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Czechoslovak Mathemat ical Journal , 45 (120) 1995, P r a h a 

SEQUENTIAL CONVERGENCES ON MV-ALGEBRAS 

JAN JAKUBIK, Kosice 

(Received March 22, 1994) 

The notion of an MV-algebra was introduced by Chang [2]. Various systems of 
axioms and various notation for MV-algebras have been applied; we shall use those 
from [4]; cf. also [13]. 

We investigate sequential convergences on MV-algebras. The definition is analo
gous to that studied for lattice ordered groups (cf. [6], [8]), Boolean algebras [9], [11] 
or lattices [12]. 

Let srf be an MV-algebra and let G be a lattice ordered group. We denote by 
Conv srf and Conv G the set of all sequential convergences on srf or on G, respectively. 
Next, let Convb G be the set of all bounded sequential convergences on G; this notion 
has been dealt with in [10]. All the sets Conv-s/, ConvG and Conv G are partially 
ordered by inclusion. 

Mundici [14] proved that for each MV-algebra srf there exists an abelian lattice 
ordered group G with a strong unit u such that srf can be constructed by means of 
G. In this construction, the underlying set A of srf is the interval [0,u] of G. 

We shall prove that the partially ordered set ConVeC/ is isomorphic to ConvbG. 
From this we deduce that each interval of C o n v ^ is a complete Bouwerian lattice. 
The lattice C o n v ^ has a greatest element if and only if ConvG has a greatest 
element. 

It will be shown that if [0,u] is a Boolean algebra, then the relation Conv srf = 

Conv £8 is valid (where £8 is the Boolean algebra under consideration, and Conv £8 

is as in [9]). 

Supported by Grant GA SAV 1230/94 
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1. PRELIMINARIES 

The following definition of an MV-algebra is recalled from [4]. 

1.1. Definition. An MV-algebra is a system &/ = (A; 0 , *, -i, 0,1) (where 0 , * 
are binary operations, -> is a unary operation and 0, 1 are nulary operations) such 
that the following identities are satisfied: 

(mi) x 0 (y 0 z) = (x 0 y) 0 z; 

(ni2) x 0 0 = x; 

(m3) x 0 u = y®x; 

(m4) 1 0 1 = 1; 
(m5) ~v-*x = x; 

(m6) - 0 = 1 ; 
(1117) x 0 —ix = 1; 

( m 8 ) i ( - i x 0 y) 0 H = - . (x 0 --H) 0 x; 

( m 9 ) x*y = - - ( - 1 X 0 - . H ) . 

Let N be the set of all positive integers and for each n G N let An = A. The direct 

product of sets An (n G N) will be denoted by AN . The elements of AN are denoted 
by (On)nGN or simply by (an); they will be called sequences in srf. The notion of a 
subsequence of a sequence in srf has the usual meaning. If (xn) G AN and x G A 

such that xn = x for each n G N, then we write (xn) = const x. 
If K C AN x A, then a relation of the form ((xn), x) G K will be denoted also by 

writing xn — > K X. 

For each xG/4 and y € A we put 

xVy = (x*-.u) 0 u , 

x Ay = —•(—ix V - in ) . 

Let us consider the structure J5f(j^) = (A; V, A). Then we have 

1.2. Proposition. (Cf., e.g., [4].) Jf(s^) is a distributive lattice with the least 

element 0 and the greatest element 1. 

The partial order induced on A by means of the lattice J£(£/) will be denoted 
by ^ . When considering a partial order on the set A we always mean the partial 
order ^ . 

1.3. Definition. A subset K of AN x A will be said to be a sequential conver

gence in srf if the following conditions are satisfied: 

(i) If xn — > K x a n d (Hn) is a subsequence of (xn), then yn — > K x. 
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(ii) If (xn) G AN, x G A and if for each subsequence (yn) of (xn) there is a 
subsequence (zn) of (yn) such that zn — > K X, then xn — > K X-

(iii) If (xn) G An, x e A, (xn) = const x, then xn — > K X. 

(iv) If xn — > K x and xn — > K y, then x = y. 

(v) If xn —> K x and yn —>K y, then xn 0 yn —>>K :C 0 y, rrn * yn —>K x*y 

and ->a;n — > K ~^X. 

(vi) If xn ^ yn ^ £n is valid for each n G N and if xn — > K x, *n —>K x, then 

yn —>I< x. 

In what follows we shall say "convergence" instead of "sequential convergence". 
We denote by C o n v ^ the set of all convergences in sz/. The set Conv ST/ is partially 
ordered by inclusion. 

