Mathematic Slovaca

Svatoslav Staněk

Existence criterion for generalized solutions of functional boundary value problems without growth restrictions

Mathematica Slovaca, Vol. 49 (1999), No. 3, 305--321

Persistent URL: http://dml.cz/dmlcz/128614

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1999

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

EXISTENCE CRITERIONS FOR GENERALIZED SOLUTIONS OF FUNCTIONAL BOUNDARY VALUE PROBLEMS WITHOUT GROWTH RESTRICTIONS

Svatoslav Staněk

(Communicated by Milan Medved')

Abstract

Existence results are given for the functional differential equation $\left(g\left(x^{\prime}\right)\right)^{\prime}=f\left(t, x, x^{\prime}, x_{t}, x_{t}^{\prime}\right)$ with nonlinear boundary conditions. Sufficient conditions are formulated only in terms of sign conditions. Solutions are considered in the generalized sense.

1. Introduction

For $r>0$, let C_{r} be the Banach space of continuous functions on $[-r, 0]$ with the norm $\|\cdot\|_{0}$ and let \mathbf{X} be the Banach space of continuous functions on $J=[0,1]$ endowed with the norm $\|\cdot\|$. For each $x \in C^{0}([-r, 1])$ and $t \in J$, $x_{t} \in C_{r}$ is defined by

$$
\begin{equation*}
x_{t}(s)=x(t+s), \quad s \in[-r, 0] . \tag{1}
\end{equation*}
$$

We say that $F: J \times \mathbb{R}^{2} \times C_{r}^{2} \rightarrow \mathbb{R}$ satisfies the local Carathéodory conditions on $J \times \mathbb{R}^{2} \times C_{r}^{2}\left(F \in \operatorname{Car}\left(J \times \mathbb{R}^{2} \times C_{r}^{2}\right)\right.$ for short $)$ if
(i) $F(\cdot, x, y, u, v)$ is measurable on J for each $(x, y, u, v) \in \mathbb{R}^{2} \times C_{r}^{2}$,
(ii) $F(t, \cdot, \cdot, \cdot, \cdot)$ is continuous on $\mathbb{R}^{2} \times C_{r}^{2}$ for a.e. $t \in J$, and
(iii) for arbitrary $a>0$, there exists an $h_{a} \in L_{1}(J)$ such that

$$
|x|+|y|+\|u\|_{0}+\|v\|_{0} \leq a \Longrightarrow|F(t, x, y, u, v)| \leq h_{a}(t) \quad \text { for a.e. } t \in J .
$$

[^0]
SVATOSLAV STANĚK

Consider the functional differential equation

$$
\begin{equation*}
x^{\prime \prime}=F\left(t, x, x^{\prime}, x_{t}, x_{t}^{\prime}\right) \tag{2}
\end{equation*}
$$

with $F \in \operatorname{Car}\left(J \times \mathbb{R}^{2} \times C_{r}^{2}\right)$. If $\varphi, \varphi^{\prime} \in C_{r}$, then the initial values $x_{0}=\varphi, x_{0}^{\prime}=\varphi^{\prime}$ (i.e., $x(t)=\varphi(t), x^{\prime}(t)=\varphi^{\prime}(t)$ for $t \in[-r, 0]$) determine - under proper assumptions on F - the unique "classical" solution $x \in C^{1}([-r, 1]) \cap A C^{1}(J)$ of the initial problem

$$
\begin{equation*}
(2), \quad x_{0}=\varphi, \quad x_{0}^{\prime}=\varphi^{\prime} \tag{3}
\end{equation*}
$$

and, consequently, there is no sensible way to give boundary conditions for solutions of (3). Here $A C^{1}(J)$ denotes the set of functions having absolutely continuous derivative on J. Boundary conditions of the type

$$
\begin{equation*}
l_{1}\left(x_{0}\right)+l_{2}\left(x_{1}\right)=\varphi, \quad l_{3}\left(x_{0}^{\prime}\right)+l_{4}\left(x_{1}^{\prime}\right)=\psi \tag{4}
\end{equation*}
$$

for (2) were considered, for example, in [2], [5] and [8] with the linear bounded operators $l_{i}: C_{r} \rightarrow C_{r}(i=1,2,3,4)$ and $\varphi, \psi \in C_{r}$. The special case of (4) are periodic boundary conditions $x_{0}=x_{1}, x_{0}^{\prime}=x_{1}^{\prime}$. For F independent of x_{t}^{\prime}, the boundary value problem for (2) with boundary conditions (for $\varphi \in C_{r}, A \in \mathbb{R}$)

