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T H R E E SOLUTIONS OF A QUASILINEAR 
ELLIPTIC PROBLEM NEAR RESONANCE 

To Fu MA* — Luis SANCHEZ** 

(Communicated by Jozef Kacur) 

ABSTRACT. In this note, we show the existence of three solutions of the problem 

- A p u - Xx\u\p~2u + e\u\p-2u = / (x ,u) + h(x) in W0 'p(ft) , 

where p > 2 and e > 0 is a small parameter. The result is suggested by a theorem 
of J. M a w h i n and K. S c h m i 11 . Our proof is based in a variational setting 
and uses elementary critical point theorems. 

I n t r o d u c t i o n 

Let 0 be a bounded domain in M.N with smooth boundary 9J7. In this note, 
we are concerned with the existence of three solutions of the nonlinear elliptic 
problem 

- A u-X1\u\p-2u + e\u\p-2u = f(x,u) + h in W^p{n), (1) 

w here p > 2, — A u -= — div(|Vn|p 2Vu) is the so called "p-Laplacian", e > 0 
v is a small parameter, and X1 > 0 is the first eigenvalue of the problem 

- A p u = X\u\p~2u in fi, u = 0 o n f f i . (2) 

We recall that the first eigenvalue of (2) can be characterized by 

A,. = inf { / |Vu|P dx; u e WQ'P{Q) and / \U\P dx = 1 \ , (3) 

and is simple and isolated. Moreover, its corresponding eigenfunction (px can be 
chosen to be positive, (cf., e.g., [2]). 
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We study the problem (1) from a variational point of view. In fact, supposing 
that / has subcritical growth, it is well-known that the solutions of (1) are 
precisely the critical points of the C1 functional 

Je(u) = - f(\Vu\p dx - Xx\u\p) dx + - f\u\pdx- f(F(-,u) + hu) dx, 

defined in WQ'P(Q), where F(x,u) = / f(x,t) dt. 
o 

In [7], J. M a w h i n and K. S c h m i 11 proved the existence of at least three 
solutions of the two-point boundary value problem 

—u" — u + eu = f(x, u) + h, u(0) = U(TT) = 0 , 

for e > 0 small enough and h orthogonal to sin x by assuming / bounded and 
satisfying the sign condition uf(x,u) > 0. Later, various papers related to their 
result have appeared. We mention for example [3], [4] and [6]. Notice that in all 
these papers, techniques from bifurcation and degree theory are used. 

On the other hand, in [9], one of the authors studied a related problem for a 
fourth order equation using a variational argument; he also proved the existence 
of at least three solutions for e > 0 small enough. Here, following [9], we assume: 

(Hx) f: fi x R —» R is continuous, and there exists 9 > 1/p such that 

6uf(x,u) — F(x,u) —* —oo as \u\ —> oo 

uniformly in x e ft. 

(H2) There exists R > 0 such that 

uf(x,u)>0 V z G f t , | U | > J R . 

R e m a r k s . 

(a) Note that (Hx) and (H2) allow / to be unbounded, but with 

-C1<F(x,u)<C2\u\a + C3 V x E l T V w E R , (4) 

where Cx, C2, C3 are positive constants, and a = ^ < p. Consequently, for 
some C > 0, the following growth condition holds. 

\f(x,u)\ < C(l + \u\Y~1 Vx e 0 and \fu E K. (5) 

(b) If a(x) is some continuous, positive function in £2, and a € ( l , p ) , then 
a(x)\u\a~2u satisfies (if1) and (H2). 
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(c) The existence of three solutions of (1) with p — 2, IV > 1, and / 
unbounded was noticed in [4; Remark 2], but under the assumption of the 
Landesmann-Lazer condition, 

/ j lim sup f(x, u) \ <px (x) dx < h(x)px(x) dx < lim inf / ( x , u) <p« (x) dx . 
J L u-+-oo J J J LU-++00 j 
n n Q 

Since f(u) = \u\p~2u(l + | t1 |p)_ 1 satisfies (Ht)-(H2), our hypotheses do not 
imply the Landeman-Lazer condition, however, we need the sign condition (H2) 
and / h(x)(p1(x) dx = 0. 

n 

THEOREM. Suppose that p > 2 and conditions (Hx) and (H2) are satisfied. 

Then for every h £ Lp (Q) with f h(x)(px(x) dx = 0, problem (1) has at least 
n 

three solutions if e > 0 is small enough. 

Before going to the proof of the theorem, let us fix some notations. We use the 
/ \ 1/P 

norm H^H^LP = ( / \Vu\p dx j in the Sobolev space WQ 'p(f i) . The standard 

LP(Q>) norm is denoted by || • || . We also consider the following decomposition 

Wo
1'p(ft) = Span{<^1}0W', 

where W is a closed complementary subspace of Span{(^1}. Then setting 

( / 1Vw\ p dx 
Q

r i , „ ; weW\{0}\, 
f \W\P dx \i J ( > 

n 
it follows from the simplicity and isolation of A1 that A2 > Ax, and, by definition, 
for all w G VV, 

f\w\pdx<y f\Vw\p dx. (6) 

n n 

LEMMA 1. For every e > 0, Je is coercive in WQ'P(Q.). Moreover, there exists 
a constant m > 0, independent of e, such that inf J£ > —m Me > 0. 

P r o o f . Choosing 0 < e < \ it follows from (3) that 

J*{U) * ^\H\P
W^~ J(F(x,u(x))-h(x)u{x))dx. 

