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Math. Slovaca 40,1990, No. 2,133—142 

POLARITY ON C*-ALGEBRAS 

BOHUMIL SMARDA 

Polarity, as a symmetric and antireflexive relation, was investigated on many 
algebraic and geometric structures. For instance, the disjointness on lattice 
ordered groups is a polarity with interesting properties described by G. 
Birkhoff, F. §ik, P. Conrad and P. Jaffard (see [4], [5], [8]). The basic 
properties of some polarities on C*-algebras are investigated in this paper. 
Namely, the relation of polarities and ideals of C*-algebras and the lattice 
characterization of sets of polars. 

Let us introduce some notations. If A is a C*-algebra (see [6]) with the unit 
element 1, then Ah is the set of all hermitian elements in A and A+ is the set of 
all positive elements in A. Jd(A), i£(A) and $(A) denotes the set of all closed 
ideals, closed left ideals and closed right ideals in A. The set of all real (complex) 
numbers is denoted by R (C). 

An order ideal N of A is a subset in A + fulfilling 1V + N c N, aN s N for 
aeR + and 0 < y < x, xeJV, ye A =>yeN. Effros [7] describes a bijection 
between closed left ideals and closed order ideals of a C*-algebra. This bijection 
is possible to extend on a lattice isomorphism between closed left ideals in A and 
closed directed convex subgroups in Ah. 

Recall that a frame is a complete lattice L fulfilling a A \J ba = \J (a A ba) for 
all a, {bJ £ L. A quantale is a complete lattice Q equipped with an associative 
binary operation • so that a• \Jba = \J (a-ba), (\Jba)• a = \J(ba-a) and 1 • a = a, 
for all a, {ba} £ Q. All unexplained facts concerning frames (quantales) can be 
found in [9] ([10]). Namely, a quantale Q is called regular if a = \J{beQ: ceQ 
exists such that cb = 0, cva=l} holds, for any aeQ. 

§ 1. Meets and ideals 

R. Archbold in [1] and [2] gives conditions for the existence of meets of 
positive elements a, b e A in the partially ordered set Ah. A consequence of these 
conditions is the Shermann theorem [1] saying that a C*-algebra is com
mutative iff its set of hermitian elements is a lattice. 

1.1 Proposition, Let A be a C*-algebra9 a9beA+. Then the following asser
tions are equivalent: 
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1. a л b = 0 in Ah. 
2. AaAj_AhA = {0}. 
3. aA-bA ={0}. 
4. AaA_n_AbA = {0}. 
5. Aa-Ab = {0}. 
Proof. 1^>2: seeX'LJh- 1« 

2 o 3 : There holds a^ - bA = {0} <* a A • bA = {0} 
oaA-bA ={0}oaA-hA = {0} and AaAAbA = {0} <-> AaA * AbA = {0} o 
<->.^4-_4k4 = {0}o AaA-AbA = {0}^_lt_follows that AaA-AbA= j0^=> 
=> .4a^ • /lby4 = {0} =>aA-bA = {0} => aA • b^f = {0}. Finally, we have aA-bA = 
= {0}=> g^-b^ = {0} => (AaA) • (,46,4) c ^[(aA.)(AbA)] ^A(aA- bA) = {0} => 
=> AaA AbA ={0}. 
2<=>5: We can prove similarly as 2 o 3 . 
3<->4; Two-sided closed ideals form a frame and thus AaA AbA = AaAn 
nAbA. 

R e m a r k . It follows from the proof that the Proposition 1.1 holds even if 
(right, left) ideals in parts 2, 3, 5 are not closed. Further, the equivalence of 
assertions 2, 3, 4, 5 holds for a, be A, in general. 