$$
x_{0}=\varphi, \quad x(1)=A
$$

was considered, for example, in [2] and [9]. Another approach to "classical" solutions of BVPs for (2) was given by Haščák [6] who considered the nth order linear differential equations with delays. Let $\varphi, \psi \in C_{r}$ and $\mathcal{D}(\varphi, \psi)$ be the set of all maximal solutions $x \in C^{0}\left([-r, 0] \cup J_{x}\right) \cap A C^{1}\left(J_{x}\right)$ of (2) satisfying $x_{0}=\varphi+c_{1}, x_{0}^{\prime}=\psi+c_{2}$ and $\lim _{t \rightarrow 0} x^{\prime}(t)=\psi(0)+c_{2}$, where $c_{1}, c_{2} \in \mathbb{R}$ and J_{x} is an interval, $0 \in J_{x} \subset J$. Then the set $\mathcal{D}(\varphi, \psi)$ depends on two parameters c_{1} and c_{2}. To obtain an $x \in \mathcal{D}(\varphi, \psi)$ we can give two boundary conditions (generally nonlinear) as is shown in [12]. Here the existence results are proved by Leray-Schauder degree theory and Borsuk's theorem.

There is another approach to BVPs for functional differential equations which is connected with the conception of "generalized" solutions (see, e.g., [1]). The principle difference between "classical" solutions and "generalized" ones of BVPs for functional differential equations consists in the continuity of "classical" solution at the point $t=0$ while this condition is not (generally) claimed for "generalized" ones. Moreover, for our second order equation (2) the initial values for solutions and their first derivatives (that is x_{0} and x_{0}^{\prime}) can be arbitrary points of the Banach space C_{r}. This paper considers functional BVPs from the point of view of "generalized" solutions.

2. Formulation of BVP, notation

Let $r>0$ be a positive number. We say that $x:[-r, 0] \rightarrow \mathbb{R}$ is a D-function if either x is continuous on $[-r, 0]$ or there exists exactly one point of discontinuity $t_{x} \in(-r, 0]$ for x such that $\lim _{t \rightarrow t_{x}-} x(t)$ exists and is finite and $\lim _{t \rightarrow t_{x}+} x(t)=x\left(t_{x}\right)$. For $t_{x}=0$ define $\lim _{t \rightarrow 0+} x(t)=x(0)$. Denote by D_{r} the topological space of D-functions (on $[-r, 0]$) with the topology of pointwise convergence on $[-r, 0]$. We say that $f \in \operatorname{Car}\left(J \times \mathbb{R}^{2} \times D_{r}^{2}\right)$ (i.e., f satisfies the local Carathéodory conditions on $J \times \mathbb{R}^{2} \times D_{r}^{2}$) if (cf. (i)-(iii))
(i') $f(\cdot, x, y, u, v)$ is measurable on J for each $(x, y, u, v) \in \mathbb{R}^{2} \times D_{r}^{2}$,
(ii') $f(t, \cdot, \cdot, \cdot \cdot, \cdot)$ is continuous on $\mathbb{R}^{2} \times D_{r}^{2}$ for a.e. $t \in J$, and
(iii') for arbitrary $a>0$, there exists an $h_{a} \in L_{1}(J)$ such that

$$
\begin{aligned}
& |x|+|y|+\sup \{|u(s)| ; s \in[-r, 0]\}+\sup \{|v(s)| ; s \in[-r, 0]\} \leq a \\
\Longrightarrow & |f(t, x, y, u, v)| \leq h_{a}(t) \text { for a.e. } t \in J
\end{aligned}
$$