Let K(0) be the set consisting of all elements ((xn),x) of AN x A such that there 
is m G N with xn = x for each n ^ m. Then we obviously have 

1.4. Lemma. If (0) is the least element of Conv sz/. 

The notion of convergence in a lattice was defined in [12]. It is defined as follows 

(we apply analogous notation as above). 

1.5. Definition. Let ^f = (L;A,V) be a lattice. A subset K of LN x L is 
a convergence in Jzf if the conditions (i)-(iv), (vi) from 1.3 are satisfied and if, 
moreover, the following condition holds: 

(v(l)) Ifxn —>K x a n d y n —YK y, thenx n Ay n —•»/<• xAy and xnVyn —> K xVy. 

From the definition of the lattice Jf(sz/) and from 1.3 we immediately obtain 

1.6. Lemma. Let K G Conv sz/. Then K is a convergence on the lattice 3f(&/). 

If {Ki}iei is a nonempty system of elements in Conv s/, then 1.3 yields that Q K 
iei 

also belongs to Convs?/. Hence we have 

1.7. Lemma. The partially ordered set Conv stf is a A-semilattice. If K G 
Convs?/, then the interval [K(0),K] is a complete lattice. Hence if Conv stf has a 
greatest element, then Conv srf is a complete lattice. 

For lattice ordered groups we apply the same notation as in [1]. The following 
theorems 1.8 and 1.9 are due to Mundici [14] (for the case of linearly ordered MV-
algebras cf. Chang [11]). 

1.8. Theorem. Let G be an abelian lattice ordered group with a strong unit u. 
Let A be the interval [0,u] of G. For each a and b in A we put 

a 0 b = (a -f- b) A u, ->a = u — a, 1 = u. 
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Next, 1et the binary operation * on A be defined by (m9). Then srf = (A; 0 , *, ->, 0,1) 
is an MV-algebra. 

If G and s/ are as in 1.8 then we put s/ = SZ/Q(G,U). 

1.9. Theorem. Let srf be an MV-algebra. Then there exists an abelian lattice 
ordered group G with a strong unit u such that srf = s/0(G, u). 

1.10. Lemma. Let srf and G be as in 1.9. Let x,y € A, x ^ y. Then 

y — x = -\(x 0 ->y). 

P r o o f . According to 1.8 we have 

x 0 ->y = (x -h (u - y)) A u = (u - (y — x)) A u = u — (y - x), 

hence 
-i(# 0 ->y) = u — (u — (y — x)) = y — x. 

1.11. Lemma. Let srf be an MV-algebra, x,y,z £ A, x ^y ^ z. Then 

- i (x 0 ->z) = - i(x 0 ->y) 0 ->(y 0 -12:). 

P r o o f . According to 1.10 and 1.8 we have 

-•Or 0 -.2) = z - x = (x - y) + (y - x) = (z - y) 0 (y - x) 

= ->(y0- iz)0(a;0- .y) . 

1.12. Lemma. Let s/ be an MV-algebra, x,y £ A, x ^ y. Then 

x = —1(—12/ © ""*(# ® ^y))-

P r o o f . In view of 1.10 we have 

-•(-,y © -*(x © iy)) = -i(-iy 0 (y - x)) = -i((u - y) © (y - x)) 

= i(((w - y) + (y - x)) Au) = -.((ix - a,) A u) 

= —1(11, — a;) = -i->T = .r . 

D 

D 

D 
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2 . T H E SYSTEMS Conv0G AND C o n v 0 ^ 

All lattice ordered groups considered in the present paper are assumed to be 
abelian. If G is a lattice ordered group then its underlying set will be also denoted 
by the same symbol G. 

2.1. Definition. Let G be a lattice ordered group and let K be a subset of 
GN x G. The set K is said to be a convergence in G if the conditions (i)-(iv), (v(l)), 
(vi) above are satisfied and if, moreover, the following condition holds: 

(v(2)) If xn —> K x and yn —>K y then xn + yn —>K x + y and -xn —vK -y. 

We denote by ConvG the set of all convergences in G; this set is partially ordered 
by inclusion. 

For each K in Conv G we put 

K° = {(xn) G GN : xn —>K 0 and xn ^ 0 for each n G N}, 
Conv0G = {K°: K G ConvG}. 

We can regard GN as the direct product Y\ Gn, where Gn = G for n G N. Hence 
n€N 

GN is a lattice ordered group. For each lattice ordered group H the symbol H+ 

denotes the positive cone of H; thus H+ is a lattice ordered semigroup. 

