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LIE DERIVATIVES ON REAL HYPERSURFACES 
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MAKOTO KlMURA, Ibaraki, and SADAHIRO MAEDA, Shimane 

(Received March 1, 1993) 

0. INTRODUCTION 

Let Pn(C) be an n-dimensional complex projective space with Fubini-Study metric 
G of constant holomorphic sectional curvature 4, and let M be a real hypersurface of 
Pn(C). Then M has an almost contact metric structure ((p,£,rj,g) (cf. x 1) induced 
from the complex structure J of Pn(C). Many differential geometers have studied M 
by using the structure (<p,€,r],g). Typical examples of real hypersurfaces in Pn(C) 
are homogeneous ones. Takagi ([12]) classified homogeneous real hypersurfaces of 
Pn(C). By virtue of his work, we find that a homogeneous real hypersurface of 
Pn(C) is locally congruent to one of the six model spaces type Ai, A2, B, C, D and 
E (for details, see Theorem A). 

In differential geometry of real hypersurfaces of Pn(C), it is very interesting to 
give a characterization of homogeneous real hypersurfaces. In particular, many ge­
ometers characterized homogeneous ones of type Ai and A2, because two examples 
have a lot of beautiful geometric properties. We here recall the work of Okumura 
([11]). He showed that a real hypersurface M of Pn(C) is locally congruent to one 
of homogeneous ones of type Ai and A2 if and only if the structure vector £ is an 
infinitesimal isometry, that is L^g = 0, where L is the Lie derivative. Motivated 
by this result, Udagawa and the second author established Theorem D and Ki, Kim 
and Lee ([2]) proved the fact that "M is of type Ai or type A2" is equivalent to 
"L^A = 0, where A is the shape operator of M". In this paper we investigate real 
hypersurfaces M of Pn(C) by using the Lie derivatives on M (cf. Theorems 1, 2 and 
Proposition 4). 

The second author was partially supported by Grant-in-aid for Scientific Research 
(No. 04640050), Ministry of Education, Science and Culture. 
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1. PRELIMINARIES 

Let M be an orientable real hypersurface of Pn(C) and let N be a unit normal 
vector field on M. The Riemannian connections V in Pn(C) and V in M are related 
by the following formulae for any vector fields X and Y on M: 

(1.1) VxY = VxY + g(AX,Y)N, 

(1.2) VXN = -AX, 

where g denotes the Riemannian metric of M induced from the Fubini-Study metric 
G of Pn(C) and A is the shape operator of M in Pn(C). An eigenvector X of the 
shape operator A is called a principal curvature vector. Also an eigenvalue A of A 
is called a principal curvature. In what follows, we denote by V\ the eigenspace of 
A associated with eigenvalue A. It is known that M has an almost contact metric 
structure induced from the complex structure J on Pn(C), that is, we define a tensor 
field ip of type (1,1), a vector field £ and a 1-form rj on M by g((fX, Y) = G(JX, Y) 
and gfaX) = T](X) = G(JX,Y). Then we have 

(1.3) <p2X = -X + r,(X)Z, g(Z,Z) = l, ^ = 0. 

It follows from (1.1) that 

(1.4) (Vx<p)Y = n(Y)AX - g(AX, Y)£, 

(1.5) V x £ = <pAX. 

Let R and R be the curvature tensors of Pn(C) and M, respectively. Since the cur­
vature tensor R has a nice form, we have the following Gauss and Codazzi equations: 

(1.6) g(R(X, Y)Z, W) = g(Y, Z)g(X, W) - g(X, Z)g(Y, W) 

+g(<p>Y, Z)g(<pX, Z) - g(<pX, Z)g(<pY, W) - 2g(<pX, Y)g(<pZ, W) 

+g(AY, Z)g(AX, W) - g(AX, Z)g(AY, W), 

(1.7) ( V x A)Y - (VYA)X = t)(X)<pY - t\(Y)<pX - 2g(<pX, Y)£. 

From (1.3), (1.5), (1.6) and (1.7) we get 

(1.8) SX = (2n + 1)X - 3v(X)Z + hAX - A2X, 

(1.9) (VxS)Y = - Z{g(<pAX, Y)£ + ri(Y)<pAX} + (Xh)AY 

+ (hi - A)(VXA)Y - (VXA)AY, 
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where h = tr A, S is the Ricci tensor of type (1,1) on M and I is the identity map. 