Before we formulate our BVP, we define the sets \mathcal{A} and \mathcal{B} which are connected with boundary conditions. Let \mathcal{A} be the set of all functionals $\gamma: \mathbf{X} \rightarrow \mathbb{R}$ that are
(a) continuous, $\gamma(0)=0$,
(b) increasing (i.e., $x, y \in \mathbf{X}, x(t)<y(t)$ for $t \in J \Longrightarrow \gamma(x)<\gamma(y))$
and \mathcal{B} be the set of all continuous functionals $\Phi: \mathbf{X} \times \mathbf{X} \rightarrow \mathbb{R}$.
Some examples of functionals belonging to \mathcal{A} are given below:

$$
\max \left\{x(t) ; t \in J_{1}\right\}, \quad \min \left\{x(t) ; t \in J_{1}\right\}, \quad q\left(x\left(t_{0}\right)\right), \quad \int_{t_{1}}^{t_{2}} q(x(s)) \mathrm{d} s
$$

where $J_{1} \subset J$ is a compact interval, $t_{0} \in J, 0 \leq t_{1}<t_{2} \leq 1$ and $q: \mathbb{R} \rightarrow \mathbb{R}$ is continuous increasing, $q(0)=0$, while the following functionals (for $0 \leq t_{1}<$ $t_{2} \leq 1, a, b \in J, J_{1}, J_{2}$ compact subintervals of $\left.J, q, p \in C^{0}(\mathbb{R})\right)$

$$
\begin{aligned}
& \int_{t_{1}}^{t_{2}} \sqrt{1+x^{2}(t)} \mathrm{d} t, \quad \int_{t_{1}}^{t_{2}} x(t) \sqrt{1+y^{2}(t)} \mathrm{d} t \\
& \max \left\{q(x(t)) ; t \in J_{1}\right\}+\min \left\{p(y(t)) ; t \in J_{2}\right\}
\end{aligned}
$$

belong to the set \mathcal{B}.
Let $\varphi, \psi \in C_{r}, \alpha, \beta \in \mathcal{A}, \Lambda \in \mathcal{B}$ and $f \in \operatorname{Car}\left(J \times \mathbb{R}^{2} \times D_{r}^{2}\right)$. Consider BVP

$$
\begin{gather*}
\left(g\left(x^{\prime}\right)\right)^{\prime}=f\left(t, x, x^{\prime}, x_{t}, x_{t}^{\prime}\right) \tag{5}\\
\alpha(x)=0, \quad \beta\left(x^{\prime}\right)=\Lambda\left(x, x^{\prime}\right) \\
x_{0}(s)=\varphi(s), \quad x_{0}^{\prime}(s)=\psi(s) \quad \text { for } \quad s \in[-r, 0) \tag{6}
\end{gather*}
$$

where $g: \mathbb{R} \rightarrow \mathbb{R}$ is an increasing homeomorphism with inverse g^{-1} and such that $g(0)=0$.

By a solution of $B V P$ (5), (6) we mean a function $x \in C^{1}(J)$ such that $g\left(x^{\prime}\right) \in A C(J), \alpha(x)=0, \beta\left(x^{\prime}\right)=\Lambda\left(x, x^{\prime}\right)$ and (5) is satisfied for a.e. $t \in J$ where

$$
\begin{aligned}
& x_{t}(s)= \begin{cases}\varphi(t+s) & \text { for } t+s \in[-r, 0) \\
x(t+s) & \text { for } t+s \in J\end{cases} \\
& x_{t}^{\prime}(s)= \begin{cases}\psi(t+s) & \text { for } t+s \in[-r, 0) \\
x^{\prime}(t+s) & \text { for } t+s \in J\end{cases}
\end{aligned}
$$

Here $A C(J)$ denotes the set of absolutely continuous functions on J.
We present sufficient conditions for the existence of BVP (5), (6). The conditions are formulated only in terms of sign conditions. The proofs of existence results are based on the topological degree method and Borsuk's theorem (see e.g. [4]).

The special case of BVP (5), (6) (with $\Lambda=0$) is BVP

$$
\begin{gather*}
\left(g\left(x^{\prime}\right)\right)^{\prime}=h\left(t, x, x^{\prime}\right) \tag{7}\\
\alpha(x)=0, \quad \beta\left(x^{\prime}\right)=0, \tag{8}
\end{gather*}
$$

where $\alpha, \beta \in \mathcal{A}$ and $h \in \operatorname{Car}\left(J \times \mathbb{R}^{2}\right)$. Setting $\alpha(x)=x(0), \beta(x)=\int_{0}^{1} x(s) \mathrm{d} s$ for $x \in \mathbf{X}$, the boundary conditions (8) have the form of the Dirichlet conditions

$$
\begin{equation*}
x(0)=0, \quad x(1)=0 . \tag{9}
\end{equation*}
$$

Our existence results for BVP (5), (6) generalize those for BVP (7), (8) with $g(z) \equiv z$ and $h \in C^{0}\left(J \times \mathbb{R}^{2}\right)$ in [7] and are closely related to results in [10] and [11]. We observe that BVP (7), (9) with h independent of x^{\prime} was considered in [3] from the point of view of existence results for multiple solutions.

