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ON CHARACTERIZATION OF THE LIPSCHITZIAN COMPOSITION 

OPERATOR BETWEEN SPACES OF FUNCTIONS 

OF BOUNDED p-VARIATION 

N. MERENTES, S. RlVAS, Caracas 

(Received November 18, 1993) 

INTRODUCTION 

Let I = [a, b] be an interval, / : I x (R —•> U a fixed two-place function, and T(I) 
the linear space of all functions u: I —> U. The function F: T(I) -» T(I) given by 
the formula 

(Fu)(t):=f(t,u(t)) tel,ueF(l), 

is called a composition operator. In [4] it is proved that a composition operator F 
maps the space Lip (I) of all Lipschitzian function into itself and is globally Lipschitz-
ian if and only if f(t,x) = g(t)x -f h(t), where a, h E Lip(I). 

This result has been further extended to some other function Banach spaces (see 
[1-7]). Recently N. Merentes (see [7]) proved an analogous theorem in the space 
RVv[a,b] of functions of bounded p-variation in the sense of Riesz (1 < p < oo). 
In the present paper we generalize these results in the case that the composition 
operator F is globally Lipschitzian between spaces RVp[a,b] and RVq[a,b] where 
1 ^ q ^ P- On the other hand, if 1 ^ p < q, the composition operator F is constant. 

1. PRELIMINARY RESULTS 

Given 1 ^ p < oo and u: [a, b] —> U, we write 

\u(U) - u(U-i)\r 
Vp(u\ 7r) := sup 2_] 

l í í - ŕ i - i l " - 1 

for the p-variation of the function u in the sense of Riesz, where the supremum 
is taken over all partitions IT: a = to < . . . < tn = b of the interval [a,b]. By 
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RVP = RVp[a, b] we denote the Banach space of all functions u on [a, b] for which the 
norm 

\\u\\p:=\u(a)\ + (Vp(u;[a,b]))' 

is finite. Usually, one takes HVoo[a,6] as the space Lip[a,6] of all Lipschitzian func
tions on [a, 6] with the norm 

. . . . . , x, Mx) — ^(?l)l 
IM.Lip[«,6] := M t t)l + SUP | _ I -

Moreover, the space i?Vi[a,6] is simply denoted by BV[a,b] and it is the classical 
space of functions of bounded variation on [a, 6]. 

It is easy to see that if p > 1, then every function u G RVp[a, 6] is continuous. 
More precisely, the inclusions 

Lip[o, 6] C RVp[a, 6] C AC[a, b] C BV[a, b] (p > 1) 

hold, where AC [a, 6] is the space of all absolutely continuous functions. 

Lemma 1 ([8], Riesz). Let 1 < p < oo be a fixed number. A function u fulfills 

u G RVp[a, 6] if and only if u G AC[a, b] and u' G Lp[a, 6], In that case we also have 

the equality 

Vp(u;[a,b])= í\u'(t)\vdt. 

F. Szigeti (see [9], p. 13) proved that the space RVp[a,b] (1 < p < oo) is also a 
Banach algebra. 

In [7] it is proved that the composition operator F generated by / : [a, b] x (R -> R 
maps the space i?Vp[a,6] (1 < p < oo) into itself and is globally Lipschitzian if 
and only if f(t,x) = g(t)x + h(t) (t G [a, 6]; x G R) for some g, h G RVp[a,b]. 

In the case p = 1, J. Matkowski and J. Mis (see [6]) proved that the composition 
operator F, generated by / , maps the space BV[a, b] into itself and satisfies the 
global Lipschitzian condition if and only if 

7(#>2/) =9{x)y + h{x) 

for two functions g, h G NBV[a,b], where 

7(x,y) = \imf(x-S,y) (y G R) 
d—>o 

is the left-continuous regularization of / and NBV[a,b] is the subspace of all func
tions u G BV[a,b] such that a is continuous on [a, b] from the left. 
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MAIN RESULTS 

In this section we will present a characterization of functions / : [a, b] x (R —•> R for 
which the composition operator F generated by / maps the space RVp[a, b] into the 
space RVq[a,b] (1 ^ q ^ p) and is globally Lipschitzian. In the case 1 ^ p < q, the 
composition operator is constant. 