In the following, we use the same terminology and notations as above unless oth­

erwise stated. Now we prepare without proof the following in order to prove our 

results: 

Theorem A ([12]). Let M be a homogeneous real hypersurface of Pn(C). Then 

M lies on a tube of radius r over one of the following Kaehler submanifolds: 

(Ai) hyperplane Pn_i(C), where 0 < r < \, 

(A2) totally geodesic Pk(C) (1 ^ k ^ n - 2), where 0 < r < \, 

(B) complex quadric Qn-\, where 0 < r < | , 
(C) Pi(C) x P(n_i) / 2(C), where 0 < r < f and n (^ 5) is odd, 

(D) complex Grassmann G2.5(C), where 0 < r < \ and n = 9, 
(E) Hermitian symmetric space 5O(10)/U(5), where 0 < r < J and n = 15. 

Theorem B ([3]). Let M be a real hypersurface ofPn(C). Then M has constant 

principal curvatures and £ is a principal curvature vector if and only if M is locally 

congruent to a homogeneous real hypersurface. 

Theorem C ([10]). Let M be a real hypersurface of Pn(C). Then the following 

are equivalent: 

(i) <pA = A(p, 

(ii) M is locally congruent to one of homogeneous real hypersurfaces of type A\ 
and A2. 

Theorem D ([8]). Let M be a real hypersurface of Pn(C). Then the following 

are equivalent: 

(i) Z,£</? = 0, where L is the Lie derivative on M. Namely, £ is an infinitesimal 
automorphism of (p. 

(ii) M is locally congruent to one of homogeneous real hypersurfaces of type Ai 
and A2. 

Proposition A ([9]). If£ is a principal curvature vector, then the corresponding 
principal curvature a is locally constant. 

Proposition B ([9]). Assume that £ is a principal curvature vector and the 
corresponding principal curvature is a. If AX = \X for X±£, then we have A(pX = 
((a\ + 2)/(2\-a))<pX. 
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Proposition C ([1]). Let M be a connected orientable real hypersurface (with 
unit normal vector N) in Pn(C) on which £ is a principal curvature vector with 
principal curvature a = 2cot2r and the focal map ipr has constant rank on M. 
Then the following hold: 

(i) M lies on a tube (in the direction ofn = y'(r), where j(r) = expx(rjV) and 
x is a base point of the normal vector N) of radius r over a certain Kaehler 
submanifold N in Pn(C). 

(ii) Let cot 9 be a principal curvature of the shape operator Av at y = 7(r) of 
the Kaehler submanifold N. Then the real hypersurface M has a principal 
curvature cot(6 — r) at x = 7(0). 

Proposition D ([7]). Let M be a real hypersurface with constant mean curva­

ture in Pn(C) . Suppose that £ is a principal curvature vector and the corresponding 

principal curvature is non-zero. IfV^S = 0, then M is a tube of radius r over one 

of the following Kaehler submanifolds: 

(Ai) hyperplane Pn_i(C), where 0 < r < \ and r 7-- \, 

(A2) totally geodesic Pk{C) (1 ^ k ^ n - 2), where 0 < r < | and r 7- \, 

(B) complex quadric Qn-i, where 0 < r < | and cot2 2r = n — 2, 

(C) Pi(C) x P ( n_i)/2(C), where 0 < r < f, cot2 2r = l / (n - 2) and n (^ 5) is 

odd, 

(D) complex Grassmann G2)5(C), where 0 < r < | , cot2 2r = 3/5 and n = 9, 

(E) Hermitian symmetric space 5O(10)/U(5), where 0 < r < \, cot2 2r = 5/9 
and n = 15. 

2. RESULTS 

We denote by 5 the Ricci tensor of type (1,1) on a real hypersurface M of Pn(C). 

