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THE FEYNMAN-KAC FORMULA 

FOR A SYSTEM OF PARABOLIC EQUATIONS 

CHARLES S. KAHANE, Nashville 

(Received August 31, 1992) 

INTRODUCTION 

Consider the Cauchy problem 

, M aAu + c{x,t)it, ( i , t ) e R p x ( 0 , T ] , 

u = 0 - / » , x€Rp, 

where u is an m-vector: u(x,t) = [u^(x,t),... ,u^(x,t)] and c(x,t) is an m x m 
matrix, with the diffusion coefficient a being the same in each equation of the system. 

Assuming c and / to be bounded continuous functions, this problem has a unique 
solution in a suitable sense to be made precise below. Taking a = \ for convenience, 
we are going to develop the following stochastic representation for this solution 

(1.2) u(x,t)= J Y(t,t,x,uj)f(x + uj(t))dW(uj). 
Jn 

Here dVV (w) represents Wiener measure in Q, the set of all continuous mappings UJ : 
IR+ —> Up with UJ(0) = 0; and Y(s,t,x,uj) represents for fixed t,x and UJ the funda
mental matrix solution of the ordinary differential equations initial value problem 

{ dY 
— (s,t,x,uj) = c(x + uj(t- s),s)Y(s,t,x,u), 0 ^ s ^ t, 
Y(0,t,x,uj) = L 

When m = 1, Y(s,t,x,uj) = e^ c{x+*{t-o),a)do a n d ^ 2) i s t h e n the classical 

Feynman-Kac formula [10] for the solution of problem (1.1) in which the system 

reduces to a single equation. 
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Our proof of (1.2) is based on E. Nelson's idea [12] of using the Trotter-Lie-Kato 

formula to derive the classical Feynman-Kac formula in the special case where c only 

depends on X. Although the known proofs of the Trotter-Lie-Kato formula are not 

applicable to problem (1.1) in the generality with which we wish to consider it, the 

formula is nevertheless valid in this situation; and the justification for a variant of 

this formula under the assumption that / and c are sufficiently smooth is provided 

in Section 2. With this as our starting point, formula (1.2) is then established in 

Section 3 for the situation where / and c are sufficiently smooth. Finally in Section 

4, after having defined what we mean by a solution of (1.1) in case / and c are merely 

continuous and bounded, we show how the representation (1.2) may be obtained for 

such solutions as well. 

Much work has been done on stochastic representations of solutions to partial 

differential equations. In particular we mention the work of R. Hersh and his col

laborators (see [9] for a survey of these results). Finally, for a general overview of 

the Feynman-Kac formula cf. B. Simon's monograph [14] as well as his expository 

article [15]. 

SECTION 2 

In this section we want to describe an approximation scheme for solving (1.1) 

which is in the same spirit as the Trotter-Lie-Kato formula [16]. 

To describe the scheme, suppose our eventual aim is to evaluate the solution u of 

(1.1) at (x, t). Then our first step is to divide the interval (0, t] into 2n subintervals 

of equal length: I^ = (r^-i, r^], k = 1,..., 2n, where Tk = kt/2n, k = 0 , 1 , . . . , 2n. 

This being done, we then define the function un(x, r) on Rp x [0, t] so as to provide us 

with a good approximation to u(x, t), the solution of (1.1) on Rp x [0, t], by defining 

it piecemeal on Rp x Ik, k = 1,2,...,2n as follows: On Rp x Ix it is defined as the 

solution of the parabolic initial value problem 

-^(X,T) = Aun(X,T) i n R p x I ! , 
dT 

limun(X,T) = f(X), X e Rp. 
riO 

On Rp x I2 is then defined as the solution of the ordinary differential equation initial 

value problem 

(2.2) 

580 

r дйn -^(X,т) = 2c(X,т2)йn(X,т) in Rp x I2, oт 
lim ûn(X,т) = un(X,тi), X e Rp; 



iii effect the last condition is the requirement that the "initial value" for un(x,T) on 

Rp x I2 be the "final value" obtained for un(x,T) on the preceding slab Rp x Ix. 

We then continue in this vein, defining UU(X,T) on each slab Rp x 4 , k = 

1,2, . . . , 2 n in succession, alternately as the solution of ^ - ( x , r ) = Aun(x,T) or 

Q^(X,T) = 2c(x,Tk)un(x,T) whose "initial value" on the slab is the "final value" on 

the preceding slab. 

More precisely, having defined un(x, r ) on Rp x Ij for j = 1,2,... ,2k, our definition 

of un(x,T) on Rp x I2fc+i is as the solution of 

(2.3) 

f дiïn 
—^(x,т) = Aiïn(x,т) in Rp x I2fc+Ь 

lim iïn(x,т) =iïn(x,т2k), oo Є Rp; 
, тiт2k 

and then on Rp x I2k+2 it is defined as the solution of 

( dun 

(2.4) 
(X,T) = 2c(x,T2k+2)ІЇn(x,т) ІП RP X I2Ң-2, 

lim iïn(x,т) = iïn(x,т2k+i), x Є Rp. 
^ T І T 2 f c + i 

This defines un(x, r) on Rp x (0, t\. We now define it in Rp x [0, t\ by requiring it 

to be continuous there; in view of (2.1) this is tantamount to setting un(x, 0) = f(x). 

Our aim is now to show that as n -> oo, un(x, r) converges to the solution u(x, r ) 

of (2.1) and to do so we need the following result. 

Lemma 2.1. Assume that the x-derivatives of f(x) and C(X,T) of order ^ j all 

exist as continuous bounded functions in Rp and Rp x [0,T\, respectively, then the 

sequence of functions {un(x,T)} in Rp x [0, £] (with t G [0,T]) constructed above has 

x-derivatives of order -̂  j which are continuous in Rp x [0, t\ and are bounded there, 

uniformly with respect to n. 