Theorem 1. Let p, q be real numbers such that 1 < q ^ p. The composition 

operator F generated by f: [a, b] x R -> R maps the space RVq[a, b] into the space 

RVp[a,b] and is globally Lipschitzian if and only if the function f satisfies the fol

lowing conditions: 

a) For all t e [a,b] there exists M(t) > 0 such that 

(1) \f(t,x)-f(t,y)\^M(t)\x-y\ (x,y e R), 

b) 

(2) f(t, x) = g(t)x + h(t) (t e [a, b], x e R), 

where g, h e RVq[a, b]. 

P r o o f . Suppose that there exist a, h e RVq[a, b] such that f(t, x) = g(t)x-\-h(t) 

(t e [a,b], x e R). Then the composition F generated by / is given by 

(Fu)(t) = g(t)u(t) + h(t) (t e [a, b], u e RVq[a, b]). 

Since F(RVp[a,b]) C RVq[a,b] (1 < q ^ p) and RVq[a,b] is a Banach algebra, then 
Fu e RVq[a,b] for all u e HVp[a,b]. 

Moreover, 

WFui-Fu2Wq ^ I M W k -u2\\p (ui,ix2 e RVp[a,b]). 

Thus, the composition operator F maps the space JtVp[a, b] into the space RVq[a, b] 
and is globally Lipschitzian. 

Suppose now that F: RVp[a,b] -» RVq[a,b] (1 < q ^ p) is globally Lipschitzian, 
then there exists a constant M > 0 such that 

\\Fux - Fu2\\q ^ MWui -u2\\p (uuu2 e RVp[a,b]). 

Let t e (a, b]. Using the definition of the operator F and of the norm ||. ||g we have 

(3) \f(t,Ul(t)) - f(t,u2(t)) - f(a,uy(a)) + f(a,u2(a))\ < M\t - a\x^ | K - u2\\p 
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for all ui, u2 G RVp[a,b]. 

Define a function a: [a, b] -> (R by 

{ T — a 
, a ^ T ^ l, 

t - a 
I, t^T^b. 

We have a G RVp[a, b] and 

1 
Vp(a;[a,b]) = 

\t-a\P~1' 

Let us fix x, y G IR and define functions itt-: [a, b] —•> R (i = 1, 2) by 

(4) Hi(r):---x, rG[a,!)], U2(T) := a(T)(y - x)-\-x, Te[a,b]. 

The functions it.; fulfill U{ G HVp([a,b]) (i = 1, 2) and 

\*-y\ \\ui -u2\\v = (Vp(a-,[a,b]))v\x-y\ = 
i г-a l 1 — 

Hence, substituting into the inequality (3) the particular functions U{ (i = 1, 2) 

defined by (4), we obtain 

(5) \f(t,x) - / ( < , g ) | < M f ~ ° \\x-y\ 
\t-a\l-T. 

for all « G (a, 6], x, y G R. 

Now, let * = a. Define a function /3: [a, b] -4 R by 

^ r ) : = F - 7 (reK6])-
b — a 

The function /? fulfills (5 G i?Vp[a, b] and 

Vp((3;[a,b]) = 
\b-a\P~l 

Let us fix x, y G LR and define functions U{: [a, b] -> IR (i = 1, 2) by 

(6) Hi(r) :=a;, r G [a,b], H2(r) := (5(T)(X - y) + y, T£ [a,b]. 

The functions Ui fulfill U{ G i?Vp[a,b] (i = 1, 2) and 

IK - «2||p = (1+ ( W . [«, b]))'-)\x - y\ = (l + l—T) \x - y\. 
x |b — a\ i' 7 
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Hence, substituting into the inequality (3) the particular functions U{ (i = I, 2) 

defined by (6), we obtain 

\f(a,x) - f(a,y)\ ^ M\b-a\1^ ( l + — ± — - ) \ x - y\ 
x \b — a\ v ' 

for all x, y G R. 