1.2. Lemma. If a, beA + , a, fie R+ and a A b = 0 in A +, then aa A fib = 0 in 
^ + . 

P r o o f We have aa > 0, pb > 0 and let deA, aa, fib > d> 0 hold. Then 
aa - d> 0, jib - d>0 and if a # 0 # A then a - a~ld= a~l(aa- d) > 0, 
b- /3~ld = p-](/3b -d)>0. It implies a > a ~ ! d > 0 , b>f5~xd>0 and 
0 = a A b > 7 d > 0 , where 7 = min{a~', /?"'}. It means that 7d= 0, x # 0 and 
together d = 0, aa A /?b = 0 in ,4+ . 

1.3. Proposition. Let A be a C*-algebra and a, beA + . Then a A b = 0 in A + 

iff AanAb = {0}. 
Proof. <=: If 0 < x < a , b for xeA, then xeAan Ab = {0}. =>: The 

smallest closed order ideal a containing a has the form a = {c e A: 0 < c < Xa for 
some AeR + }. If a A b = 0 in 4̂ + , then with regard to 1.2 anB = {0} holds. 
Theorem 2.4 from [7] implies the existence of a bijection p between closed left 
ideals in A and closed order ideals in A such that p(I) = 7 + for Ie<£(A) and 
P_,(a) = Aa, p~](b) = Ab. The consequence is Aan Ab = {0}. 

1.4. Corollary. £et A be a C*-algebra and a,beA+. Then there holds: 1. 
a A b = 0 in Ah=>a A b = 0 in A +. 

2. If a A b in Ah exists, then a A b = 0 in A + implies a A b = 0 in Ah. 
Proof. 1. It follows from 1.2, 1.3. and the fact Aan Ab £ Aa-Ab be

cause <£(A) is an idempotent quantale. 
2. It is clear. 
Remark . A simple example in the C*-algebra of real square matrices of 
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rang 2 shows that the conversion of the assertion 1. from 1.4. is not true and thus 
Aan Ab = {0} does not imply Aa-Ab = {0} for a,beA+, in general. 

1.5. Lemma. Let A be a C*-algebra and ae A. Then there holds: 
1* A£* = a*A, aA* = Aa*. 
2. Aa = A\a\, a*A== \a\A. 

Proof. L xe Aa*ox*e Aao{yaa} -»x*e Aaoly^i} -» x*9 where {y j £ 
.= ,4 is a suitable sequence <=>{a*-y*} -* x<=>xe a*yl. The second formula fol
lows from the first. 

2. We have |a|2 = a*-aeAa and the Corollary 2.2 from [7] implies \a\eAa, 
i.e., v4|a| c; Aa. If a = «|a| is a polar decomposition of a, we^** and if {ua} £ yl 
is a sequence which weakly converges to w, then {«Ja|} £ ^ |a | weakly converges 
to a, yllal is closed with regard to the weak convergence (A is dense in A** in 
the weak topology), i.e., aeA\a\ and Aa^A\a\. Together Aa = A\a\ and 
a*A = ,4a* = A\a\* = |aM hold. 

1.6. Corollary. Let A be a C*-algebra and a, be A. Then there holds: 
1. |a| A \b\ = 0 in ^ + oMnAb = {0}. 
2. |a| A |b | = 0 m ^ o ^ a - ^ b = {0}. 
P r o o f follows from 1.1., 1.3. and 1.5. 

1.7. Proposition. Let A be a C*-algebra, ^(A)(^(Ah)9 (respectively) be the 
complete lattice of all closed left ideals in A (closed directed convex subgroups in 
Ah with the property (S): asCec€(Ah), Xe R => Xae C, respectively). 

Then the mapping}: &(A) ~> <g(Ah) such that f(B) = BnAhfor Be^(A) is 
a lattice isomorphism. 