Deferring the proof of this to the appendix, we immediately apply it to establish 

Theorem 2.2. Assume that f(x) and c(x, r) satisfy the conditions of the preced

ing lemma with j = 4, then 

un(x,T)—> U(X,T) asn—> oo 

uniformly on compact subsets of Rp x [0,t], where U(X,T) is the solution of (IT) in 

Rp x [0,t] (with a = \), i.e. U(X,T) is the solution of 

(2.5) 
— (x,т) = -Aiï(x,т) +c(x,т)iï(x,т) in Rp x (0, *], 

lim iï(x,т) = f(x), x Є Rp, 
т\П 
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which is continuous in the closure Up x [0, t]. 

R e m a r k . Under the considered hypotheses for / and c, problem (2.5) is known 
to have a unique bounded classical solution (see [7]), Chapter 1). 

P r o o f . By introducing the functions 

( 1 on I2/C-1, k = 1,2, . . . , n , 

0 on I2/c, fc = 1,2,... ,TI, 

and 

(2.7) (3n(s) = 1 - an(s) 

on (0,t], we can write the defining equations (2.3) and (2.4) for un(x,s) more con

cisely in the form 

du 

(2.8) T P ^ ' ^ = a ^ ( 5 ) A ^ ( x ' s ) + Pn(s)2cn(x, s)un(x, s), 

where cn is defined on Up x [0, t] as follows: 

(2.9) cn(x,s) = c(x,Tk), (x,s) eUp x Ik, A; = 1,2,...,7i, 

with cn(x,0) = c(x, T\); so that in view of the continuity of c 

(2.10) cn(x,s)—> c(x, s) as n—> oo 

uniformly on compact subsets of Rp x [0,t]. 

Of course, it is understood that the derivative -^-(x,s) in (2.8) only exists for 
s in the interior of Ik, k = 1,2, . . . , n , in fact this equation only makes sense for 
s e Int(I/c), k = 1,2,... ,n. On the other hand, we have arranged the definition of 
un(x, s) so that it is continuous as a function of s; consequently the integrated form 
of (2.8): 

(2.11) un(x,T) - un(x,a) = I [an(s)Aun(x,s) -f Pn(s)2cn(x,s)un(x,s)]ds 

is valid for (X,T) and (x,a) e Up x [0,t] without restriction. 
But now by Lemma 2.1, {un(x,s)} as well as {Aun(x, s)} are uniformly bounded 

with respect to n on Up x [0, £]; since {an}, {/3n} and {cn} are also uniformly bounded, 
it follows from (2.11) that 

(2.12) \un(x,T) -un(x,a)\ ^ A|r-O| 
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uniformly in n for x € Up and r, a G [0, £], where A is a suitable constant. Because of 
the uniform boundedness of all the first order ^-derivatives of un(x, s) we also have 

(2.13) \un(x, s) - un(y, s)\ ^ B\x - y\ 

holding uniformly in n for x, y G Up and s G [0, t] with B an appropriate constant. 
Combining (2.12) and (2.13) we arrive at the equicontinuity of {un(x,s)} jointly in 
x and s for (x,s) G Up x [0,t]. 

Applying the operator ( ^ ) 7 with |-y| ^ 2 to both sides of (2.11) and carrying 
out the differentiations on the right side underneath the integral sign, we obtain an 
integral formula for (-^-) un(x, T) — ( ^ ) un(x,a) in terms of various x-derivatives 
of un(x,s) of orders ^ 4. Thus an argument similar to the one just carried out in 
the preceding paragraph allows us to conclude that { ( ^ ) 7 ^ n (#,$)} with |-y| ^ 2 is 
also equicontinuous, jointly in x and s for (x,s) G R p x [0, £]. 

Because of the equicontinuity and uniform boundedness of {un(x,s)} we can ex
tract a subsequence {unk(x, s)} which converges to a function u(x,s) uniformly on 
compact subsets of IRP x [0,t]. Further, because of the equicontinuity and uniform 
boundedness of {(-|-) un(x, s)} for |7| ^ 2 we can, by passing to a finer subsequence 
if need be, conclude that u(x, s) has x-derivatives of order ^ 2 and that 

< 9 \ 7 fd\J 

— J unk(x,s)—> I — I u(x,s) f o r | 7 | ^ 2 

as k —> oo, uniformly on compact subsets of IRP x [0, t]. Replacing n by n^ in (2.H) 
and then passing to the limit as k —:> co, we therefore find that 

(2.14) u(x, T) - u(x, a) = / -Au(x, s) + c(x,s)u(x, s) \ds 

for 0 ^ a < T ^ t and x G Rp; where to arrive at this result we have used (2.10) 
together with 

Lemma 2.3. If {(pnk(s)} is a sequence of integrable functions which converge 
uniformly to <p(s) on the interval [0, t], then 

lim / ank(s)<pnk(s)ds = lim / f3nk(s)<pnk(s)ds 

(s) ds for 0 ^ a < r ^ t. \F.** 
п 
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The p r o o f of Lemma 2.3 is also deferred to the appendix. 

From (2.14) we conclude that U(X,T) has a r-derivative with 

du, x 1 . _, x / . _,, x 
Q-(X,T) = -AU(X,T)+C(X,T)U(X,T). 

in Rp x [0,t\. Furthermore, since U(X,T) is continuous in Rp x [0,t] and unk(x,0) = 

f(x) so that xt(x,0) = lim unk(x,0) = f(x), it follows that U(X,T) satisfies the 
k —>oo 

initial condition: 
lim U(X,T) = f(x). 
TIQ 

Thus the subsequence {unk(x,T)} of {un(x,T)} does indeed converge uniformly 

on compact subsets of Up x [0, t] to a solution u(x, r) of (2.5) in Up x [0, t] which is 

bounded (due to the uniform boundedness o^{un(x,T)}). Since bounded solutions 

of (2.5) are unique, it follows that the entire sequence {un(x,T)} must converge 

to this unique solution U(X,T) of (2.5) uniformly on compact subsets of Up x [0,t]. 