2.2. Lemma. (Cf. [6], 1.2 and 1.3.) Let K1 be a subset of GN . Then K1 

belongs to Convo G if and only if K1 is a convex subsemigroup of the semigroup 
(GN ) + such that the following conditions are satisfied: 

(I) If (gn) G K1 then each subsequence of (gn) belongs to K1. 

(II) Let (gn) G (G N ) + . If each subsequence of (gn) has a subsequence belonging 

to K1, then (gn) G K1. 

(Ill) Let g G G. Then const g belongs to K1 if and only if g = 0. 

The set Convo G is partially ordered by inclusion. The following lemma is easy to 
verify. (Cf. also [6].) 

2.3. Lemma. (i) For each K in ConvG put <pi(K) = K°. Then <pi is an 

isomorphism of ConvG onto ConvoG. 

(ii) Let K1 G Conv0G. Put K = {((xn),x) e GN x G: \xn - x\ G K1}. Then 

K G ConvG and ^(K) = Kx. 

Direct products of MV-algebras have been investigated in [2] and [13]. 
Let &/ be an MV-algebra. Similarly as in the case of lattice ordered groups above 

we denote by AN the direct product \\ An, where An = A for each n eM. 
nGN 
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Next, for each K G Conv.c/ we denote 

K° = {(xn) G AN : xn —>7, 0}, 

Convo stf = {K°: K G Conv.c/}. 

In view of the definition of Conv0 srf and according to 1.3 we have 

2.4. Lemma. Let K1 G Convoke/. Then 

(i) Ivx satisfies the conditions (I), (II) and (III) from 2.2; 
(ii) AT1 is a convex subset of the lattice (AM ; V, A); 

(iii) Kl is closed with respect to the operation ©. 

The following two lemmas 2.5 and 2.6 will show that the set C o n v ^ can be 
reconstructed from Convn srf. 

Let K(l) be a nonempty subset of AN . For ((xn),x) G AN x A we consider the 
following condition: 

(*) There exist (un), (vn) G AN such that 

(i) un ^ x, un ^ xn for each n G W and (-»(Hn © -i.r)) G K(l); 

(ii) Un ^ x, Un ^ xn for each n G N and (-y(x 0 ->Un)) G AT(1). 

We denote by K(2) the set of all ((xn),x) e AN x A such that the condition (*) is 

valid. If ((xn),x) belongs to A'(2) then we write xn —>i<{2) x-

2.5. Lemma. Let K(l) be a nonempty subset of AN satisfying the conditions 
(i). (ii) and (iii) from 2.4. Let K(2) be defined as above. Then K(2) G Conv^/. 

P r o o f . We shall verify that A'(2) satisfies the conditions (i)-(vi) from 1.3. 

(i): The validity of (i) is obvious. 

(ii): Let G be as in 1.9. In view of the assumption (cf. 2.4 (i)) K(l) satisfies the 
conditions (I), (II) and (III) from 2.2. Thus 2.2 yields that K(l) belongs to Conv0 G. 

Let (xn) e AN , x e A. Suppose that the assumptions of the condition (ii) of 1.3 
hold, where K is replaced by A'(2). 

Then for a sequence (zn) as in (ii) of 1.3 we have zn —>K{2) x- Thus there are 
(wn), (Un) £ AN such that the conditions (i) and (ii) from (*) are valid, where xn is 
replaced by zn. 

According to 1.10 we have 

->(Mn © "•#) = X -Un, 

->(X © -*Vn) = Un - X, 
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hence (x — un) G K(l) and (vn — x) G K(l). Since K(1) € Convo G and un ^ zn ^ vn 

for each n G f\J, by applying 2.3 we obtain that in the lattice ordered group G we 

have (\zn — x\) G K(l) and thus (cf. 2.1) we get (\xn — .T|) G K(l). This implies that 

(x - (xn A x)) G Iv (1), ((T71 V x) -x) e K(l), 

whence (xn ,x) G Iv"(2). Therefore the condition (ii) from 1.3 is valid for Iv"(2). 

(iii): Under the assumptions as in (iii) it suffices to put un = vn = x for each 

n G N and then according to the definition of K(2) the relation xn —>i<(2) x holds. 

(iv): Since (iv) is a consecpience of (v) it suffices to deal with (v). 

(v): Let xn —>K(2) x. Hence there are (un) and (vn) in AN such that (*) is valid. 

Thus for each n G r\J we have 

->Hn ^ - . T , - iWn ^ ~i;Tn, -nVn ^ - i T , -nUn ^ - i X n . 