Proof. If Be^(A), then BnAh is a closed subgroup in Ah and 
B+ =(AhnB)+ =A + nB because (AhnB)+ s B+ s A+ n B cz (Ahn B)+ 

holds. B+ is an order ideal and thus each element aeAhnB has the form 
a = a+ — a", where a+, aeA + nB. B+ is convex, \a\eB+, \a\ > a+, a~ > 0 
and it implies AhnBe%>(Ah), Further, we have AhnB = B+ — A+ and thus 
f=gh, where h(B) = b+ for i?ei!?04) is a bijection (see [7]) and 
g(B+) = B+ — B+ = AhnBis also a bijection. The mappings g, A a n d g ~ \ h ~ l 

preserve the inclusion and thus / is an isomorphism of complete lattices. 

1.8. Lemma. Let Be<£(A). Then B is a two-sided ideal in A iff B = (Ahn 
nB) + i(Ah n B). 

Proof. =>: Clearly (AhnB) + i(AhnB) c B holds. If BeJd(A), then 5 
is selfadjoint (see [7], Remark after 2.8) and for each be J? we have b = br + ib\ 

where br = - ( 6 + b*), b' = - (A - b*), i.e., Bs(AhnB) + i(AhnB). 
2 2i 

<=: For each beB we have b = b, + ib2, where b,, b2eAhnB and 
b* = b, — ib2eB. It means that 1? is self-adjoint, i.e., Be<fd(A). 
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1.9. Corollary. Let A be a C*-algebra. Then the mapping/: Jd (A) -»<€(A^ 
such that f(B) = B n Ahfor BeJd(A) is an isomorphism of frames Jd (A) of 
closed ideals in A andr€ (Ah) of invariant closed directed convex subgroups in Ah 

with the property (S). 
Proof. If BeJd(A), then BnAhe

r€(Ah). Let C e f (Ah). Then C + is an 
invariant closed order ideal in A. With regard to [7], Th. 2.8. there exists an ideal 
BeJd (A) such that AhnB = C. The mapping/is a restriction of the mapping 
ffrom 1.7. on J d(A) a n d / i s also a bijection. 

1.10. Corollary. If A is a C*-algebra, then there holds: 
1. Invariant closed convex directed subgroups in Ah form a frame. 
2. J(B>C) =f(B)nf(C)Jor ByCeJd(A). 
3.f(B) = AhnB andf~\C) = C + iC, for BeJd(A) and Ce$(Ah). 

Proof. 1. is clear. 
2. f(BC) ^I(BnC) = (BnC)nAh =f(B)nf(C). 
3. C + iC is a subgroup in A closed with respect to scalar multiplication. C4" 

is an invariant closed order ideal and BeJd (A) exists such that B+ = C + (see 
[7], 2.8). Then Ah n B = C+ - C~ = C and f -^C) = B = C + iC follows from 
2.8. 

§ 2. Polarities 

A polarity is a symmetric and antireflexive binary relation. Some properties 
of polarities were investigated by F. Sik in [12] and [13]. Let us describe 
some polarities on C*-algebras, 

Definition. K-polarity (S-polarity, respectively) is a binary relation on a C*-
algebra A with the following property: 

anbo\a\ A |b | = 0 in Ah 

(aSbo\a\ A |b| = 0 in A+, respectively), for a, be A. 

2.1. Proposition. K-polarity and S-polarity are symmetric and antireflexive 
binary relations on C*-algebra A with the following properties: 

1. anboAaA-AbA ={0}, 
2. anboAan Ab = {0}, 
3. aKboa*Kb*, 
4. anb=>a5b, 
5. aKbo\a\2nKb, a8bo\a\2n5b, 

for a, be A and each positive integer n. 
Proof, H and 8 are symmetric relations and their antireflexivity follows 

from the fact that a = 0<=>|a| = 0 for ae_4. 
1. and 2. follows from 1.6. and 1.1. 
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3. Propositions 1.1. and 1.5. implys axboAa-Ab = {0}o(Aa-Ab)* = 
= Ab*-Aa* = b*A-a*A = {0}ob*xa*oa*xb*. 

4. follows from 1.4. 
5. follows from 1., 3., 1.5. and the fact Aa = ^[a|2 for aeA. Namely J a f e 

e A\a\ => ^|a |2 s A\a\ and |a |2e A\a\2+ => |a| € ,4|a|2+ (see [7], 2.2) => ^|a | s ^|a|2. 