Otherwise, if {UU(X,T)} failed to so converge to U(X,T), we could find a compact 

subset G of Rp x [0,t] so that for some subsequence {unk(x,T)} and an E$ > 0 we 

would have 

sup \unk (x, T) - u(x, T) I ̂  e0 > 0 
G 

for fc = 1,2, — But by the argument above we can extract a further subsequence 

from {wnfc(a;,r)} converging to U(X,T) uniformly on compact subsets of IRP x [0, £] 

which is a contradiction; and this completes the proof of Theorem 2.2. 

SECTION 3 

Here we will establish formula (1.2) for the solution of (1.1) under the assumption 

that / and c have sufficiently many bounded continuous derivatives with respect to 

the space variables. By Theorem 2.2 this will ensure that the functions un(x,T) 

constructed in the approximation scheme described in Section 2 converge to the 

solution of (1.1). 

To establish (1.2), first recall that un(x,T) was defined inductively as follows: 

Having been defined on IRP x Ij for j = 1,2, ...,2k - 2, it was then defined on 

Up x I2/c-i as the solution of 

< 

r diïn 
-^-(X,T) = Aiïn(x,T) in IPF x I2k_u 

lim iïn(x,T) = iïn(x,T2k-2), ^ G IPF; 
k rÍT2k- 2 
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and then on Rp x I2k it was defined as the solution of 

( dunj 

дт 
•{X,T) = 2c{x,T2k)un{x,T) in Rp x I2k, 

lim un{x,T) = ůn{x,T2k-i), x€Rp\ 
^ Tlr2A;_i 

with the process begun by taking txn(x,r) on Rp x I1} as the solution of 

^ ( x , r ) = A u n ( x , r ) in Rp x / , , 
OT 
l i m u n ( x , r ) = / ( x ) , x € Rp. 
rYO 

Accordingly un{x,T2k) can be expressed in terms of un{x,T2k-2) via the formula 

Un{x,T2k) = eh2c^T^un{x,T2k^) 

= J efr2c<«,T>fc) ( ,4h)p/2 I fax + yk, T2k-2) dyk, k = 2 , 3 , . . . , n; 

while 

Un(x,т2)=eh2c^un(x,n) 

ҐЄ-\У1\3/4Һ. f ^ /e~ ) y i 1 ' 4 / l \ -

where /i = r, — rj_i = £/2n and e h2c(x>r*i) denote exponential matrices. 

Chaining these formulas together we obtain 

(3.1) un{x, t) = un{x, T2n) 
r r ftL , ч ҐЄ-\УП\2/*Һ ч 

= / . . . / e

2 k ( x ' T 2 n ) - Л 
УR,> УR, \(Ҡ4Һ)P/* ) /R»' JRł-

n - 2 
x ГT e2/ic(i+y n+Уr l-t+-+y n-j 1т 2( n- Ј- l ))^ Z 

jÀ V ( * 

e-\yn-j-i\3/4h 

(K4/I)P/2 ' ) 

X Д s + Уn + Уn-i + •'' + У2 + Уi) dyx • • • dy n . 

- l î / f c l 2 / ^ 
Next we use the fact that each of the matrices e

Mn\v/2 I being a diagonal ma
trix with identical elements along the diagonal, commutes with all other matrices. 
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Availing ourselves of this together with the change of variables 

Vl = t /n , 

V2 = yn + yn-i, 

V3 = yn + yn-i +yn-2, 

vn = yn + yn-i + yn-2 + •-• + yi 

as well as setting tk = T2k, k = 0, l , - - , n , and At = tk — tk-i = 2/i, (3.1) then 
becomes 

(3.2) un(x, t) = un(x, tn) = un(x, r2n) 

= f .../ eA f c^)[neA t c^^- f c)]/^ 

e->i |2 /2*i / JL e-K-Wfc-i|2/2(tfc-*fc-i)\ 
Xfr*W {U [2n(.fc-.fc_0]-/» Jd t ,--d w-

Identifying Vk with uj(tk), the values at tk of a continuous function CJ: R+ —> Rp, 
with o;(0) = 0, the last integral can be re-interpreted as a Wiener integral; namely, 
as the Wiener integral of the functional 

eAtc(X,tn) f Y[ e±tc(x+u,(tk)ttn_k)\ fa + u ;(^ ) ) ; 

^ k = l ' 

thus (as tn = t) 

(3.3) un(x, t)= f eAtc^ ( Yl e±tc(x+u,(tk),tn-k)\fa + ^ dW ^ 

dVV (w) denoting Wiener measure over the space Q, of all continuous functions UJ : 
R+ —y Rp with u(0) = 0. (See [17] p. 443, Theorem 29.6 for a discussion of the 
underlying formula when p = 1). 

