theorem 2.1 in [13] due to the present authors. 

Corollary 3.G. Suppose that a(t) ^ 0. b(t) ^ 0. c(t) > 0, b(t) - a'(t) ^ 0. 

c'(l) ^ 0, /(/.) ̂  0 mid f'(t) ^ 0. If (3.4) holds, then (1.1) is oscillatory 

The p r o o f of the Corollary follows from Theorems 3T, 3.2 and 3.5. 
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