Next we use the following notation.
For each $K>0$,

$$
\left.\begin{array}{l}
{[K]_{\mathcal{D}}=\left\{(x, u, v) ;(x, u, v) \in \mathbb{R} \times D_{r}^{2},|x| \leq K,\right.} \\
\end{array} \quad \sup \{|u(t)| ; t \in[-r, 0]\} \leq K, \sup \{|v(t)| ; t \in[-r, 0]\} \leq K\right\},
$$

and for each $L_{3}<L_{1}<0<L_{2}<L_{4}$,

$$
\begin{aligned}
& {\left[L_{3}, L_{1}, L_{2}, L_{4}\right]_{\mathcal{A B}}=} \\
= & \{(\gamma, \Phi) ; \quad(\gamma, \Phi) \in \mathcal{A} \times \mathcal{B}, \\
& \left.\sup \left\{|\Phi(x, y)| ; \quad(x, y) \in \mathbf{X}^{2},\|x\| \leq L,\|y\| \leq L\right\} \leq \frac{1}{2} \min \left\{-\gamma\left(L_{1}\right), \gamma\left(L_{2}\right)\right\}\right\},
\end{aligned}
$$

where $L=\max \left\{-L_{3}, L_{4}\right\}$.
Throughout this paper, we shall assume that $f \in \operatorname{Car}\left(J \times \mathbb{R}^{2} \times D_{r}^{2}\right)$ satisfies the assumption:
(H) There exist constants $L_{i} \in \mathbb{R}(i=1, \ldots, 4)$ and $\mu, \nu \in\{-1,1\}$ such that $L_{3}<L_{1}<0<L_{2}<L_{4}$ and

$$
\begin{array}{ll}
\nu f\left(t, x, L_{3}, u, v\right) \geq 0, & \nu f\left(t, x, L_{1}, u, v\right) \leq 0 \\
\mu f\left(t, x, L_{2}, u, v\right) \geq 0, & \mu f\left(t, x, L_{4}, u, v\right) \leq 0
\end{array}
$$

for a.e. $t \in J$ and each $(x, u, v) \in[L]_{\mathcal{D}}$ with $L=\max \left\{-L_{3}, L_{4}\right\}$.

3. Auxiliary results

Lemma 1. Let $f \in \operatorname{Car}\left(J \times \mathbb{R}^{2} \times D_{r}^{2}\right), \varphi, \psi \in C_{r}$ and $u, v \in \mathbf{X}$. Then $f\left(t, u(t), v(t), u_{t}, v_{t}\right) \in L_{1}(J)$, where

$$
\begin{aligned}
& u_{t}(s)= \begin{cases}\varphi(t+s) & \text { for } t+s \in[-r, 0), \\
u(t+s) & \text { for } t+s \in J\end{cases} \\
& v_{t}(s)= \begin{cases}\psi(t+s) & \text { for } t+s \in[-r, 0), \\
v(t+s) & \text { for } t+s \in J\end{cases}
\end{aligned}
$$

Proof. Evidently, $u_{t}, v_{t} \in D_{r}$ for $t \in J$. Set $a=2(\|u\|+\|v\|)+\|\varphi\|_{0}$ $+\|\psi\|_{0}$. By (iii'), there exists an $h_{a} \in L_{1}(J)$ such that

$$
\left|f\left(t, u(t), v(t), u_{t}, v_{t}\right)\right| \leq h_{a}(t) \quad \text { for a.e. } \quad t \in J
$$

hence to prove our lemma it is sufficient to show that $f\left(t, u(t), v(t), u_{t}, v_{t}\right)$ is measurable on J. For $n \in \mathbb{N}, \frac{1}{n}<r$, define $u_{n}, v_{n} \in C^{0}([-r, 1])$ by

$$
\begin{aligned}
& u_{n}(t)= \begin{cases}\varphi(t) & \text { for } t \in\left[-r,-\frac{1}{n}\right), \\
-n\left(\varphi\left(-\frac{1}{n}\right)-u(0)\right) t+u(0) & \text { for } t \in\left[-\frac{1}{n}, 0\right), \\
u(t) & \text { for } t \in J,\end{cases} \\
& v_{n}(t)= \begin{cases}\psi(t) & \text { for } t \in\left[-r,-\frac{1}{n}\right) \\
-n\left(\psi\left(-\frac{1}{n}\right)-v(0)\right) t+v(0) & \text { for } t \in\left[-\frac{1}{n}, 0\right) \\
v(t) & \text { for } t \in J .\end{cases}
\end{aligned}
$$