We now wish to pass to the limit as n —> oo in this formula, and for this purpose 
we need to identify the limit of the matrix product 

n - l 
(34) QAtc(x,t) TT eAtc(x+u>(tk),tn-k)^ 

fc=l 
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It turns out tha t this converges to Y(t, t,x,uj), where Y(s,t,x,uj) for fixed t,x and 

u) is defined as the fundamental matr ix solution of the initial value problem 

(3.5) 

( åY 

ás 
(s,t,x,u>) = c(x + u>(t — s),s)Y(s,t,x,ui), 0 < s <. t, 

ìimY(s,t,x,uj) = I. 
^ «4.0 

To see this consider what is in effect essentially an Euler polygonal approximation 

scheme for solving (3.5). Divide (0,t] into n equal intervals by means of the points 

sk = tk = kt/n, k = 0 , 1 , . . . , n , and define the function Yn(s,t,x,u)) on (0,t] by 

defining it successively on the intervals (sk-i,Sk], k = l , 2 , . . . , n , as follows: On 

(s0, s\] = (0, s\] take it as the solution of the initial value problem 

(3.6) 

dYn 

ds 
(s,t,x,u>) = c(x +U)(t - Si),Si)Yn(s,t,X,U)), 0 < S <, Si, 

łim Yn(s,t,x,ui) = I. 
s\X) 

Then having defined it on the intervals (SJ-I,SJ], j = l,...,k — 1, define it on 
(sfc-i,Sfc] as the solution of 

(3.7) 

( dYn 

ds 
(s,t,x,ui) = c(x + U)(t - Sk),Sk)Yn(s,t,X,U>), Sk-l < s^sk, 

lim Yn(s,t,x,Lj) = Yn(sk-i,t,x,Lj), 
( slsk-i 

i.e. the "initial value" for Yn on (5/t-i,5A:] is the "final value" for Yn on (5^-2,5^-1]. 
Solving (3.7) we have 

F n (s , ,^:r ,ccO = e ( s ^ ^ 

or equivalently 

Yn(tk,t,x,u))=eAtc(x+»(t"-^Yn(tk-1,t,x,u)) 

for k = 2,..., n; while for k = 1, (3.6) gives 

Yn(h , t, X, LJ) = e^c(x+u(tn^)M) m 

Chaining these together, recalling t h a t tn = t and LJ(0) = 0, we obtain 

(3.8) Yn(t, t, x, UJ) = Yn(tn, t, x, LJ) 

__ eAtc(x,tn)eAtc(x+u;(.1),tn._1)eAtc(x+u;(t2),tn_2) ^At^x+u^-^Ji) 

= Є' Aťc(x,ť) J J eA£c<x +u>(tk),tn_k) 

k=l 
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precisely the matrix product (3.4); and so (3.3) may be written 

(3.9) un(x,t) = [ Yn(t,t,x,u>)f(x + oj(t))dW (u). 
Jn 

Finally, to prove that Yn —> Y, we integrate the defining equations (3.6) and 
(3.7) for y n , which leads to the integral equation 

Yn(s,t,x,uo) = / + / cn(a)Yn(a,t,x,uo)da, s£ (0 ,* ] 
Jo 

where for fixed t,x and u),cn(a) is defined by 

cn(cr) = c(x + u)(t- Sk),sk), a G (sk-X,sk], fc = l , 2 . . . n . 

Now compare this with the integral equation satisfied by Y: 

Y(s,t,x,u)) = I + / c(x + oj(t - a),a)Y(a,t,x,u)da , s e (0,t]. 

Jo 

Since 

Cn(v) —> c(x + u(t — a), a) as n —> oo 

uniformly in (0, £], an application of Lemma 5.4. in the appendix allows us to con
clude that 

Yn(s,t,x,u})—> Y(s,t,x,to) as n—> oo 

for each fixed s € (0, t] (in fact uniformly on (0, t]). Furthermore, on account of the 
boundedness of C(X,T) in Hp x [0, t], it follows from Lemma 5.3 that the yn ' s are 
uniformly bounded. We may therefore apply the Lebesgue dominated convergence 
theorem to pass to the limit in the integral on the right of (3.9); and doing so in 
conjunction with Theorem 2.2 we arrive at 

u(x, t)= I Y(t, t, x, uj)f(x + u>(t)) dW (UJ), 

the desired result. 
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SECTION 4 

In this section we will establish (1.2) for those solutions of (1.1) in which / and c are 
only assumed to be bounded continuous functions in Rp and Rp x [0, T] respectively. 

But before doing so we need to explain what we mean by a solution of (1.1) under 
such circumstances. 

If / and c are given bounded continuous functions in Rp x [0, T] and Rp respectively, 
it is possible that (1.1) might not have a classical solution u(xyt) corresponding to 
them. However, if a bounded classical solution u(xyt) does exists, then it can be 
shown (see [11], p . 347) that it will have to satisfy the integral equation 

(4.1) ff(M)= / / F(x-Zyt-T)c(Z,T)u(£yT)dSdT 
Jo JRP 

+ / F(x-£yt)f(0dt 
Jw 

in Rp x [0, T] where 

e - M 2 / 2 t 
(4.2) F{Xit) = 1——f * > 0 . 

Conversely, if c(xyt) is sufficiently smooth, for example if c(xyt) is locally Holder 
continuous in x uniformly with respect to ty then any bounded continuous solution 
of (4.1) is also a classical solution of (1.1) (see [7], Thm. 12, p. 25). This suggests 
that an appropriate definition of a solution of (1.1) when / and c are merely bounded 
continuous functions is as a solution of the integral equation (4.1) and we adopt this 
as our definition. 

Using the method of iteration it is easy to show that (4.1) does indeed possess a 
unique bounded continuous solution under these assumptions for / and c. In fact, 
writing (4A) over in the form 

u == v -h Ku 

where 

(4-3) v(xyt) = [ F(x-iyt)f(0dZ 
JR*> 

and K denotes the operator 

Kw(x, t)= f [ F(x-^t- T)c(f, T)W{£, T) d£ dT , 
JO JR'> 
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one can derive the estimates 

ii^n^ ^ (MIr | H | j n = 1 2 

n! 

where M is a bound for c(x, t) in Rp x [0,T] and 

(4.4) \\0\\ = sup |(D(x,r)|; 
RJ'x[0,T] 

from which it follows immediately that the series of iterants 

v + Kv + K2v + ---

converges uniformly in Rp x [0, T] to the unique solution of u = v + Ku in the Banach 
space of bounded continuous functions in Rp x [0,T] normed by (4.4). (Recall that 
/ is assumed to be bounded and continuous in Rp so that v(x, t) as defined by (4.3) 
is in the Banach space being considered. More precisely this is so for the function 
v(x, t) defined for t > 0 by (4.3) and taken to be f(x) for t = 0. In order to avoid 
some clumsiness in connection with this, we adopt the convention that if /(£) is a 
bounded continuous function in Rp the expression fRv F(x — £,£)/(£) d£ is to be 
interpreted as f(x) when t = 0.) 