We have also 

-i(-W7i © ^ " ^ ) = - ^ © ->vn) G Iv (1) , 

-•(-iff 8 -i-iHn) = -"(^n © ~*x) G IV (1) , 

whence ~^xn —>K(2) ~~̂ -
Next, let xn —>i<(2) x and xn —->A'(2) a;'. Let (un) and (Un) be as in (*); further 

let (u'n) and (v'n) have analogous meanings (with respect to x'n and x'). Denote 
x" = x © a;', H" = un © wn, U" = vn © Un. Hence H" < x'\ un ^ x", v'n ^ rr" and 
«." > r" 

We also have 
un = un u'n ^ rr u'n ^ т x' = я " . 

In view of 1.9 there are pn,qn G -4N such that for each n G N 

< + Pn = < © Pn = X © Un, (X © u'n) + On = .T © Un © On = a" . 

Then 

<K p n = (rr © u'n) - (un © un) = 

= ((T + u'n) A u) - ((un + u'n) A u). 

Whenever a, b and c are elements of a lattice ordered group with a ^ b, then it is 

easy to verify that 

(b A u) — (a An) ^ b — a. 
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Hence 

0 ^ pn ^ (x + u'n) - (un + un) = x - un. 

Since (x — un) G K(l) we obtain that (pn) belongs to K(l). Similarly we prove that 
(qn) belongs to K(l) as well. Therefore (x" - un) G K(l) (cf. also 1.11). In another 
notation 

H < ® - . * " ) ) 6 A'(l). 

By analogous steps we can verify that 

Hx"©X'))e/f(i). 

Hence according to the definition of A'(2) we obtain 

xn@xn —>I<{2) x®y. 

(vi): Let the assumptions from (vi) be fulfilled. Then there are (un),(vn) G AN 

such that xn ^ x ^ vn, un ^ xn, zn ^ vn for each n G N and 

-i(wn © ->x) G A(l ) , -.(rr 0 iUn) € A( l ) . 

Then un ^yn ^ Un for each ?i G N. Hence yn —>i<(2) x-

The relation xn * Hn —^A'(2) £ * H is a consequence of the above results and of 
(m9). • 

2.6. Lemma. Let K(l) and K(2) be as above. Then (K(2))° = AT(1). 

P r o o f . Let (xn) G (K(2))°, xn —>i<{2) 0- m view °f the definition of A"(2) 
there is (vn) G AN such that vn ^ xn for each n G N and 

( n ( 0 e n U n ) ) G / f ( l ) , 

Thus (vn) G K(l). Put un = 0 for each n G fU In view of the convexity of K(1) we 

obtain that (xn) belongs to A'(l). Hence (A'(2))° C AT(1). 
Conversely, let (xn) G A'(l). If we put un = vn = xn for each n G N, then in view 

of the definition of K(2) we get xn —->A'(2) 0, whence (xn) G (A'(2))°. • 

2.7. Corollary. Convo £/ is the system of all subsets of AN which satisfy the 

conditions (i), (ii) and (iii) from 2.4. 

If K G Conv-c/, then we put / i (A) = Iv°. Next, for Iv(l) G Conv0 ^ we set 
f2(K(l)) = A (̂2) (under the notation as above). 
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Whenever K and K' belong to C o n v ^ and K C K', then f\(K) C fi(IO-

Similarly, if IG and If2 are elements of Conv0 «*/ with K\ C If2, then f2(K\) C 

/2(Iv2) . 

2 .8 . L e m m a . Let K G C o n v A . TheLi f2(K°) = K. 

P r o o f . P u t f2(K°) = K(2). Let ((xn),x) G K(2). Hence there exist 

( u n ) , (Un) G AN such tha t (*) holds, where K(l) = K°. Thus 

H x e -Un)) G I^0. 

According to 1.10 (Un — x) G K°, hence ((Un — x), 0) G AT, i.e., Un — x — > K 0. Then 

(vn — x) 0 x — > K x. Clearly (vn — x) 0 x = (vn — x) + x = vn, hence vn — > K X. 

Next, (-*(un(B--x)) G K°, whence in view of 1.10, (x—un) G K°, i.e., x—un — > K 0. 

According to 1.12, 

un = - .(-is 0 -~(un 0 ~-x)). 

Thus by applying 1.10 un = -(->x 0 (x — un)) and hence 

t /n >K --(--X 0 0 ) = X. 

Then by 1.3 (vi) we obtain tha t xn — > K X. Therefore K(2) C K. 

Conversely, let ((xn),x) G K. Pu t un = xn A x and v n = x n V x for each n G rU 

Then u n — > K X and Un — > K X, hence 

"•(un 0 ->x) —)•/<; -i(x 0 -ix) = -m = 0, 

-<(x 0 ~>Un) >/c ~<(X 0 -ix) = 0. 