Definition. Let (p be a polarity on a non-empty set M and B c M. Then 
^ ; = {meM: m<pb for any be£}. If 5 = (J?;); = B$9 then J is called a cp-polar 
in M. The set of all ^-polars in M is denoted by <p(M). 

The mapping B -• 5;' for i? s M is a closure operator and B™ = B'^ holds. 
We shall write b; instead of {b}; for beM. Let us investigate these notions for 
x and <5 polarity on C*-algebras. 

2.2. Proposition, x-polars are closed ideals in a C*-algebra A. 
P r o o f follows from the fact that axboAa>Ab = {0}, from the properties 

of left ideals in A and from the continuity of the multiplication in A. 
R e m a r k . A simple example in the C*-algebra of real square matrices of 

rang 2 shows that J-polars are not closed with respect to the addition. 
2.3. Proposition. If A is a C*-algebra and B s A, then there holds: 

1. Bx is the greatest ideal CeJd(A) with respect to the property CnB'x = {0}. 
2. If (B} is the ideal generated by B in A, then Bx = (B}x. 

Proof. 1. B'x'nB'x = {0} holds and if CeJd(A) such that CnB'x = {0}, 
then for ce A andbeB'x there holds AcAb^cnB'x = {0}, i.e., c#b and C £ Bx. 

2. follows from 2.2. 

2.4. Proposition. If A is a C*-algebra, then the mapping B -• Bx in the frame 
$d (A) is a nucleus and x(A) is a frame. x(A) is a complete Boolean algebra in 
which the complement of a x-polar B is B'x, /\ {Bxe x(A): XeA} = f] {Bxe x(A): 
XeA} and\J{Bxex(A): XeA} = (\j{Bxex(A): XeA})'x. 

P r o o f follows from 2.2, 2.3. and from the properties of regular elements 
in frames. 

2.5. Proposition. The set 8(A) of all 5-polars of a C*-algebra A is a complete 
Boolean algebra in which the complement of a 5-polar B is B's, /\{BxeS(A): 
XeA} = f]{BxeS(A): XeA} and\J{Bxe8(A): XeA} = (\J{Bxe8(A): XeA})"5. 

Proof, ^-polarity on A is a symmetric and antireflexive binary relation; 
and let_us introduce a quasiorder < on A in the following way: 
a <; boAa s Ab for a, be A. Then 8(A) is a complete Boolean algebra with 
respect to the introduced operations if the following conditions are fulfilled (see 
[12], Th. 1.4,4): 

a) x > y, x<5y=>0 > y, b) 0£0, 
c) x8y9 z <; x =>zSy, d) x non 8y => 3zeA9 

z non < 0, z < x, z < y, for x, y, zeA. 
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Let us prove these conditions for S(A): ____ 
a) x > y, xdy => Ax 3 Ay, Ax n Ay = {0} => Ay = {0} => y = 0, b) clear, c) xSy9 

z < x =-> /4x rvAly = {0}, 4̂z g i4x=> Azn_Ay = {0} => zt)y, d) x non cSy => 3z, 
z non < 0 e Afx n f̂y => Az c; ^4x, Afz c; ^4j, 0 # z => z non < 0, z < x, z < y. 

2.6. Corollary. Let A be a C*-algebra, B, C ^ A, \B\ = {\b\: beB} and let Bf 

denote Bf
K or B5 and (p(A) denote x(A) or 8(A). Then there holds: 

1. ( U ^ e r t ^ . A e ^ ^ 
= ({J{Bie<p(A):AeA})". 