We first prove that $f\left(t, u(t), v(t), u_{n t}, v_{n t}\right)$ is measurable. Fix $n \in \mathbb{N}, \frac{1}{n}<r$. Let us set $\xi_{i k}=\frac{i}{k}$ for $i=0,1, \ldots, k, k=2,3, \ldots$ and $p_{k}(t)=u\left(\xi_{1 k}\right), q_{k}(t)=$ $v\left(\xi_{1 k}\right), z_{k t}=u_{n \xi_{1 k}}, w_{k t}=v_{n \xi_{1 k}}$ for $t \in\left[\xi_{0 k}, \xi_{2 k}\right], p_{k}(t)=u\left(\xi_{i k}\right), q_{k}(t)=$
$v\left(\xi_{i k}\right), z_{k t}=u_{n \xi_{i k}}, w_{k t}=v_{n \xi_{i k}}$ for $t \in\left(\xi_{i k}, \xi_{i+1, k}\right], i=2,3, \ldots, k-1$. Then the functions $f\left(t, p_{k}(t), q_{k}(t), z_{k t}, w_{k t}\right)$ are measurable for each $k \in \mathbb{N}, k \geq 2$, $\lim _{k \rightarrow \infty} p_{k}(t)=u(t), \lim _{k \rightarrow \infty} q_{k}(t)=v(t)$ for $t \in J$ and $\lim _{k \rightarrow \infty} z_{k t}=u_{n t}, \lim _{k \rightarrow \infty} w_{k t}=$ $v_{n t}$ in D_{r} for each $t \in J$. Therefore (cf. (ii')) $\lim _{k \rightarrow \infty} f\left(t, p_{k}(t), q_{k}(t), z_{k t}, w_{k t}\right)=$ $f\left(t, u(t), v(t), u_{n t}, v_{n t}\right)$ for a.e. $t \in J$ which implies that $f\left(t, u(t), v(t), u_{n t}, v_{n t}\right)$ is measurable for all $n \in \mathbb{N}, \frac{1}{n}<r$. Since $\lim _{n \rightarrow \infty} u_{n t}=u_{t}, \lim _{n \rightarrow \infty} v_{n t}=v_{t}$ in D_{r} for each $t \in J, \lim _{k \rightarrow \infty} f\left(t, u(t), v(t), u_{n t}, v_{n t}\right)=f\left(t, u(t), v(t), u_{t}, v_{t}\right)$ for a.e. $t \in J$ by (ii'), and consequently $f\left(t, u(t), v(t), u_{t}, v_{t}\right)$ is measurable.
LEMMA 2. Let $\gamma \in \mathcal{A}, \mu \in[0, \infty)$ and let the equality $\gamma(x)-\mu \gamma(-x)=0$ be satisfied for some $x \in \mathbf{X}$. Then there exists a $\xi \in J$ such that $x(\xi)=0$.

Proof. Define $\varrho \in \mathcal{A}$ by $\varrho(w)=\gamma(w)-\mu \gamma(-w)$ for $w \in \mathbf{X}$. Then $\varrho(x)=0$. If $x(t) \neq 0$ on J, then $\varrho(x)>0$ provided $x(t)>0$ on J and $\varrho(x)<0$ provided $x(t)<0$ on J, and so $\varrho(x) \neq \varrho(0)=0$, which is a contradiction.
Lemma 3. Let $(\gamma, \Phi) \in\left[L_{3}, L_{1}, L_{2}, L_{4}\right]_{\mathcal{A B}}, \mu \in[0,1]$ and let the equality

$$
\gamma(y)-\mu \gamma(-y)=\Phi(x, y)-\mu \Phi(-x,-y)
$$

be satisfied for some $x, y \in \mathbf{X},\|x\| \leq L,\|y\| \leq L$, where $L=\max \left\{-L_{3}, L_{4}\right\}$. Then there exists a $\tau \in J$ such that