Consequently, 

(-(t in e -is)) G Iv°, (-.(a, 0 -U n)) G K°. 

Therefore ((xn),x) G K(2). Summarizing, we conclude K(2) = K. D 

2.9. T h e o r e m . f2 is an isomorphism of the partially ordered set Convn ^/ onto 

C o n v ^ and f\ = f 2
- 1 . 

P r o o f . This is a consequence of 2.6, 2.7, 2.8 and of the fact tha t both f\ and 

f2 are monotone . D 
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3. T H E RELATIONS B E T W E E N Conv0 .c / AND ConvG 

Again, let s/ be an MF-algebra . Next, let G be as in 1.9. 

First we shall investigate the relations between the partially ordered sets Convo &/ 

and Convo G. 

For each K G Conv0 G we put 

gi(K) = ANDK. 

3 . 1 . L e m m a . If K G Conv0 G, then gi(K) G Conv0 sz/. 

P r o o f . Let K\ G Conv 0 G. Then there is K G ConvG such tha t K\ = K0. 

Hence if ( x n ) , (yn) G K\, then (xn VHn), (xn/\yn) and ( z n + Hn) belong to ATi. Thus 

in view of 2.2 and 2.7 we obtain that g\(K\) G Conv0 sz/. D 

As an immediate consequence of the definition of g\ we get 

3 .2 . L e m m a . Let KUK2 G ConvG, A'i C K2. Then gi(Ki) C gi(K2). 

3 . 3 . L e m m a . Let Oi,O2> • • . ,O n G A n ^ 2. Then Hi © O2 0 . . . 0 an = (ay + 

a2 + ... + an) AH. 

P r o o f . By obvious induction. • 

A nonempty subset X of (GN ) + is said to be regular if there exists A' G Conv0 G 

such tha t X C K. 

3 .4 . L e m m a . Let X be a nonempty subset of (GN)+. Then the following 

conditions are equivalent: 

(i) X is not regular. 

(ii) There exist (xn), (xn),..., (xn
l) G X, subsequences (yn) of (xn) (k = 

1 ,2 , . . . , in) and an element 0 < g G G such fciiat o ^ ?yn + yn + ... + yn
l is 

valid for each n G " J. 

P r o o f . This is a consequence of Lemma 2.5 in [10]. • 

3.5 . L e m m a . Let X G Convo &/. Then the set X is regular. 

P r o o f . By way of contradiction, assume that X is not regular. Hence the 

condition (ii) from 3.4 holds. Then 

(1) 0^Au = (yl
n+ yl + ...+ y™) A u = yl

n 0 y\ 0 . . . © C 
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According to the definition of Conv0 stf there exists K G Conv srf such that X = K°. 

Hence xn — > K 0 and thus yn — > K 0 for each fcG {1,2 m}. Therefore 

yn ® yl e • • • e 2C —>E o ; 

in view of (1) we have arrived at a contradiction. 

According to 3.5 for each X G Conv0 srf there exists a uniquely determined element 
Y of Conv0G such that (i) X C Y, and (ii) whenever Y\ G Convo G and X C Yi, 
then Y C Yi. We denote Y = G2(X) and F = g2 (Conv0 ^ ) . • 

3.6. Lemma. Let XX ,X2 G Conv0.c/, Xx C X2. Then g2(X{) C g2(X2). 

P r o o f . This is an immediate consequence of the definition of g2. • 

The set g2(X) can be constructively defined as follows. 

Let SX be the system of all subsequences of sequences belonging to X. The convex 

closure (in GN) of the system {const 0} U X will be denoted by [X]. Next, let (X) 

be the subgroup of (GN ) + generated by the set X. The symbol X* will denote the 

set of all sequences in G+ each subsequence of which has a subsequence belonging 

t o X . 

Then we have 

3.7. Lemma. (Cf. [5] or [10], 2.2.) Let 0 ^ X C Conv0 srf. Then g2(X) = 

3.8. Lemma. Let XUX2 G Conv0 srf, Xi g X2. Then g2(Xx) £ g2(X2). 

P r o o f . There exists (xn) G X\ \ X2. By way of contradiction, suppose the. 
g2(Xi) C g2(X2). Since Xi C g2(Xi), we obtain that (xn) G g2(X2). Thus in view 
of 3.7, (xn) G [(SX2)]*. Since X2 G Conv0 */, SX2 = X2. Also, (AN)* D AN and 
(xn) G AN , thus (xn) G [(SX2)]* n (AN )* = ([(SX2)] n Ahl )* = ([(X2)] n AH )*. 