Define a function M : [a, b] —> R by 

м[-
\t — a д-A 

M(t) := 
l í - a l 1 " 

a < t < 6, 

M | 6 - a | 1 _ U ц - г ) , t = a. 

Hence we have for all t G [a, b] that there exists M(t) > 0 such that the inequality 

(1) holds. Thus for all t G [a, b] the function f(t,.): R -» R is continuous. 

Next we shall prove that / satisfies the equality (2). 

Let us fix t, t0 G [a,b] such that t0 < t. Since the composition operator F 

generated by / : [a, b] x R -> R is globally Lipschitzian between RVv[a, b] and RVq[a, b] 

(1 < q ^ p), there exists a constant M > 0 such that 

(7) | / ( W 0 ) - / ( W ^ ) - / ( i o , ^ 

for all u\, U2 G -rtVp[a, b]. 

Define a function 7: [a, b] -> R by 

7 ( r ) := ^ 

t0 - a 

т-t 

t-t0 

Ю, 

a ^ r ^ t0, 

to ^ r ^ t, 

t< т < b. 

The function 7 fulfills 7 £ ItVp[a,b]. Let us fix x, y G R and define functions it;: 
[a, b] -> R by 

(8) щ(r):=^-x+(l + Ш-)y (тЄ[a,Ь}), 

«2(r):=i±jíľ!x + ^ Ą (rЄ[a,Ь}). 
2 2 

The functions Ui fulfill u; € i?Kp[a,6] (i = 1, 2) and 

n „ \x — y\ 
l l « i - « 2 P = - - - - - - • . 
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Hence, substituting into the inequality (7) the particular functions U{ (i = 1, 2) 
defined by (8), we obtain 

(9) | / ( f ,2 / ) - / (^^-^) - / ^ o , ^ ^ ) -V/(^o,̂ )| ^ ^- i^-^r--k- ? / | . 

Since F maps RVp[a, b] into RVq[a, b] (1 < q ^ p), then for all x G R the function 

/ ( . ,#) is continuous on [a, b]. Consequently, letting t0 | £ in the inequality (9), we 

get 

f(t,y)-f(t,^)-f(t,Ц^-)+f(t,x) = 0 

for all t G [a, b] and x, y € R. 

Thus for all £ G [a, b], :r, H G R, we have 

/(*,*) + /(*, 2,) f(*.Ҷ*). 

Consequently, for all t G [a, b] the function f(t,.): R -> R satisfies the Jensen 
equation and since the function f(t,.) is continuous on R, we have that there exist 
two functions g, h: [a,b] —•> R such that 

f(t, x) = 0(*)z + h(t), (t G [a, b], x G R). 

Since h(*) = /(*,Q) = F(0), g(t) = /(*, 1) - /(1,0) = F(l) - F(0) and F maps 
RVp[a, b] into RVq[a, b], we conclude g, h G F%[a, b]. D 

R e m a r k 1. It is easy to observe that the above theorem remains true if there 

exist Banach spaces (X, | | . | |x) and (Y, ||.||y) such that RVp[a,b] CL). X CL̂  Y C^ 

RVq[a,b] (1 < q ^ p) and the composition operator F maps the space X into the 

space Y and is globally Lipschitzian. 

Theorem 2. Let p, q be real numbers such that 1 < p < q. If the composition 

operator F generated by f: [a, b] x R -> R maps the space 1tVp[a, b] into the space 

RVq[a, b] and is globally Lipschitzian, then the function f satisfies the condition 

f(t,x) = f(t,0) (te[a,b], xe R). 

As an immediate consequence of Theorem 2 we obtain that the composition op

erator F is constant. 
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P r o o f . Since the composition operator F generated by / : [a, b] x R —> R, maps 
the space RVp[a, b] into the space RVq[a,b] (1 < p < q) and is globally Lipschitzian, 
there exists a constant M > 0 such that 

| |Fui -Fu2\\q ^ M\\ui -u2\\p (Ul,u2 G RVp[a,b]). 