$$
L_{1} \leq y(\tau) \leq L_{2}
$$

Proof. By the definition of the set $\left[L_{3}, L_{1}, L_{2}, L_{4}\right]_{\mathcal{A B}}$,
$|\Phi(x, y)| \leq \frac{1}{2} \min \left\{-\gamma\left(L_{1}\right), \gamma\left(L_{2}\right)\right\}, \quad|\Phi(-x,-y)| \leq \frac{1}{2} \min \left\{-\gamma\left(L_{1}\right), \gamma\left(L_{2}\right)\right\}$, and consequently

$$
\begin{equation*}
|\gamma(y)-\mu \gamma(-y)|=|\Phi(x, y)-\mu \Phi(-x,-y)| \leq \min \left\{-\gamma\left(L_{1}\right), \gamma\left(L_{2}\right)\right\} \tag{10}
\end{equation*}
$$

If $y(t)<L_{1}$ on J, then $\gamma(y)-\mu \gamma(-y)<\gamma\left(L_{1}\right)-\mu \gamma\left(-L_{1}\right) \leq \gamma\left(L_{1}\right)<0$; hence $|\gamma(y)-\mu \gamma(-y)|>-\gamma\left(L_{1}\right)$ which contradicts (10). If $y(t)>L_{2}$ on J, then $\gamma(y)-\mu \gamma(-y)>\gamma\left(L_{2}\right)-\mu \gamma\left(-L_{2}\right) \geq \gamma\left(L_{2}\right)>0$, a contradiction. Therefore $L_{1} \leq y(\tau) \leq L_{2}$ for a $\tau \in J$.

Let $L_{3}<L_{1}<0<L_{2}<L_{4}$ be constants (see assumption (H)), $L=$ $\max \left\{-L_{3}, L_{4}\right\}$ and let $n_{0} \in \mathbb{N}$ be a positive integer such that

$$
L_{1}-L_{3}>\frac{2}{n_{0}}, \quad L_{4}-L_{2}>\frac{2}{n_{0}}
$$

For each $n \in \mathbb{N}, n \geq n_{0}$, define f_{n} by f as follows:

$$
\begin{equation*}
f_{n}(t, x, y, u, v)=f\left(t, \bar{x}, h_{n}(y), \tilde{u}, \tilde{v}\right) \quad \text { for } \quad(t, x, y, u, v) \in J \times \mathbb{R}^{2} \times D_{r}^{2} \tag{11}
\end{equation*}
$$

FUNCTIONAL BOUNDARY VALUE PROBLEMS

where

$$
\begin{align*}
\bar{x} & = \begin{cases}x & \text { for }|x| \leq L, \\
L \operatorname{sign}(x) & \text { for }|x|>L,\end{cases} \\
\tilde{u}(s) & = \begin{cases}u(s) & \text { for }|u(s)| \leq L, \\
L \operatorname{sign}(u(s)) & \text { for }|u(s)|>L,\end{cases} \tag{12}
\end{align*}
$$

(similarly for \tilde{v}) and

$$
h_{n}(y)= \begin{cases}L_{4} & \text { for } L_{4}<y \tag{13}\\ y & \text { for } L_{2}+\frac{2}{n}<y \leq L_{4} \\ 2 y-L_{2}-\frac{2}{n} & \text { for } L_{2}+\frac{1}{n}<y \leq L_{2}+\frac{2}{n} \\ L_{2} & \text { for } L_{2}<y \leq L_{2}+\frac{1}{n} \\ y & \text { for } L_{1} \leq y \leq L_{2} \\ L_{1} & \text { for } L_{1}-\frac{1}{n} \leq y<L_{1} \\ 2 y-L_{1}+\frac{2}{n} & \text { for } L_{1}-\frac{2}{n} \leq y<L_{1}-\frac{1}{n} \\ y & \text { for } L_{3} \leq y<L_{1}-\frac{2}{n} \\ L_{3} & \text { for } y<L_{3}\end{cases}
$$

Then $f_{n} \in \operatorname{Car}\left(J \times \mathbb{R}^{2} \times D_{r}^{2}\right)$. Since $f \in \operatorname{Car}\left(J \times \mathbb{R}^{2} \times D_{r}^{2}\right)$, there exists a $p \in L_{1}(J)$ such that
$|f(t, x, y, u, v)| \leq p(t) \quad$ for a.e. $t \in J$, each $(x, u, v) \in[L]_{\mathcal{D}}$ and $L_{3} \leq y \leq L_{4}$.