2. Bf = \B\' = \B"\\ \A\ A \B"\ c B". 
5. (|5"| A |C"|)" = B" nC". 
P r o o f 1. It follows from [12], B.3. 
2. If be£\ c e 5 \ then |b | A |e| = 0 and B' = \B\\ \B"\' = £'" = B'. If 

c eM| A |£"|, then e = |a| A |b | for aeA, beB" and 0 <Jo[ A |b | < |b | holds. 
,4b + is an order ideal and that fact implies |q| A |b|e^4b and ^4(|a| A |b|). 
Ad c Ab- Ad = {0} for each de*B'x(A(\a\ A \b\) nAd^AbnAd^ {0} for each 
deBf

5). Finally, \a\ A \b\eB" holds. 

3. From 2. it follows that (\B"\ A \C"\") <= (|^| A \B"\)"n(\A\ A |C"|)" <= 
^B"nC". If j c e f l "nC" and ye(\B"\ A |C"|)\ then |x | = |x | A | x | e | 5 " | A 
A |C"| and |x | A |y | = 0 holds. It means that xe(\B"\ A |C"|)". 

Let us proceed with some general considerations of polarities. Let 0 # M be 
a set, B(M) c exp M be a complete Boolean algebra such that [j B(M) = M. 
Then <a>B = f\ (PeB(M): a e P) is the smallest element from B(M) containing 
a and let us define the polarity aB on M: aaBh<z>(a}Bn (b}B = OB{M) for a, 
beM. 

There holds 0B(M) = {aeM: aaBm, for each meM}. 

2.7. Proposition, i. If K is a polarity on M then there holds: aKb=>a„n 
nb„ = On{M) = {xeM: xizm for each meM}. 

2. If K is a polarity on M such that K(M) is a complete Boolean algebra, then 
K = an. 

Proof. 1. If xeal n b£, then xeb^, i.e., x;rx and the rest follows from the 
antireflexivity of K. 

2. If aKbj then aanb. If aajb, a non Kb, then z$On{M) exists (see [12], 
Th, 1.4,4), zea^n b^ a contradiction. 

Let us put a > (3 foi the polarities a, fi on M when there holds: xpy => xav 
for x, yeM. 

2.8. Proposition. Let M be a set, (jK) be a gwen property of a system of subsets 
in M closed with respect to meets and covering M. Let 0 = f] {<m>: m e M}, 
Where <m> is the smallest subset ofM containing m and having the property (K). 
Then there holds: 
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g is the greatest polarity on M such that polars form a complete Boolean 
algebra, have the property (K) and 0^M ) = 0 iff g has the following property. 

agbo(a)n(b) = 0. (*) 

Proof. <=: If (3 is a polarity on M, p(M) is a complete Boolean algebra, 
OpiM) = O and ^-polars have the property (KT), then there holds: apboa^n 
nbp= 0P(M) (see 2.7,1) => agb for a,beM. It means that g > p. 

The relation g defined by (*) is a polarity fulfilling the necessary conditions 
(see [12], Th. 1.4,4) which guarantee that g(M) is a complete Boolean algebra. 
There holds OQ(M) = 0 (see 2.7,1) and we shall prove that polars from g(M) have 
the property (K). I f l g M , then X'Q = f){x'Q: xeX} and <x>; s x'Q <= <*;> 
holds. We have < t>n<z> c < t>n<x> = 0 for each tex^ and ze<x>, i.e., 
te<x>; and x'Q = <x>;. Finally, *£ 2 < * ^ = *£ and thus x; = (xf

Q)"Q^ 
^ < x ; > ^ x ; , i.e., x; = <x;>. 

=>: It follows from 2.7,2. 

2.9. Corollary. 1. K-polarity is the greatest polarity on a C*-algebra such that 
polars form a complete Boolean algebra and polars are ideals. 

2. 5-polarity is the greatest polarity on a C*-algebra such that polars form a 
complete Boolean algebra and polars are left ideals. 

3. The greatest polarity Pona C*-algebra A such that polars form a complete 
Boolean algebra and polars are right ideals has the following properties: 
apboaA nbA = {0} and apb => a*8b*, for a, be A. * _ _ 

P r o o f follows from 2.8. We have a/3boaA nbA = {0} o aA* n bA* = 
= {0}oa*Sb* (see 1.5). 