Using (4) and the fact that a < p , we have that J£ is coercive for every e > 0. 
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Now, from the inequalities (6) and (4), we have, for all w € W , 

J » > ^ ^ l l - « C o i . , - c2\\w\\°a - cs\a\ - \\h\\pl\\w\\p, 

and since a < p, it follows that 

J£{w) > fciHI'i., - M H I ^ . p ~ h\\w\\wx,v - fc4 Ve > 0, 
vvo o o 

for some constants ki > 0, i = 1,2,3,4, independent of e > 0. Hence J e is 
coercive in W , and in particular, it is bounded from below in W. This ends the 
proof. • 

Next we check a compactness property of J£. Let O be an open set in 
W0

,p(fl). One says that J£ satisfies the Palais-Smale condition in O at level 
c G K , which we write as (PS)C a for short, if every sequence un £ O such that 
J£(un) —•> c and ||«/g(i--n)|| + —> 0 has a convergent subsequence in O. When O is 
the whole space, and (PS)C G holds for every c G R , one says that J£ satisfies 
the Palais-Smale condition (PS). 

LEMMA 2. For any e > 0 ; J£ satisfies (PS). Moreover, setting 

Q± = {u e Wo ' p (0 ) ; tx = ±t(p1 + w with t > 0 and iO e W) , 

J£ satisfies both (PS)c0+ and (PS)c0- for every c < —m. 

P r o o f . Let (un) be a sequence satisfying J£(un) —» c and ||</e(^n)||* —* 0. 
Since J£ is coercive, we have necessarily that (un) is bounded. Then there 
exists a subsequence, which we still denote by ( t tn) , such that un —> it weakly 
in W0

1,p(O) and strongly in L p (0 ) for some u G W0
1,p(O). To conclude that 

(un) has a convergent subsequence, we compute 

Je(Un)(Un ~ U) = (-ApUmUn ~ U) ~ (Al " £) J K|P X K ~ U) 

- j(f(-^n) + h)(un-u)dx 

dx 

ӣ 

Now, from the growth condition (5), the Nemytskii mapping N^u = / ( • ,un) is 

continuous from Lp(Ct) into LP (Q), so that 

lim ( - A p u n , u n - u ) = 0 . 

But, as is well known, - A p is of class (S+) from W^P(Q) into W - 1 ' ^ ) (see, 
e.g., [10] or [5]), and hence un —* u strongly. 
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For the second part of the lemma, let (un) C 0+ be such that J€(un) —-> c 
< —m and || Je(un)| |„. —» 0. As above, there exists u G W0

,p(tt) and a subse­
quence, still denoted by un, such that un —> u strongly. So we must show that 
u G 0 + . Indeed, if u G S O + = W , then from Lemma 1, Jc(w) = c > —m, 
which contradicts the fact that c < —ra. The proof of (PS)C 0- is similar. • 

LEMMA 3. If e > 0 is small enough, there exist t~ < 0 < t+ such that 

J£(t
±(fx) < —m. 

P r o o f . The proof is similar to [9; Theorem 4], where it is assumed that 
p = 2 and N = 1. For the reader's convenience, we sketch it here. So, let us 
normalize <p1 such that 0 < <p1 < 1 V z E f t . Given S > J?, by (#2 ) , there 
exists es > 0 such that esu

p~~l < f(x,u) infix [RyS]. Then, if <px(x) > R/S, 
we have 

esSP'1<p1(xr-1<f(x,S¥>1(x)). 

Now, setting A(S) = {xEU; ^(x) > R/S} and B(S) = ~\A(S), 

Jes(
S(Pi) = ~J£sSpfPi dx - J F(x,S<Pl(x)) dx 

J (^Slplf(x,S<Pl)-F(x,Slp1)) dx 
• • ? ) 

y (^M-^.^dx. 

< 

.4(5) 

+ 
B(S) 

Since the integral over B(S) is bounded independently of es and 5 , it follows 
from (Hx) and Fatou's lemma that J£s(S<p1) —> —00 if 5 —> +00 . Of course, if 
we take S < —i?, we should derive that J£s(S<p1) ~> —00 as 5 —> —00, then 
the proof is finished by noting that J£(S<px) < J£s(S<p1) Ve < es. D 

P r o o f o f t h e T h e o r e m . For £ > 0 small enough, we have from 
Lemmas 2 and 3 that 

—00 < inf Jr < —m, 
o-

and since (PS)C 0± holds for all c < —ra, it follows from the deformation lemma 

that the infima are attained, say at u~ G <D~ and u+ G O4". Since 0± are open 
in W0

1,p(ft), we have found two distinct critical points of J £ . 
Now applying the mountain pass lemma of Ambrosetti-Rabinowitz [1], the 

number 

c= inf max J e (7( ' ) ) > 
7ert€[o,i] 
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w h ^ e r = {7 6 C([0,1];W^P(CL)) ; 7(0) = vT and 7(1) = u + } , is a critical 
value of JE since (PS) holds for every e > 0 (Lemma 2). Noting that 7Q0,1]) D 
W y^ 0 V7 G T, we conclude that c > inf J > — m (Lemma 1), and once 

J (u^) < — m , we have found a third critical point of J£. This proves the 
theorem. • 

N o t e a d d e d in proof. As in the case of semilinear elliptic equations studied 
in [8], it is easy to see that assumptions (H1)-(H2) may be weakened to: 

f(x,u) = o(|^|p_1) uniformly in x as \u\ —> 00, 
F(x,u) is bounded below and 

ľim / F{x, Sф(x)) dx = +00 . 
5|—>oo J 
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