Clearly (cf. (11)),

$$
\begin{equation*}
\left|f_{n}(t, x, y, u, v)\right| \leq p(t) \tag{14}
\end{equation*}
$$

for a.e. $t \in J$, each $(x, y, u, v) \in \mathbb{R}^{2} \times D_{r}^{2}$ and $n \geq n_{0}$.
Let $\mathbf{Y}=C^{1}(J)$ be the Banach space with the usual norm. For using the topological degree argument and Borsuk's theorem to prove an existence result for BVP (5), (6) we investigate an auxiliary operator equation and an auxiliary BVP which are defined below.

Let $\varphi, \psi \in C_{r}, \alpha \in \mathcal{A},(\beta, \Lambda) \in\left[L_{3}, L_{1}, L_{2}, L_{4}\right]_{\mathcal{A B}}$. For each $c \in[0,1]$ and $n \in \mathbb{N}, n \geq n_{0}$, we define the operator

$$
T_{n c}: \mathbf{Y} \times \mathbb{R}^{2} \rightarrow \mathbf{Y} \times \mathbb{R}^{2}
$$

by

$$
\begin{gather*}
T_{n c}(x, A, B)= \\
=\left(A+\int_{0}^{t} g^{-1}\left(B+c \int_{0}^{s} f_{n}\left(\tau, x(\tau), x^{\prime}(\tau), x_{\tau}, x_{\tau}^{\prime}\right) \mathrm{d} \tau\right) \mathrm{d} s+(c-1) g^{-1}(-B) t\right. \\
A+\alpha(x)+(c-1) \alpha(-x) \\
\left.B+\beta\left(x^{\prime}\right)+(c-1) \beta\left(-x^{\prime}\right)-\tilde{\Lambda}\left(x, x^{\prime}\right)-(c-1) \tilde{\Lambda}\left(-x,-x^{\prime}\right)\right) \tag{15}
\end{gather*}
$$

where

$$
\begin{align*}
& x_{\tau}(s)= \begin{cases}\varphi(\tau+s) & \text { for } \tau+s \in[-r, 0), \\
x(\tau+s) & \text { for } \tau+s \in J\end{cases} \\
& x_{\tau}^{\prime}(s)= \begin{cases}\psi(\tau+s) & \text { for } \tau+s \in[-r, 0), \\
x^{\prime}(\tau+s) & \text { for } \tau+s \in J\end{cases} \tag{16}
\end{align*}
$$

and $\tilde{\Lambda}: \mathbf{X} \times \mathbf{X} \rightarrow \mathbb{R}$ is given by the formula

$$
\begin{equation*}
\tilde{\Lambda}(x, y)=\Lambda(\hat{x}, \hat{y}) \tag{17}
\end{equation*}
$$

with $\hat{x} \in \mathbf{X}$ defined by

$$
\hat{x}(t)= \begin{cases}x(t) & \text { for }|x(t)| \leq L \tag{18}\\ L \operatorname{sign}(x(t)) & \text { for }|x(t)|>L\end{cases}
$$

(similarly for \hat{y}). The operator $T_{n c}$ is well-defined because, by Lemma 1 ,

$$
f_{n}\left(t, x(t), x^{\prime}(t), x_{t}, x_{t}^{\prime}\right) \in L_{1}(J)
$$

Moreover, $(\beta, \tilde{\Lambda}) \in\left[L_{3}, L_{1}, L_{2}, L_{4}\right]_{\mathcal{A B}}$. We next consider the auxiliary BVP (cf. (6), (11) and (17))

$$
\begin{gather*}
\left(g\left(x^{\prime}\right)\right)^{\prime}=f_{n}\left(t, x, x^{\prime}, x_{t}, x_{t}^{\prime}\right), \quad n \geq n_{0} \tag{n}\\
\alpha(x)=0, \quad \beta\left(x^{\prime}\right)=\tilde{\Lambda}\left(x, x^{\prime}\right) \\
x_{0}(s)=\varphi(s), \quad x_{0}^{\prime}(s)=\psi(s) \quad \text { for } \quad s \in[-r, 0), \tag{20}
\end{gather*}
$$

together with the operator equation (cf. (15))

$$
\begin{equation*}
T_{n c}(x, A, B)=(x, A, B), \quad c \in[0,1], \quad n \geq n_{0} \tag{n}
\end{equation*}
$$

We see that x is a solution on BVP $\left(19_{n}\right),(20)$ if and only if $\left(x, x(0), g\left(x^{\prime}(0)\right)\right)$ is a solution of the operator equation $\left(21_{n}\right)_{1}$. Thus to prove an existence result for BVP $\left(19_{n}\right),(20)$ it is sufficient to show that there exists a solution of $\left(21_{n}\right)_{1}$.