Let (zn) G [(X2)] n AN . Thus there is (vn) G (X2) such that (zn) < (vn). Hence 
2„ O n ^ / 4 for each n G N. There are (tn),..., ( C ) in X2 such that Un = tn+.. ,+t™ 
for each n G N. Hence 

n̂ < (*i +. . • + C) A u = tn e i2
n e . . . © c -

Because X2 G Conv0 ^ we get (tn 0 . . . 8 C ) ^ -*2 and hence (zn) G X2. Next, A"2 

satisfies Urysohn's condition (cf. the condition (ii) in 1.3); this yields that (xn) G X2 , 
which is a contradiction. • 
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3.9. Lemma. Let X G Conv0 &/ and Z C [—mu, mu]N for some m G N. Then 
the following conditions are valid: 

(i) SX = X and[X] = X. 

(ii) If(zn) G AN and (zn) G (X), then (zn) G X. 

(iii) If (tn) G Z*, then there is k eM such that tn G [-mu, 77m] for each n ^ k. 

P r o o f . The conditions (i) and (ii) follow from the definition of Conv0 srf (cf. also 
2.4). The validity of (iii) is obvious. D 

For K G Convo G let Kb be the set of all (xn) G K such that (xn) is a bounded 
sequence in G. We denote by Convg G the system {K G Conv0G: K = Kb}; this 
system has been investigated in [10]. For each K G Conv0 G, Kb belongs to Conv0 G. 

There exist examples for which K 7-- Kb. Clearly gi(K) = g\(Kb) for each K G 
Conv0 G. Hence the mapping g\ fails to be a monomorphism. 

3.10. Lemma. Let X G C o n v 0 ^ . Then g2(X) is bounded. 

P r o o f . In view of 3.7, g2(X) = [(SX)]*. Next, according to 3.9 (i) we have 
SX = X. Hence for each (yn) G (SX) with yn ^ 0 for each n £ N there exist m e N 

and ( 4 ) , (zl),..., (z%) in X such that 

yn = zn + zl + ... + z™ for each n G N. 

Thus for each (vn) G [(SX)] there are m G N and (an), (bn) G X (i = 1, 2 , . . . , m) 

such that 

Therefore t;n G [—mu,mti] for each n G N. Thus according to 3.9, (iii), for each 
(tn) € g2(^0 there is k G N such that tn G [-?rm,mH] for each n ^ k. This yields 
that each sequence belonging to g2(X) is bounded. • 

3.11. Lemma. Let Y G Conv0 G and assume that Y is bounded. Put Gi (Y) = X. 

Theng2(X) = Y. 

P r o o f . The relation gi(Y) = X gives that X C Y. Hence 

92(X) = [(6X)]*C[(SY)]*. 

Since Y G Conv0 G we get [(SY)]* = Y and thus g2(X) C Y. 

Let (yn) G Y, yn ^ 0 for each n G N. Since (yn) is bounded there i s m G N such 
that 0 ^ yn ^ u\ + u2 + . . . -f um , where u^ = u for i = 1,2,... , m. Thus there are 
elements zn in G (n G N, i = 1, 2 , . . . , m) with 

Hn = 4 + ... + 4n , 0^zn^Ui. 
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This yields that zn ^ yn for each n € N and each i G { l , 2 , . . . , m } . Thus 
(zn) G Y and, at the same time, (zn) G AN , hence (zn) G X for i = 1,2,..., k. Thus 
(Vn) G (X) and hence (yn) G g2(-^)- From this we easily deduce that Y C g2(X). 
Summarizing, we conclude Y = g2(X). D 

3.12. Corollary. G2(Conv0 sz/) = ConvQ G. 

3.13. Theorem. g2 is an isomorphism of the partially ordered set Conv0 stf 

onto Convg G. 

P r o o f . This is a consequence of 3.2, 3.6, 3.8 and 3.12. D 

An element K of ConvG will be called bounded if, whenever ((xn),x) G K, then 
the sequence (xn) is bounded in G. We denote by Conv6 G the set of all elements of 
ConvG which are bounded. It is easy to verify that Conv6 G is a convex subset of 
ConvG and contains the least element of ConvG. 

3.14. Theorem. The partially ordered set Conv s?/ is isomorphic to Conv6 G. 

P r o o f . Let f\ be as in 2.9 and let g2 be as above. Since f\ and g2 are isomor
phisms, from 

Conv stf A Convo ^ - ^ ConvJ G 

we obtain an isomorphism of ConVeC/ onto COIIVQ G. The isomorphism (Di from 2.3 

gives an isomorphism 

Conv0G^-> ConvG. 