We investigate M by using the condition "L^S = 0", where L is the Lie derivative 

of M. We have 

Theorem 1. Let M be a real hypersurface ofPn(C). Then M satisfies L$S = 0 
if and only if £ is a principal curvature vector, in addition except for the null set on 
which the focal map y>r degenerates, M lies on a tube of radius r over one of the 
following Kaehler submanifolds: 

(a) totally geodesic Pk(C) (l^k^n- I), where 0 < r < \, 

(b) complex quadric Q n_i , where 0 < r < \ and cot2 2r = n - 2, 
(c) Pi(C) x P(n_i)/2(C), where 0 < r < \, cot2 2r = l / (n - 2) and n (> 5) is 

odd, 
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(d) complex Grassmann G2,b(C), where 0 < r < | , cot2 2r = 3/5 and n = 9, 
(e) Hermitian symmetric space 50(1O)/U(5), where 0 < r < | , cot2 2r = 5/9 

and n = 15, 

(f) k-dimensional Kaehler submanifold N on which the rank of each shape op­
erator is not greater than 2 with nonzero principal curvatures not equal 
to ±y/(2k- l)/(2n-2k- 1) and cot2 r = (2k - l) /(2n - 2k - 1), where 
k = V . . . ,n — 1. 

P r o o f . From (1.5), for any X G TM we see that 

(LtS)X = [£,SX]-S[€,X] 

= (VC5)X - (pASX + S(pAX. 

And hence "Lf 5 = 0" is equivalent to 

(2.1) V^5 = (pAS - S(pA. 

Since V^5 is symmetric, (2.1) shows that 

(2.2) ((pA - A(p)S = S((pA - A(p). 

On the other hand, (1.8) yields that 

(<D5 - 5(D) = h((pA - A(p) - ((pA2 - A2p), 

which implies that 

(2.3) tr((D5 - 5(D)2 = h • tr(<D_4 - Ap)((pS - Sp) - tr(<DA2 - A2(p)(pS - 5(D). 

In general, we get 

(2.4) tr(<pA - A(p)(pS - S(p) = 2tr <pApS - tr AD25 - txpASp. 

It follows from (2.2) that 

(2.5) tr (D2AS - 2 tr (pSpA + tr (p2SA = 0. 

So, from (2.4) and (2.5) we obtain 

(2.6) tr((DA - A(D)((D5 - 5(D) = 0. 
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Now we find that 

(2.7) tr(ipA2 - A2<p)(ipS - Sip) = 2tr<DA2(D5 - tr A2ip2S - tr<pA2Sip. 

It follows from (2.2) that 

ipA(<pAS - Sip A + SAip - AipS) = 0, 

so that 

(2.8) tr ipASAip = tr ipA2<pS. 

Hence from (2.7) and (2.8) we find 

(2.9) tr(cpA2 - A2ip)(ipS - 5(D) = 2tnp2ASA - tnp2SA2 - tnp2A2S. 

Then from (1.3), (1.8), (2.3), (2.6) and (2.9) we can see that 

tr((D5-5(D)2 = -6||(DA^||2, 

which, together with the fact that ipS-Scp is symmetric, shows that tr((D5-5(/?)2 = 0 
and £ is a principal curvature vector. Here note that "tr((D5 - 5(D)2 = 0" implies 
that "(D5 = 5(D", because <pS — Sip is symmetric. 

We shall classify real hypersurfaces M satisfying <pS = Sip and £ is a principal 
curvature vector. The following discussion is indebted to Kimura ([4, 5]): Let X be 
a principal curvature (unit) vector orthogonal to £ with principal curvature A. Since 
ipSX = S<pX, from (1.3), (1.8) and Proposition B we get the following equation 

/ r t,^x l \ «A + 2i r, x aA + 2̂ 1 
(210) {A-2A^}>-A-2T^}=°-
Since £ is a principal curvature vector, except for the null set on which the focal map 
<pr degenerates, our manifold M is a tube (of radius r) over a certain (k-dimensional) 
Kaehler submanifold N in Pn(C). So we may put a = 2co t2r(= cotr - tanr) 
(cf. Proposition C). Hence, solving the equation A - (aX + 2)/(2A - a) = 0, we find 
that A = cotr, — tanr. We here denote by Ai, A2 (7̂  cotr, — tanr) the solutions for 
the quadratic equation h - X — (aX + 2)/(2A - a) = 0. Note that (cf. Proposition B) 

(2 .11) pVcotr = V c o t r , <DV-tanr = V _ t a n r , a n d (DVAl = Vx2 . 
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Then M has at most five distinct principal curvatures 2cot2r (with multiplicity 1), 
cotr (with multiplicity 2n — 2k — 2), — tanr (with multiplicity 2k — 2m), Ai (with 
multiplicity ra ^ 0) and A2 (with multiplicity ra ^ 0). Hence 

(2.12) h = (2n-2k- l ) c o t r - (2k - 2m + 1) tanr + ra(Ai + A2). 