Having explained what we mean by a solution of (1.1) when / and c are only 
assumed to be bounded, continuous functions and having shown it to exist, we now 
turn to the proof of formula (1.2) for such solutions. This will be accomplished by 
approximating such solutions by solutions corresponding to smooth / and c's for 
which formula (1.2) has already been established. The foundation for this argument 
is the following result. 

L e m m a 4 .1 . Assume that g(x) is a bounded continuous function in Rp. then the 

functions 

r e- |x-^|2 /48 
(45) "M-Ll*^9®6*1 6>0 

have continuous derivatives of all orders that are bounded in Rp, and 

(4.6) g6(x) —> g(x) as 610 

pointwise and boundedly in Rp (in fact the convergence is uniform over compact 

subsets of Up). 
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P r o o f . Differentiating we have 

so that 

sup 
Rr 

_ә_\a 

дx 
9б(x) 

í \fd\ote-\i 

<VW 0 |JU(*) ÍC 
ð \ в Є - K I 2 / 4 í 

:Í)P/2 df < oo 

in view of the finiteness of the integral on the right for 8 > 0. 

To establish the convergence (4.6) we write 

9б(x) L 
-L 

- | * - É | 2 / 4 * 

R,. ( 4 K 5 ) P / 2 -ff(0df - í £_ 
jR, (4тx. 

Є - І € | 2 / 4 Í 

R, (4к)t>/2 

R, (4K<5)P/2 

g{x - 2J1/2!/) dy 

•7(x-í)dC 

where we have made the change of variable y = £/2o"1//2. The result (4.6) then 

follows by passing to the limit as 6 j . 0 underneath the integral sign, using the 

Lebesgue dominated convergence theorem. Clearly the convergence is bounded since 

sup \gs(x)\ ^ sup|p(x)|. 
W> RJ' 

Suppose now that for given continuous and bounded functions / and c in Up 

and Rp x [0,T] respectively, we consider the corresponding solution u of (1.1), by 

which we mean the solution u of the integral equation (4.1). To establish (1.2) for 

such u, we first construct approximations to / and c by applying (4.5) to / and 

c respectively with 6 = 1/n, n = 1,2, — Denoting the resulting functions by fn 

and cn, n = 1,2,..., we then consider the solutions un of (1.1) corresponding to 

them. Since fn and cn have bounded continuous derivatives of all orders in the space 

variables, un is actually a classical solution of (1.1) which will also have to be a 

solution of the integral equation 

(4.7) un(x,t)= [ J F(x-Z,t-T)cn(i,T)un{Z,T)dtdT+ [ F(x-Z,t)fn(£)dt 
JO JRi' JRi' 

in Rp x [0,T]. Furthermore, in the light of the result established in Section 3, the 
representation (1.2) is valid for un: 

(4.8) йn{x,t) = í Yn{t,t, 
Ja 

x,uj)fn{x + w{t))àW{ш), 
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where Yn(s,t,x,uj) is the solution of 

r dyn 

—^-(s,t,x,uj) =cn(x + uj(t- s),s)Yn(s,t,x,uj), 0 < s ^ t, 

\imYn(s,t,x,uj) = I. 
540 

We now pass to the limit in (4.8) as n —•> 00. On the right, for fixed t, x and 
UJ, we have in view of (4.6) that fn(x + uj(t)) —> f(x + uj(t)) with the convergence 
being bounded. Again, because of (4.6), for fixed s, t, x, and cD with s G [0, t] 

cn(x +uj(t - s),s) —•> c(x + uj(t — s),s) 

boundedly as n —> 00; consequently by Lemmas 5.3 and 5.4 Yn(s,t,x,uj) —•> 
Y(s,t,x,uj) pointwise and boundedly for s G [0 , f ]asn —> 00, where Y(s,t,x,u) 

is the solution of (1.3). Applying the Lebesgue dominated convergence theorem we 
may therefore pass to the limit on the right of (4.8) underneath the integral sign 
which results in 

iim un(x,t) = [ Y(t,t,x,uj)f(x + u(t))dW(uj) 
r W O ° JQ 

for (x,t) G Rp x [0,T]. The proof will now be completed by showing that 

(4.9) un(x, t) —•> u(x, t) as n —•> 00 

pointwise in Rp x [0,T]. 
To accomplish this we note that as u and un satisfy equations (4.1) and (4.7) 

respectively, their difference may be expressed in the form 

un(x,t) - u(x,t) 

= J f F(x-t,t-T)cn(£,T)[un(ti,T)-u(Z,T)]dtdT 
JO JR'' 

+ f f F(x-£,t- T)[Cn{S, T) - C(f, T)]U& T) d£ dT 
JO JR»» 

+ / F(x - t,t)[fn(0 - / (0]df for (x,t) e Rp x [0,T]. 
JR^' 

Taking norms this leads to 

(4.10) \un(x,t)-u(x,t)\ 

^ f f F(x-Z,t-T)M\un(£,T)-u(l;,T)\dZdT +\0n(x,t)\, 
JO JR»' 