We obviously have 
(D1-

1(Conv^G) = Conv6G. 

Thus there is an isomorphism of C o n v ^ onto Conv6 G. D 

3.15. Theorem. Each intervai of the partially ordered set Conv srf is a complete 
Brouwerian lattice. 

P r o o f . In view of [6] each interval of Conv G is a complete Brouwerian lattice. 
Now it suffices to apply 3.14. D 

3.16. Theorem. The following conditions are equivalent: 

(i) Conv srf is a complete lattice. 
(ii) Conv G is a complete lattice. 

P r o o f . This follows from 3.14 and 3.15. D 
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The following example shows that Conv6G need not be equal to ConvG. 

Let G be the set of all bounded real functions defined on the set U of all reals; the 

operation + and the partial order on G have the usual meaning. Let u e G be such 

that u(t) — 1 for each t G R. Consider the MV-algebra si - &/0(G,u). 

For each n G N let xn G G be defined as follows: 

xn(n) = n and xn(t) = 0 whenever t G R \ {n}. 

Thus #n(i) A#n(2) = 0 whenever n(l) and (?i(2) are distinct positive integers. There is 

K G Conv0 G such that (xn) G Jv. It is easy to verify that whenever K(l) G Conv0 s/ 

then g2(K(l)) ^ K. Hence K £ Convb
0G and thus COIIVQG 7- Conv0G. Therefore 

Conv 6 G^ConvG. 

We shall apply the following definition of higher degrees of distributivity (it has 

been applied for the case of lattice ordered groups in [7]; cf. also [8] and [11]). 

Let L be a lattice and let a > 0, /3 > 0 be cardinals. L is called (a, /^-distributive 

if 

(i) whenever T and S are sets with cardT ^ a, card S -̂  /3, then the relation 

(1) A V xt,* = V A ^ ( 0 
teTseS vesT teT 

is valid if all joins and meets standing in (1) do exist in L, and 
(ii) the condition dual to (i) is also valid. 

Next, L is called a-distributive if it is (a, a)-distributive. L is completely distribu
tive if it is a-distributive for each cardinal a. 

It is easy to verify that a lattice ordered group is (a,/^-distributive if and only if 

it satisfies one of the conditions (i) or (ii) above. 
Again, let G and sf be as above. In what follows we assume that card ,4 > 1. 

3.17. Lemma. Let a,/3 be cardinals. Then the following conditions are equiv

alent: 

(i) G is not (a, /})-distributive. 

(ii) There exists x G G with 0 < x such that, whenever y G G. 0 < y ^ x, then 
the interval [0,g] of G is not (a, f3)-distributive. 

P r o o f . It is obvious that (ii) ==>(i). Let (i) be valid. Then according to 1.3 and 
1.3.1 in [7] there are elements xt,s and x in G (t 6T,s G 5, card T ^ a, card 5 ^ /3) 

such that xt,s £ [0,x] for each t G T, s G S and 

(a) A V xt,s = x, V A xtMt) = °-
teTses <pesT teT 
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Let y G G, 0 < y ^ x. Put x't = xt,8 A y for each t G T and s £ S. Since G is 
infinitely distributive, from (a) we obtain 

y = yAx= f\ \ / < s , 0 = 0AH-= \ / / \ <*(t)' 
teTses <pxT teT 

Hence the interval [0, y] is not (a, /^-distributive. D 

3.18. Lemma. Let a, (5 be cardinals. Then the following conditions are equiv

alent: 

(i) G is not (a, j3)-distributive. 

(ii) s/ is not (a, (3)-distributive. 

P r o o f . Let (i) be valid. Then in view of 3.17 the condition (ii) from 3.17 holds. 
Put y = u A x. Hence the interval [0,H] of G is not (a,/^-distributive. Since [0,y] 
is, at the same time, an interval in s/ we infer that srf is not (a,/3)-distributive. 
Conversely, suppose that stf is not (a,/3)-distributive. Since A = [0,ix] and A is a 
closed sublattice of G, we infer that G is not (a, (3)-distributive. D 

3.19. Theorem. Let s/ be (K0,2)-distributive. Then C o n v ^ possesses a 
greatest element. 

P r o o f . In view of 3.18, G is (K0,2)-distributive. Hence according to [11] Conv G 
has a greatest element. Therefore 3.16 yields that Conv.0^ has a greatest element. 

D 

4 . CONVERGENCES ON THE LATTICE [0,ll] 

For a lattice L we apply Definition 1.5. Let ConvL be the system of all conver
gences on L; this system is partially ordered by inclusion. 