Now, we investigate a polarity corresponding to the multiplication in C*-
algebras. 

2.10. Proposition. If e is a binary relation on a C*-algebra A such that 
aeboa-b = 0 for a, be A, then there holds: 

1. asboAa-bA = {0}. 
2. aebob*ea*, asbo\a\e\b*\. 
3. aKb => aeb o aSb*. _ _ : ^ 
Proof. 1. asboAa-bA = {0}o Aa-bA = Aa-bA = {0}oAa-bA = {0}. 
2. b*ea*oh*-a* = 0oa-b = 0oaeboAa - bA = {0}oA\a\ • \b*\A =-= 

= {0}o|aHb*l = 0<Ha|g|b*| (see 1.5). 
3. We have aKboa-beAaAnAbA = {0}=>asb (see 1.1). If asb, then 

|a|-|b*| = 0 and if ze^4|a| n,4|b*|, then z = m\a\ = n|b*| for suitable elements 
m.neA. It implies that |z*|2 = z-z* = m|a | |b*|n* = 0 and thus z = 0, 
A\a\nA\b*\ = {0}. If peA\a\ n A\b% then sequences {mr}, {nf} £ A exist such 
that m;|a| ~*p, n,|b*| -+p and we have {0} = {mf|a|*|b*|nfi ~+p-p* o\p*\2 = 
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-=0=>|p*| = 0-^>p = 0. According to 1.5 Aan Ab* = A\a\ nA\b*\ = {0} 
holds; thus at>b*. 

The relation s is neither symmetric nor antireflexive, which is a reason to 
introduce the following relation: 

Definition, y-polarity on a C*-algebra A is defined in the following way: 

ayboa*-b = 0 for a, be A. 

2.11. Proposition. Y"Polarity is a polarity on A and has the following proper
ties: 1. aybo\a*\s\b*\oa*sb. 

2. anb=> a*yb and ayb=>a*5b*,for a,beA. 
P r o o f We have ayboa* -b = 0<=>b*-a = 0o bya, aya<=>|a|2 = 0=>a = 

= 0. The rest follows from 2.10,2. and 3. 
The polarity y is derived from the operation o on A such that a o b = a* • b for 

a, be A, which J. Ros i cky [11] introduced. 7-Polars are closed right ideals 
in A that form a complete complemented lattice y(A) and they have similar 
properties as #-polars and 5-polars. Namely, the analogy of 2.3 is true. 

If / is a left ideal in A, then Vy is a two-sided ideal in A. If we define a polarity 
on A that is similar as y and that is defined by the formula a • b* = 0, then polars 
are left ideals in A. 

2.12. Lemma (A generalization of Th. 1, [3]). If(G9.) is a groupoid, is a 
closure operator on G andXo Y = X- F, V Yi = U Yifor X9Y9Y{^ G(iel), then 
the following assertions are equivalent: 

1. XY^XoY 
2. XoY=XoY. 

3. I . ( \ / ^ ) i V ( ^ « 
4. Xo(\/Yi) = \/(XoYi). _ _ _ 
Proof. 3 => 4: Xo(V Yd = * - V % = VCT- ID s [ j (X-19 = \/(XQ Y), 

V(ioL9 = u i - ^ i u^ = ^°V^ 
4 =^2: F o ^ = F( ie/) it holds Xo F = XoV I* = V ( z ° *!) = z ° r - 2 = > 1 : 

I J c j o F=JToF. 
1 ^ 3 : ^ V ^ = ^ U ^ ^ ^ ^ ^ = ^ ° ( U ^ = U ( ^ ^ = V ^ ° ^ 

Remark . A similar lemma is true when we change the multipliers in 
operations o and •. For example 1. M g YoX. 