(x,t)eUpx[0,T], 
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where M is a bound for cn(f, r) in Rp x [0, T] which is uniform with respect to n and 

(4.11) £ n ( M ) = / / F(x-Z,t-T)[cn(Z,T)-c(Z,T)]u(Z,T)dtdT 
JO JR*' 

+ / F(z - e, «)l/»(0 - /(«] ^ , (x, t)ER"x [0, T]. 
JRi* 

By Lemma 5.5 in the appendix, the integral inequality (4.10) satisfied by \un — u\ 

implies the following estimate for this quantity: 

(4.12) 

\un(x,t)-u(x,t)\^\0n(x,t)\+ f [ MeM^F(x-Z,t-T)\0n(Z,T)\dZdT 
JO JR*' 

for (x, t) € Rp x [0, T]. But now since fn —> f and cn —> c pointwise and boundedly, 
it follows from (4.11) that 

0n(x,t) —> 0 as n —> oo 

pointwise in Rp x [0,T], by virtue of the Lebesgue dominated convergence theorem; 
moreover this convergence is also bounded. Therefore, by one more application of 
the Lebesgue theorem to the integral on the right of (4.12), we are able to conclude 
that un(x,t) —> u(x,t) as n —> oo pointwise in Rp x [0,T]; and this completes the 
proof. D 

APPENDIX 

Here we will give the proofs of various technical results referred to in the body of 
the paper. We begin with Lemma 2.1 whose statement we repeat for the convenience 
of the reader. 

Lemma 2 .1 . Assume that the x-derivatives of f(x) and C(X,T) of order ^ j all 
exist as continuous bounded functions in Up and Rp x [0,T], respectively, then the 
sequence of functions {un(x,T)} in Rp x [0,t] (with t £ (0,T]) constructed above has 
x-derivatives of order ^ j which are continuous in Rp x [0,t] and are bounded there, 
uniformly with respect to n. 

For the proof of this as well as for what is to come in the sequel it will be convenient 
to introduce the following notations: Assuming g and q to be an m-vector and an 
m x m matrix respectively, \g\ will denote a vector norm and \\q\\ the corresponding 

593 



matrix norm. If g = g(x) and q = q(x) are functions of x, Dxg(x) and Dxq(x) will 
denote the totality of derivatives of order ^ j for g(x) and q(x), respectively with 

and 

\DjJ{x)\= max 
0 ^ | a | < j 

\\DІq{x)\\= max 
o<l«Kj 

s)"«*> 

ž> <W 

(Here we are using the Schwartz notation: a denotes the multi-index [a\, c*2, • • • . c*p] 

with non-negative integer components; (-^) then represents the partial differential 

operator ( £ 7 ) " 1 ( - ^ p • • -{^fv of order |a| = a, + a2 + • • • + ap.) 

The proof of Lemma 2.1 will be a simple consequence of the two results which 

follow. 

Lemma 5.1. Let V(X,T) be a bounded solution of 

( dv 

дт 
(x, т) = Av(x, т) in (a,Ь\, 

limU(.r, r) = (p(x), 
l T > l a x m 

for (p(x) a given bounded continuous function in Up. Suppose that the derivatives 

( ^ ) $(x) °f°rder \ot\ ^ j all exist as continuous bounded functions in Rp, then the 

x-derivatives ( ^ ) V(X,T) of order \a\ ^ j all exist as continuous bounded functions 

in Up x (a, b] and 

(5.1) sup \DJ

XV(X,T)\ ^ sup \DJ

xif(x)\ 
Rí'x(a,6] R'' 

P r o o f . Since we may differentiate under the integral sign in the representation 

v(x,T) = j ^ u ^ - a)]vl*^X ~ ® ^ ' <"X,T) 6 R P X ( a ' ^ 

the derivatives (J^) V(X,T) clearly exist and are given by the formula 

/ d \ a f e-\l\
2/4(r-a) / g \ a 

\Tx) V^T)=L[MT-a)}^{^) *<*-«<* 
for (X,T) G UP x (a,b]. From this one also sees that the derivatives are continuous. 

Finally, the estimate (5A) is a result of the evaluation 

e - | C | 2 / 4 ( r - a ) 

JÍ „, [4ҡ(т - a)]P!2 d í = l for аll т > a. 

D 
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Lemma 5.2. Let W(X,T) be a solution of the initial value problem 

( dw , 

(5.2) 
-(X,T) = q(x)w(x,T) in Rp x (a,b], 

OT 

\imw(x,T) = ip(x), x G Rp 

and suppose that the derivatives ( ^ ) ip(x) and ( ^ ) q(x) of the initial function 

ip(x) and m x m coefficient matrix q(x), of order \a\ ^ j all exist as continuous 

and bounded functions in Rp. Then the derivatives (-^) W(X,T) of order \a\ ^ j all 

exist as continuous and bounded functions in Rp x (a, b] and they satisfy the estimate 

(5.3) sup \D{W(X,T)\ ^ e p ( 6 - a ) s u p | D ^ ( x ) | 
W'X(a,b] W 

where P is a constant depending only on sup ||F)^(x)||. 
w 

P r o o f . The existence of the derivatives ( ^ ) w(x, T) is a standard result from 
the theory of ordinary differential equations. To obtain the estimate (5.3), we note 
that (-^) w(x, T) will have to be the solution of the initial value problem obtained 
by formally differentiating (5.2) with respect to x: 

'l[(LY™{x'T)} = (LY[q{xwx>T)} 
= * (* ) ( - | ) a t f (* ,T ) + £ ^ [ ( ^ ) V ) ] [ ( | ) 7 ^ , r ) ] i n R P x ( a , 6 ] , 

ft + -y=n ^ ' 
\P\>1 

^ A l Y ^ x ^ = ( i k Y ^ xeRP> 
where we have used Leibniz's formula for the derivative of a product with 6\ denoting 
(6l\)(62\)-.(6p\)when6 = [61,62,...,6p]. 