Let us fix t, t0 G [a, b] such that t0 < t. Using the definitions of the operator F 
and of the norm ||. \\q, we have 

(10) |/(ť,Ui(ť)) - f(t,u2(t)) - /(ť0,Ui(ťo)) + /(ť 0 ,u 2 (ť 0 ) ) | 

< M | ť - ť o ľ - ' | | u i - u 2 | | p (uьuг Є RV[a,b}). 

Define a function a: [a, b] —•> R by 

f i , 

a(т) :- { 
т-t 

' ť - ť0 ' 
10, 

The function a fulfills a G RVp[a, b] and 

Vp(a;[a,6]) = 

a ^ ř ^ б 0 î 

t0 ^ т ^ ť, 

í < т < ò. 

\t-to\~~1' 

Let us fix x G R and define functions ui: [a, 6] -j> R (i = 1, 2) by 

(11) txi(r):---:r r G [ a , 6], u2(r) := a(r);r rE[o, i i ] . 

The functions u; fulfill U{ G PVp[a, 6] (i = 1, 2) and 

lhxi -u 2 | | P = 
i - è 

Hence, substituting into the inequality (10) the particular functions U{ (i = 1, 2) 

defined by (11), we obtain 

(12) 
l i — -

\f(t,x)-f(t,Q)\<Mlt~to]_l\x\. 
\t-to\l~-

Since q > p, letting to 1 1 in the inequality (12) we obtain 

f(t,x)=f(t,0) (t£[a,b],xe~). 
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Next we shall consider the case when the composition operator F generated by 

/ : [a, 6] x K -» (R maps the space RVp[a,b] into the space BV[a, b]. In this case a 

similar result holds for the left regularization /* : [a, b] x (R —> (R of the function / 

defined by 

{ lim/(s,a;), t G (a,b], x G R, 

limlim/(D,.T), l-=a,xG(R. 
sla vfs 

D 

Theorem 3. Let p be a real number such that 1 < p < oo. The composition 

operator F generated by / : [a,b] x (R -» 1R maps the space ItVp[a,6] iL7to the space 

BV[a,b] and if it is globally Lipschitzian, then the function f satisfies the following 

conditions: 

a) For each t G [a, b] there exists M(t) > 0 such that 

(13) \r(t,x)-r(t,y)\^M(t)\x-y\ (x,y € R), 

b) 

(14) f*(t,x)=g(t)x + h(t) (te[a,b], x G (R), 

where g, h G jYHV[a, b]. 

P r o o f . Let 6 G [a, b) and define a function a: [a, b] —> (R by 

1 , a ^ T ^ 6, 

a ( j ) : = <( r - b 

l-b' 

The function a fulfills a G I?Vp[a, b] and 

Vp(a,[a,b]) = 

tśтśb. 

\b-t\P~1' 

Let us fix x, y G K and define funcitons Hi: [a, b] —> (R (i = 1, 2) by 

(15) Hi(T):=.T T G [a, b], tt2(T) := a(T)(H - x) + x, rG[a,fc]. 

The functions H; fulfil ui G HVp[a,b] (i = 1, 2) and 

I K - u2\\p = (Vp(a; [a, b])) >'\x - y\ = ( l _ * ) | * - j , | . 
x |b — l | i' 7 
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Since the composition operator F is globally Lipschitzian between RVp[a,b] and 

BV[a, b], there exists a constant M > 0 such that 

(16) | / ( M i ( 6 ) ) ~f(b,u2(b)) -f(t,Ul(t)) + f(t,u2(t))\^M\\u1-u2\\p 

for all Hi, u2 G HVp[a, b]. 

Hence, substituting into the inequality (16) the particular functions Ui (i = 1, 2) 

defined by (15) we obtain 

l / ( t ,y) - / ( í ,*)KA I [ l+ n * , ] 
\b-t\ 

for all £ e [a,b). 

In the case t = b, by a similar argument as above, we obtain that there exists a 

constant M(b) > 0 such that 

\f(b,x)-f(b,y)\^M(b)\x-y\ (x,yeR). 