On the other hand 

(2.13) h = \l+\2. 

It follows from (2.12), (2.13) and A2 = (aAi + 2)/(2Ax - a) that 

(2.14) ( 2 n - 2 k - l ) c o t r - (2k - 2m + 1) tanr + (m - l)(Ai + ** 1 + ) = 0 . 
I 2Ai —a) 

In the following, our discussion is divided into three cases (I) m = 0, (II) m = 1 and 
(III) ra ^ 2. 

Case (I): In the case of k = n — 1, M has two distinct constant principal curvatures 
2cot2r (with multiplicity 1) and —tanr (with multiplicity 2n — 2), so that M is 
locally congruent to a homogeneous one of type Ai. In case that l ^ k ^ n — 2, M 
has three distinct constant principal curvatures 2cot2r (with multiplicity 1), cotr 
(with multiplicity 2n - 2k - 2) and - t a n r (with multiplicity 2k), so that M is 
locally congruent to a homogeneous one of type A2 (cf. [9]). Hence M is of case (a) 
in Theorem 1. As matter of course, our manifold M satisfies (pS = S(p (see Theorem 
C). 

Case (II): Our non-homogeneous real hypersurface M has at most five distinct 
principal curvatures 2 cot 2r (with multiplicity 1), cot r (with multiplicity 2n —2k —2), 
— tanr (with multiplicity 2k—2), Ai (with multiplicity 1) and A2 (with multiplicity 1). 
Here note that both Ai and A2 are not constant. (Moreover, Proposition C asserts 
that Ai and A2 can expressed as: Ai = cot(r — 6) and A2 = cot(r + 0), where cot# 
is a principal curvature of the Kaehler submanifold N). In addition, equation (2.14) 
shows that 

(2.15) c o t 2 r = 2k~1 

2n-2k-l 

Hence we find that M is of case (f) in Theorem 1. 
Case (III): It follows from (2.14) and Proposition A that Ai is constant. Therefore 

we can see that our manifold M is homogeneous (cf. Theorem B). Now we shall check 
ipS = S(p one by one for homogeneous real hypersurfaces of type B, C, D and E. 
Since £ is a principal curvature vector, (pS£ = 0 = S(p£ holds. So, we have only to 
consider the condition that (pSX = S(pX for any X(±£). 
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Let M be of type B (which is a tube of radius r). Let x = cotr. Then M has 
three distinct constant principal curvatures n = (1 + x)/(l — x) with multiplicity 
n - 1, r2 = (x + l)/(x - 1) with multiplicity n - 1 and a = (x2 - l)/x with 
multiplicity 1. Since <pVri = Vr2, (DS = Sip is equivalent to h - n - r2 = 0. Then 
we have the following algebraic equation x4 — 2(2n — 3)x2 + 1 = 0. Hence we find 
x2 = 2n-3±2\J(n - l)(n - 2) so that x = y/n - 1 + y/n - 2, since z > 1. So, M is 
of case (b) in Theorem 1. Now let M be of type C (which is a tube of radius r). Let 
x = cotr. Then M has five distinct constant principal curvatures ri = (1-\-x)/(1 -x) 
with multiplicity 2, r2 = (x + l) /(x - 1) with multiplicity 2, r3 = x with multiplicity 
n — 3, r4 = — 1/x with multiplicity n — 3 and a = (x2 — l)/x with multiplicity 1. In 
case that X G Vr3 or Vr4, (pSX = SipX for any radius r. So, <pS = Sip is equivalent 
to h — r\ — r2 = 0 . Then we have the following equation (n — 2)x4 — 2nx2 + n — 2 = 0. 
And hence we find x2 = (n±2y/n - l ) / ( n - 2 ) so that x = (y/n - l-\-l)/y/n - 2, since 
x > 1. Hence, M is of case (c) in Theorem 1. Let M be of type D (which is a tube 
of radius r). Let x = cotr. Then M has five distinct constant principal curvatures 
ri = (1 + x)/(l - x) with multiplicity 4, r2 = (x + l)/(a; - 1) with multiplicity 4, 
r$ = x with multiplicity 4, r4 = —1/x with multiplicity 4 and a = (x2 — l)/x with 
multiplicity 1. By virtue of the computation in case of type C we have only to solve 
the equation h — r\ — r2 = 0. Namely we get the following 5x2 — 22x2 + 5 = 0 so 
that x = (y/8 + \/3)/y/5. Hence, M is of type (d) in Theorem 1. Let M be of type 
E (which is a tube of radius r). Let x = cotr. Then M has five distinct constant 
principal curvatures r\ = (1 + x)/(l — x) with multiplicity 6, r2 = (x + l)/(x — 1) 
with multiplicity 6, r3 = x with multiplicity 8, r4 = —1/x with multiplicity 8 and 
a = (x2 — l)/x with multiplicity 1. Considering the equation h — ri — r2 = 0, we 
have the following 9x4 - 38x2 + 9 = 0 so that x = (y/l + y/Ti)/3. Hence, M is of 
case (e) in Theorem 1. 