2.13. Theorem. On a C*-algebra A the following assertions are equivalent: 
1. The set y(A) of all y-polars on A is a complete Boolean algebra such that 

the complement of a y-polar B is B'r 

\/{Bxe y(A): XeA} = ({J {Bxe y(A): XeA})"r and B A C = (B-C)"yfor y-polars 
JS, C. 

2. a*-b = 0<=>a-b = Ofor each a, be A. 
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3. A is commutative. 
Proof. 1 =>2: If a, be A, a*-b = 0, then aeb'r implies a-beb'r • b" C ^ A 

A b ' ; = {0}, i.e., a-b = 0. If a.b = 0, then similarly (a*)*-b = 0=>a*eb'r=> 
=>a* .beb ; .b ;eb ;A b'; = {o}=>a*-b = o. 

2=> 1: a) We shall prove that (b-k)' r= (k-h)r for each b, keA. We have 
a-b = 0<=>a*.b = 0<=>b*.a = 0<=>b.a = 0 for a, bG^ and further xyhko 
<>x*-h-k = 0<^(x*h)-k = Q<>k(X'h)^Q<>k*'X'h^0<>(x*-k)*-h^0^ 
ox*k-h = 0<=>x7k./i, for jce./4. It implies that ze(X- Y)7<=>zyxy (for each 
xeX, ye Y)<=>zyyxoze(Y-Xyr for any X, Y^ A. 

If we introduce Zo r = (X-r)'; for each X, r c= ,4, then Xo r = roXholds. 
b) y(A) is a closure system and let us prove Xo Y = Xo Y" for each X, Y ^ A. 

According to 2.12 it is sufficient to prove that X- Y" s Xo Y. If aeX- Y"r then 
a = x.c for suitable xeX and ceY". We have b*(x.y) = 0=>bxy = 0=> 
=> (bx)*y = 0 =-> bx e r ; for x e X, y e r , b e (X• Y)'r Further, (bx)*c = 0 => 0 = 
= bxc = ba =>b*a = 0 =>ayb => ae(X- Y)"r 

It means that (y(A), o9 v ) is a multiplicative lattice (see 2.12, 2=>4), 
Xo A = X holds for any Xe y(A) because ^-polars are right ideals in A. These 
facts and 2.12,2 imply that o is associative. Namely, Xo(roZ) = Xo(Y-Z)"Y = 
= XO(Y-Z) = [X.(r-z)]'; = [(x- r)-z]'; = (X- r )oz = (X. ry;0z = (Xo r)o 
o Z for each X9 Y,Z^A- y(A) is a regular quantale and [10], Th. 2.5 implies that 
y(A) is a frame. It means that Xo r = Xn Y for each X, Ye y(A). Finally, y(A) 
is a complemented distributive complete lattice, i.e., y(A) is a complete Boolean 
algebra. 

2 => 3: [8], Proposition 3.3 implies the existence of a set {X,: iel} e 0t(A) for 
each YeM(A) such that Z-X . = 0, Z, v Y = A and Y=\J(Xi\ iel) for suit
able Z{e 01(A) and i e / . We have ZrX, = 0 (see 2.) and therefore ^(,4) is a 
regular quantale. ^?(v4) is a frame (see [10], Th. 2.5) and A is commutative. 

3=>3: For a.beA there holds a*.b = 0=>(ab)*ab = 0=>|ab|2 = =>a-b = 0 
and further ab = 0 => (a* • b)* • a* • b = 0 => \a*b\2 = 0 => a*b = 0. 

R e m a r k s . 1. 01(A) is a frame iff A is commutative (see [6], 2.5.7). 
2. If y(y<) is a complete Boolean algebra, then 7 = £. 
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ПОЛЯРНОСТИ В С*-АЛГЕБРАХ 

Вопшгш 8таг<3а 

Р е з ю м е 

В этой статье исследуются основные свойства полярностей в С*-алгебрах, а именно, 
отношение полярностей и идеалов в С*-алгебрах и решеточная характеристика множества 
поляр. 
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