Thus, defining a function M: [a, b] —> U by 

f l + —r, *e[a,6), 
M(*):=< lb-*!1 — 

I M ( O ) , t = b, 

we obtain that for each t e [a, b) there exists M(£) > 0 such that 

(17) \f(t,x) - f(t,y)\ ^ M(t)\x - H| (te [a,6), x , y 6 R ) . 

Hence, passing to the limit in the inequality (17), by the definition of /* we have 

for all t G [a,b] that there exists M(t) > 0 such that 

\f*(t,x) - f*(t,y)\ < M(t)\x - y\ (x,y € R). 

Next we shall prove that /* satisfies the equality (14). 

Let us fix t, to G [a,b], n G N such that to < t. Define a partition 7rn of the 

interval [to, t] by 7rn: a < t0 < t\ < . . . < t2n_i < t2n = l, where 

ti - *.£_i = — — , i = 1, 2 , . . . , 2rc. 
271 

Since the composition operator F is globally Lipschitzian between RVp[a,b] and 
£?V[a, b], there exists a constant M > 0 such that 

ѓ = i 

(18) 5^ |/(* 2 l -,ui(* 2 ť )) -f(t2iU2(t2i)) - / ( í 2 i - i , W i ( í 2 i - i ) ) + / ( í 2 i - i t i 2 ( í 2 ť - i ) ) | 

^ M||H! - H 2 | | p (íii,n2 G ItVp[a,b]). 
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Define a function a: [a,b] -> U in the following way: 

a ^ r ^ t0, 

U-i ^ T ^ti, i = 1, 3 , . . . , 2n - 1, 

(0, 

т - U-\ 

a(т) := < 
*г íѓ—1 

Г - ti 

ti Ч —1 
U-i ^ T ^ U, i = 2,4,..., 2n, 

[0, < ^ r ^ 

The function a fulfils a € .fi%[a,&] and 

Vp(a;[a,b}) 
2?np 

(19) 

Let us fix x, y G R and define functions Ui: [a, b] —> U by 

a(T) , a(T) / \ ^ l 7 " / /-. aУT \ , Г .14 

« i W : = - y i я - + ( l - - y - ) i ï (rЄ[a,ò]) , 
. . 1 + a(r) 1 - a(т) , , ... 

«г(т) := ^ ж + ^-l-t/ (r Є [a, b]). 
2 ~ ' 2 

The functions Ui fulfil Hi G HVp[a,b] (i = 1, 2) and 

II II l x "~ ^1 
\\ui -u2\\P = — - — • 

Hence, substituting into the inequality (18) the particular functions Ui (i = 1, 2) 

defined in (19), we obtain 

(20) £ |/(Í2i,y) - /(í2i, І ± l ) - /(ť2i_ь ЦУ) + /(ť2i_ь_)| ţ м 
\x-y\ 

for all x, y G U. 

Since the composition operator F maps the space RVp[a, b] into the space BV[a,b], 

then f(.,x) G L?V[a,6] for all x G R, thus letting t0 t . in the inequality (20) we get 

(21) fЧt,v)-r(ux-±^)-ľ(uЦУ)+ľM 
ŚM \x-y\ 

2/i 

for all x, y e U, n e N. 
Passing to the limit for n -> oo in the inequality (21), we get 

ľ(t,y)+ľ(t,x) = r(«,^) 
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for all t e [a,b], x, y € R. 

Thus for all t G [a, b], the function f*(r,.): R -» R satisfies the Jensen equation and 

by property (a) of this theorem we get that there exist two functions g, h £ NBV[a, b] 

such that 

f*(t,x) = g(t)x + h(t) (t E [a,b], x e R). 

• 
Remark 2. It is easy to observe that the above theorem remains true if there 

exists a Banach space (X, ||. ||x) such that RVp[a, b] C^. X C^ BV[a, b] (1 < p < oo) 

and the composition operator F maps the space X into the space BV[a,b] and is 

globally Lipschitzian. 
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