The rest of the proof is to check L^S = 0 for examples (a), (b), (c), (d), (e) and (f) 
in Theorem 1. Since our all examples satisfy <pS = Sip and SA = AS (that is, f is a 
principal curvature vector), (2.1) tells us that "L^S = 0" is equivalent to "V^S = 0." 
So we shall verify V^S = 0 one by one for the six model spaces of case (a), (b), (c), 
(d), (e) and (f) in Theorem 1: 

Let M be of case (a). Then we see that V^A = 0 (cf [9]). Moreover, f is a principal 
curvature vector and £(trA) = 0. And hence (1.9) yields that V^S = 0. Next, let M 
be of case (b), (c), (d) or (e). Obvious (cf. Proposition D). Finally let M be of case 
(f). The manifold M (which is a tube of radius r) has at most five distinct principal 
curvatures 2cot2r (with multiplicity 1), cotr (with multiplicity 2 n - 2 k - 2 ) , - tanr 
(with multiplicity 2k - 2), Ai = cot(r - 8) (with multiplicity 1) and A2 = cot(r + 8) 
(with multiplicity 1) and M satisfies (2.11), (2.13) and (2.15). First we shall compute 
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VcA. Since £ is a principal curvature vector, we easily see that 

(2.16) ( V ^ ) f = 0. 

From (1.5), (1.7) and (2.11) we obtain the following: 

(2.17) (V^A )X = 0 for any X G Vcotr, 

(2.18) (V^A)Y = 0 for any F G V-tanr , 

(2.19) (V^A)Z = aifZ for any Z G VXl, 

(2.20) (VCA)W = -aifW for any W G VA2, 

where a = (1 — cot4 r) cot#/{cotr(cotr + cot#)(cotr — cote?)}. And hence the equa­

tion (2.16) ~ (2.20) imply that 

(2.21) £(trA) = t r (V^A ) = 0 . 

Then, from (1.9), (2.11), (2.16), (2.17), (2.18) and (2.21) we get 

(2.22) (V^5)^ = (V^S)X = (V^5)Y = 0 

for any X G Vcotr and for any Y G V-tanr-

It follows from (1.9), (2.11), (2.19) and (2.21) that 

(V^5)Z = a(h - Ai - \2)(fZ for any Z G VXl, 

which, combined with (2.13), shows that 

(2.23) (V^5)Z = 0 for any Z eVXl. 

Similarly, from (1.9), (2.11), (2.13), (2.20) and (2.21) we see that 

(2.24) (V^S)W = 0 for any W eVX2. 

Thus, from (2.22), (2.23) and (2.24) we find that the manifold M satisfies V^5 = 0. 