The solution of this problem admits the following representation in terms of the 
exponential matrix eso(xI: 

©•*-)^'-'*)(»),;„) 
^•"-"-'{E^KDV)] [(!)>.,.)]}-. 

ß+i = 
l /3 |^ l 
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in Rp x (a, b]; from which we see that 

(5.4) sup \Dj
xw(x, T)\ ^ e w ~ a ) sup \DjJ(x)\ 

R*'x(a,6] W> 

+ (6 - a) ( e W - ^ j v ) sup \DÍw{x, T)\ 
<(<-,&] 

where Q = sup \\q(x)\\ and IV = sup ||D^g(x)||. 
W' RJ> 

Now set L = eQ2jN and note that eQ(b~ahjN ^ L when (b - a) ^ 1. Hence from 
(5.4) we find that 

[1 - L(b - a)] sup \D{W(X,T)\ ^ e g ( 6 " a ) sup |DJ^(x)| 
Rj'x(a,fc] R*' 

if (b - a) ^ 1. Making use of the inequality e~20 < 1 - 0 for 0 ^ 0 ^ | , with 

6 = L(6 — a), the preceding implies that 

sup \DIW(X,T)\ ^ e p ( 6 - a ) s u p | D ^ ( a : ) | 
R*'x(a,6] W 

where P = Q + 2L = Q + 2eQ2jN, provided that (b - a) is sufficiently small: 
(b-a) ^ min( l , l /2L) . 

Thus (5.3) has been established under the assumption that (b — a) is sufficiently 
small. The latter condition is not really essential as we can see by subdividing (a, b] 

by the points a = an < a\ < • • • < an = b, in such a way that the subintervals 
(au-\,au] are so small that (5.3) is applicable to Rp x (au-\,au\ 

sup \DJ
XW(X,T)\ ^ e ^ ^ - ^ - ^ s u p l ^ ^ x ^ ^ - i ) ! . 

R*Jx(a.,_i,a„] R'* 

Putting these together, we obtain 

sup \DJ
XW(X,T)\ ^ (f\ep(a>'-a>'-A sup|Z)>(a;,ao)| 

R.'X («,._!,«,.] V ^ = i / RJ* 

= e p ( a f c - a ) s u p | D ^ ( x ) | 
w 

^ e p ( 6 - a ) s u p | D ^ ( a : ) | 
w 

for k = 1,2,... ,n, which proves (5.3) without any smallness requirement on (b - a). 

a 
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P r o o f of L e m m a 2.L Recall that our approximation scheme consisted in 
the construction of a sequence of functions {un(x, r )} on Rp x [0, t] in which un(x, r) 
was defined by alternately solving the equations 

du 
—^(X,T) = AUU(X,T) on Rp x I2k+\ 
OT 

and 
du 
—^(X,T) = 2c(x,T2k+2)un(x,T) on Rp x I2k+2 

using as our "initial values" for un in any particular slab Rp x I*, the "final values" 
obtained for un in the preceding slab Rp x Ifc_i; the entire process being started by 
defining un on Up x Ix as the solution of the initial value problem 

( du 
1 -^(X,T) = AUU(X,T) in Rp x h 

OT 

\imun(x,T) = f(x) in Rp. 

To prove the lemma we will estimate the growth of \DXUU(X,T)\ slab by slab. For 
this purpose we set 

crk = sup \Dxun(x,T)\, k = l , 2 , . . . , n 
Wxlk 

and 

cr0 = sup \D3
xun(x, 0)| = sup |Dx /( :r) | . 

Ri' Rv 

Then by Lemma 5.1 

(5.5) 02k+\ ^ °2k, k = 0, l , . . . , n - 1, 

and by Lemma 5.2 

(5.6) a2k ^eAha2k-u k = 1,2,... ,n, 

where h = t/2n = the length of each Ik and A is a constant depending on 
sup \\Dic(x,T)\\. 

R''x[0,i] 

Combining (5.5) and (5.6) we find that 

a2k ^ e O2/C-2, k = l , 2 , . . . , n 

which implies that o"2* ^e u / lf / 0 , k = l , 2 , . . . , n . 
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Since kh = r2k/2 ^ t/2 and by (5.5) o2k+\ ^ v-ik for fc = 0 , 1 , . . . , n - l , the preceding 
enables us to conclude that 

sup \Diun(x,r)\ < eMl2 sup \Dif(x)\ 
R*'x[0,t] R*' 

independent of n; the desired result. • 

Next we turn to the proof of Lemma 2.3 whose statement we also repeat for 
convenience. 

Lemma 2.3. If {(pnk(s)} is a sequence of integrable functions which converge 

uniformly to ip(s) on the interval [0,l], then 

lim / ank(s)ipnk(s)ds = lim / /3nk(s)<pnk(s)ds 

i r 
~ o / ^^ ^s ' 0 ^ a < r ^ t. 

2 J a 

P r o o f of L e m m a 2.3. Recall the definition of an and /3n on (0, t]: 

( 1 on I2/e-i, fc = l , . . . , n , 
an(s) = < 

[0 on I2/c, fc = V2,... ,n, 
and 

(3n(s) = 1 -an(s). 