The symbol Convc L will denote the set of all K G' ConvL which satisfy the 
following condition: 

(c) If (xn) is a sequence in L such that for each n G N the element xn possesses 
a complement x'n, then 

Xn >K 0 <=> Xn >K U. 
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4.1 . Lemma. Let stf,G be as above and let L be the interval [0,u] of G. Let 
K <E C o n v ^ . Then K e ConvcL. 

P r o o f . According to 1.6, K G ConvL. Suppose that (xn) is a sequence in L 

such that for each n £ N, x'n is a complement of xn in L. It is easy to verify that for 
each n e N, xn = -ixn. Hence if xn — > K 0, then -<xn — > K ""0 = u. Similarly we 
can verify that if x'n — > K U, then xn — > K 0. Thus K E Convc L. • 

If a lattice L is bounded, distributive and complemented (i.e., if it is a Boolean 
algebra) then we have to distinguish between convergences on L considered as a 
lattice (cf. Definition 1.5) and convergences on L considered as a Boolean algebra; 
namely, we can apply the following definition (cf. [9]). 

4.2. Definition. Let B be a Boolean algebra; the corresponding lattice (where 

the unary operation ' of complementation is not taken into account) will be denoted 

by Be. The system Conv B is defined as the set of all K £ Conv Be such that 

Xn ^ K X ^ Xn ^ K X • 

4.3. Lemma. Let B be a Boolean algebra. Then Conv B = ConvcBi. 

P r o o f . The greatest element of B will be denoted by u. According to the 

definition of ConvB the relation ConvB C ConvcBg is valid. Let K G Convc Be. 

Assume that xn — > K X. Then 

Xn V X >K X, ^n A X >K X. 

From the former of the above relations we obtain 

(xnVx)/\x' —*K0. 

Then by applying the condition (c) 

((xn)Vx)Ax')' —>Ku, 

hence 

(Xn V X)' V.T >K U, 

« A . T ' ) V 1 T - > / { U , 

x'nVx —>/c u. 
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Therefore (x'n V x) A x' — > K X' and so 

xn Ax' — > K x'. 

Analogously we obtain that 

x'nVx' —>KX'. 

Since xn A x' ^ x'n ^ x'n V x' we get x'n —•>/<- x'. Thus K e Conv B and hence 
ConvcH^ C ConvB. D 

Again, let L = [0, u] be as above. 

4.4. Lemma. Assume that L = Be, where B is a Boolean algebra. Then 

a 0 b = a V b for each a,b 6 L. 

P r o o f . Put a Ab = v, a — v = a\, b — v = b\. Then a\ A b\ = 0, hence 
a\ -f b\ = a\ V bi. Thus we have also a\ 0 bi = a\ V bi. Therefore 

a e b = (v 0 Oi) e (v e bi) = (U 0 L>) 0 (ai e bi). 

Since L = Bi, according to [2], Theorem 1.17, we have v 0 v = v and so 

a 0 b = v 0 (Oi V bi) = (v 0 a\) V (t; 0 bi) = a V 6. 

D 

4.5. Lemma. Let L be as in 4.4.. Let K £ ConvL. :rn — > K X and yn — > K y> 

Then xn 0 yn —> K x 4- y. 

P r o o f . We have xn V yn — > K X V y and now it suffices to apply 4.4. D 

4.6. Theorem. Let g/ and L be as above. Assume that L = Bt, where B is a 

Boolean algebra. Then Convj^ = ConvcL . 

P r o o f . In view of 4.1, Conv.^ C ConvcL. Next, according to 4.5 and by the 
definition of Convc L we obtain that Convc L C Conv srf. D 

Let us remark that if Conv s/ = Convc L, then there need not exist a Boolean 
algebra B with Bi = L. 

E x a m p l e . Let G be the additive group of all integers with the natural linear 
order. Put u = 2 and consider the MV-algebra srf = <o/0(G,u). Then card A = 3, 
hence Be ^ L = [0,H] for each Boolean algebra B. Next, C o n v ^ = ConvL = 
Convc L = {I\~(0)}, where A'(0) is the least element of Conv sz/. D 
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4.7. Definition. Let L be as above and let K G ConvL. The lattice L is called 
strongly nondiscrete with respect to K if for each 0 < a G L there exists a sequence 
(xn) in L such that 0 < xn < a for each n G N and xn — > K 0. 

The following question remains open: 
Let &/ and L be as above. Assume that 
(i) Conv sz/ = Convc L\ 

(ii) if K G Conv eg/ and Jv" ^ K(0), then L is strongly nondiscrete with respect to 
K. 

Does there exist a Boolean algebra B with L — Bi1. 
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