• 
Remark 1. (1) In case (f), condition "the Kaehler submanifold N does not have 

principal curvatures ±y/(2k — l)/(2n - 2k — 1)" is necessary. In general, Statement 
(ii) in Proposition C shows that the point x (= 7(0)) is a singular point of M (that 
is, M is not smooth at the point x) in the case of r = 6. 
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(2) When k = 1 in case (f), M is a tube of radius r with cot2 r = l/(2n - 3) over 
a complex curve (in Pn(C)) with nonzero principal curvatures ^ ±1/y/2n — 3. 

(3) In general, "V^A = 0" implies "V^5 = 0" (cf. Proposition 1). Of course 
the inverse is not true. All examples (a), (b), (c), (d), (e) and (f) satisfy V^5 = 
0. But V^.4 T-: 0 for examples (b), (c), (d), (e) and (f) in the case of n ^ 2k. 
The classification problem of real hypersurfaces M (in Pn(C)) satisfying V^.4 = 0 
was solved by the present authors. Note that "VfA = 0" is equivalent to "A£ = 
0" for non-homogeneous real hypersurfaces M (for details, see [7]). However, the 
classification problem of real hypersurfaces M (in Pn(C)) satisfying V^5 = 0 is an 
open problem. 

Proposition 1. V^A = 0 always implies V^5 = 0. 

P r o o f . We remark that "V^A = 0" implies that "f is a principal curvature 
vector" (see, Proposition 7 in [7]) and £(tr A) = tr(V$A) = 0. So, equation (1.9) 
asserts that V^5 = 0. D 

Now, in relation to Theorem D we establish the following 

Theorem 2. Let M be a real hypersurface of Pn(C). Then the following are 

equivalent: 

(i) £ is a principal curvature vector and (L£<D)2 = —c2y2, where c is locally 

constant. 

(ii) M is locally congruent to one of homogeneous real hypersurfaces of type Ai, 

A2 and B. 

P r o o f . For any X G TM we see that 

(Lt<p)X = [Z,<pX]-<p[S,X] 

= (Vi<p)X-Vvxt + <pVxZ. 

This, together with (1.3), (1.4) and (1.5), yields 

(2.25) (Lt<p)X = 7)(X)AZ -AX- <pA<pX. 

Then from (1.3) and (2.25), for any X € TM we get 

(2.26) (L^fX = (<pA - A<p)2X - 9(<pAZ, X)<pA£ 

+ v(X){ri(M)M - A2i - <pA<p,AZ). 
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In the following we study M satisfying condition (i) in Theorem 2. Since £ is a 
principal curvature vector, from (2.26) we see that (L^ip)2 = —c2(p2 is equivalent to 

(2.27) (<pA - A(p)2X = -c2ip2X for any X e TM. 

Let X be a principal curvature (unit) vector orthogonal to £ with principal curvature 

A. From (1.3), (2.27) and Proposition B we obtain the following 

(2.28) 4(A2 - aX - l ) 2 = c2(2A - a ) 2 , 

which, combined with Proposition A, yields that A is constant. Therefore by virtue 
of Proposition A and Theorem B we find that M is homogeneous. 

First let M be of type Ai or type A2. Then Theorem C guarantees (2.27). Now 
we consider M of type B (which is a tube of radius r). Let x = cotr. Then M 
has three distinct constant principal curvatures n , r2 and a (see, Case (III) in the 
proof of Theorem 1). Then by a direct calculation we know that (2.27) holds, when 
c = 2(x2 + l)/(x2 — 1). Next let M be of type C, type D or type E (which is a tube 
of radius r). Then M has five distinct constant principal curvatures n , r2, r3, r4 

and a (cf. Case (III)). Suppose that (2.27) holds. Then (2.28) tells us that c = 0, 
when A = r3,r4- On the other hand, (2.28) shows that c = 2(x2 + l)/(x2 - 1) (?- 0), 
when A = r i , r 2 . These statements contradict each other. • 

Remark 2. As an immediate consequence of Theorem 2, we find 

Corollary 1. Let M be a real hypersurface of Pn(C). Then the following are 
equivalent: 

(i) £ is a principal curvature vector and (L^ip)2 = —c2ip2, where c is nonzero 

locally constant. 

(ii) M is locally congruent to a homogeneous real hypersurface of type B. 