First we prove the result involving the ans. Since tpnk —> ip uniformly on [0, l], 

/ ank (s)[(pnk (s) - <p(s)] ds —•» 0 as fc —> oo; 
J a 

and so it is enough to prove that 

lim / a n , (s)ip(s) ds =- / <D(s) ds , 
fc->°° J a 2 J a 

or somewhat more generally 

(5.7) lim / an(s)ip(s)ds = - / <p(s) ds 
n^°°Ja 2Ja 

for an arbitrary integrable function (p(s) on [0,£]. Clearly (5.7) is true if ip(s) is the 
characteristic function of an interval; since linear combinations of these are dense in 
the space of integrable functions on [0, t], it follows that (5.7) holds for any integrable 
function <D(s) on [0, £]. • 
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From this the corresponding result involving the (5ns is an immediate consequence 

of the relation (3n = 1 — an. 

Lemma 5.3. Let A(s) be a bounded measurable matrix valued function on [0, t] 

and let Y(s) be the matrix solution of the integral equation 

Y(s) = X + / A(а) dcг, 0 ^ s ^ í, 
Jo 

for X a given matrix. Then Y(s) has a bound on [0, t] which depends only X, t and 

the bound for A(s); in fact 

(5.8) sup | | Y ( 5 ) | K e ^ | | X | | , 

where K = sup | |J4(S)| | . 

P r o o f . Taking norms on both sides of the integral equation satisfied by Y we 

have 

\\Y(s)\\ < \\X\\ + [' \\A(a)\\ \\Y(<T)\\ da < ||X|| + K [' \\Y(a)\\ da, O^s^t. 
JO Jo 

By Gronwall's inequality this immediately implies that 

||Y(S)|Ke^||X||, < K s < t ; 

from which (5.8) is apparent. D 

Lemma 5.4. Let A(s) and An(s),n = 1,2,..., be bounded measurable matrix 

valued functions on [0, t] and consider the matrix solutions Y and Yn of the corre

sponding integral equations 

Y(s) = X + / A(a)Y(a) da, 0 < s ^ t 
Jo 

and 

Yn(s) = X + / An(a)Yn(a) da, 0 ^ s ^ t. 
Jo 

Suppose further that An —> A as n —> oo pointwise and boundedly, the latter 

meaning that the An's are uniformly bounded on [0,t]. Then 

Yn(s) —> Y(s) as n —> oo 
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uniformly on [0,t]. 

P r o o f . Subtracting the equations satisfied by Y(s) and Yn(s) we find that 

Y(s)-Yn(s)= J [A(a)-An(a))Y(a)da+ fS An(a)[Y(a)-Yn(a)]da, O^s^ t. 
Jo Jo 

Taking norms this leads to 

\\Y(s) - Yn(s)\\ ^ fS \\A(a) - An(a)\\ \\Y(a)\\ da + [' \\An(a)\\ \\Y(a) - Yn(a)\\ da 
Jo do 

^ L f \\A(a) - An(a)\\ da + M f \\Y(a) - Yn(a)\\da 
JO Jo 

where L and M are bounds for Y(a) and An(a) on [0,t], respectively. 
An application of Gronwall's inequality to the preceding then gives us 

\\Y(s) - Yn(s)\\ ^ f eM^L\\A(a) - An(a)\\ da 
Jo 

for s € [0,i\\ and consequently 

sup \\Y(s) - Yn(s)\\ ^ f eM^L\\A(a) - An(a)\\ da . 
0^s^.t JO 

Since An(a) —> -4(O~) as n —> oo, pointwise and boundedly, the result then follows 
from the Lebesgue dominated convergence theorem. • 

Lemma 5.5. Suppose v and %[) are bounded continuous functions in Rp x [0, F] 
satisfying the inequality 

(5.9) v(x, t) ^ ip(x, t)+ I J MF(x -£,t- r>(f , T) d£ dT 
JO 1R'' 

for (x,t) e Up x [0,T] with M > 0, then 

(5.10) v(x, t) ^ i(j(x, t)+ I I MeM^-T)F(x - f, * - r)0(£, r) d£ dT 
dO JR'' 

for(x,t) e Up x [0,T]. 

R e m a r k . Recall that according to (4.2) f(x,t) = e'W2/21/(2Kt)p/"2. 
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P r o o f . To avoid tedious repetition in the argument that follows, it is to be 
understood, without any further mention, that the point (re, t) always lies in the set 
RP x [0,T]. 

To establish (5.10) we begin by writing (5.9) in the abbreviated form 

(5.11) v^ip + Kv 

where 

Kw = Kw(x, t)= f f MF(x - f, * - T)W(£, T) d£ dr 
JO JR" 

is an operator mapping the space of bounded continuous functions in Rp x [0, T] con
tinuously into itself. Iterating (5.11) we obtain, since K maps non-negative functions 
into non-negative functions 

v ^ ip + K[ip + Kv]=^^p + K^p + K2v, 

v^x/) + Kil) + K2fy + Kv]=^p + K^P + Krj) + K2i\) + K3v, 

and in general 
v^$+K$+ K2i\) + --• + Kni\) + Kn+lv. 

Estimating Kjw in a straightforward way yields 

I^M^OI <--y-IMI. i = -.-.•••. 

where ||iv|| = sup |w(:r,£)|; it follows that Kn+lv —> 0 as n —•> oo, and hence 
R"x[o,r] 

that 
oo 

(5.12) v^Y^K3^ 
i=o 

with the series converging. 
But now on the basis of the well-known identities 

/ F(x-Z,t-T)F(Z-ri,T-s)d( =F(x-r),t-s), s < T < t, 
Jw 

we can inductively establish the formulas 

K*1>(x,t)= [ [ Mi {t~ T)J F(x -£,t- r)^tf, r) d£ dr , j = l , 2 , . . . ; 
Jo JR^' U _ i)] 

from which it follows that 
oo rt , 

J2 Kj%/> = t/)(x, t)+ MeM{t-T)F(x - f, * - r)t/>(£, r) d£ dr . 
j=0 ^ ° JRV 

Combining this with (5A2) we arrive at the desired result (5.10). D 
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