If we omit the hypothesis that £ is a principal curvature vector, Theorem 2 is 
not true (cf. Proposition 2). The first author of the present paper constructed a 
class of non-homogeneous real hypersurfaces M (in Pn(C)) which are called ruled 
real hypersurfaces (cf. [6]). We say that M is a ruled real hypersurface if there 
is a foliation of M by complex hyperplanes Pn_i(C). More precisely, let T°M be 
the distribution defined by T°M = {X G XXM | X_L£} for x e M. Then M is 
ruled if and only if T°M is integrable and its integral manifold is a totally geodesic 
submanifold Pn_i(C). 
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Now, for later use we shall write down the shape operator A of a ruled real hyper-
surface M: 

(A£ = ^ + vU ( i /^O), 

(2.29) \ AU = i/f, 

{ AX = 0 (for any X±£, U), 

where U is a unit vector orthogonal to £, \x and v are differentiable functions on M. 

So, (2.29) implies that the vector f of any ruled real hypersurface M in Fn(C) is 

not principal. Moreover we have 

Proposition 2. Any ruled real hypersurface M in Pn(C) satisfies (L^<p)2 = 0. 

P r o o f . It follows from (1.3), (2.25) and (2.29) that (L£<D)£ = (L^p)X = 0 
for any X(±£,U). In addition, from (2.25)and (2.29) we find that (L^<p)U = -i/f. 
Hence (L^<p)2U = —z/(L£<D)£ = 0. Therefore we get our conclusion. • 

Now we shall a provide a characterization of a ruled real hypersurface M in Pn(C). 

First we prepare the following 

Proposition 3. Let M be a real hypersurface of Pn(C). Then the following are 
equivalent: 

(i) (L^ ) 2 = 0, 
(ii) (<pA - A<p)X = 7i(X)<pA£ + g(<pA£, X)£ for any X e TM, 

(iii) g((tpA - A<p)X, Y) = 0 for any X, Y±£. 

P r o o f . Equation (2.26) tells us that (L^<p)2 = 0 is equivalent to 

(2.30) (<pA - A<p)2X = g(<pA£, X)<pA£ 

+ n(X){<pA<pAS + A2i - n(AOAi) 

for any X G TM. 

(i) ^ (ii): Since (<pA - A<p)2 is symmetric, (2.30) yields that (<pA<pA£ + A2£ -
n(A£)A£) is proportional to £. Then (1.3) shows that 

(2.31) <pA<pA£ + A2i - r)(A()AZ = ||(D-4£||2£. 

Since <pA - A<p is symmetric, the equations (2.30) and (2.31) provide us with 

(2.32) (<pA - A<p)X = 0 for any K_L£,<pA£,. 
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From (1.3) and (2.31) we obtain the following 

(2.33) (ipA - A<p>)(, = <pA£, 

(2.34) (<pA-Aip)<pAS = \\ipA£\\2£-

It follows from (2.32), (2.33) and (2.34) that condition (ii) holds. 

(ii) => (i), (ii) => (hi): Obvious. 

(iii) =t> (ii): Condition (iii) implies that 

(2.35) g((ipA - A(p)<pX, ipY) = 0 for any X, Y G TM. 

From (1.3) and (2.35) we get condition (ii). • 

We are now in a position to prove the following 

Proposition 4. Let M be a real hypersurface of Pn(C). Then (L^ip)2 = 0 and 

the holomorphic distribution T°M (= {X G TM | rj(X) = 0}) is integrable if and 

only if M is locally congruent to a ruled real hypersurface of Pn(C). 

P r o o f . (=>) It is known that "T°M is integrable" is equivalent to the following 
(see, Proposition 5 in [6]): 

(2.3G) g((ipA + Aip)X, Y) = 0 for any X, Y G T°M. 

It follows from condition (iii) in Proposition 3 and (2.36) that g(AX,Y) = 0 for any 
A', Y G T°M. This implies that our manifold M is locally congruent to a ruled real 
hypersurface. 

(<=) See, Proposition 2. • 

R e m a r k 3. The classification problem of real hypersurfaces M in Pn(C) satis­
fying (L^(p)2 = 0 is still open. 
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