We denote by $M_{g^{-1}}$ the modulus of continuity of g^{-1} on the interval $I=$ $\left\{t ; t \in \mathbb{R},|t| \leq \int_{0}^{1} p(s) \mathrm{d} s+\max \left\{-g\left(L_{3}-1\right), g\left(L_{4}+1\right)\right\}\right\}$, i.e.,
$M_{g^{-1}}(\varepsilon)=\sup \left\{\left|g^{-1}\left(t_{1}\right)-g^{-1}\left(t_{2}\right)\right| ; t_{1}, t_{2} \in I,\left|t_{1}-t_{2}\right| \leq \varepsilon\right\} \quad$ for $\quad \varepsilon \in[0, \infty)$.
Lemma 4. Let f satisfy (H). Let $\left(u, A_{0}, B_{0}\right)$ be a solution of $\left(21_{n}\right)_{c}$ for some $c \in[0,1]$ and $n \geq n_{0}$. Then the inequalities

$$
\begin{array}{ll}
\|u\|<\max \left\{-L_{3}, L_{4}\right\}+\frac{1}{n}, & L_{3}-\frac{1}{n}<u^{\prime}(t)<L_{4}+\frac{1}{n}, \quad t \in J \\
\left|A_{0}\right|<\max \left\{-L_{3}, L_{4}\right\}+\frac{1}{n}, & \left|B_{0}\right|<\max \left\{-g\left(L_{3}-\frac{1}{n}\right), g\left(L_{4}+\frac{1}{n}\right)\right\} \tag{23}
\end{array}
$$

are satisfied and, moreover,

$$
\begin{equation*}
\left|u^{\prime}\left(t_{1}\right)-u^{\prime}\left(t_{2}\right)\right| \leq M_{g^{-1}}\left(\left|\int_{t_{1}}^{t_{2}} p(s) \mathrm{d} s\right|\right), \quad t_{1}, t_{2} \in J \tag{24}
\end{equation*}
$$

Proof. First we assume that $c=0$, that is $\left(u, A_{0}, B_{0}\right)$ is a solution of $\left(21_{n}\right)_{0}$. Then $u(t)=A_{0}+\left(g^{-1}\left(B_{0}\right)-g^{-1}\left(-B_{0}\right)\right) t, \alpha(u)-\alpha(-u)=0, \beta\left(u^{\prime}\right)-$ $\beta\left(-u^{\prime}\right)=\tilde{\Lambda}\left(u, u^{\prime}\right)-\tilde{\Lambda}\left(-u,-u^{\prime}\right)$, and consequently $u(\xi)=0$ for a $\xi \in J$ by Lemma 2 (with $\gamma=\alpha, \mu=1$) and $L_{1} \leq u^{\prime}(\tau) \leq L_{2}$ for a $\tau \in J$ by Lemma 3 (with $\gamma=\beta, \Phi=\tilde{\Lambda}, \mu=1$). Hence $A_{0}=-\left(g^{-1}\left(B_{0}\right)-g^{-1}\left(-B_{0}\right)\right) \xi, L_{1} \leq$ $g^{-1}\left(B_{0}\right)-g^{-1}\left(-B_{0}\right) \leq L_{2}$ and then

$$
\begin{aligned}
&|u(t)|=\left|\left(g^{-1}\left(B_{0}\right)-g^{-1}\left(-B_{0}\right)\right)(t-\xi)\right| \leq\left|g^{-1}\left(B_{0}\right)-g^{-1}\left(-B_{0}\right)\right| \\
& \leq \max \left\{-L_{1}, L_{2}\right\}<\max \left\{-L_{3}, L_{4}\right\} \\
& \quad L_{3}<L_{1} \leq u^{\prime}(t) \leq L_{2}<L_{4}
\end{aligned}
$$

for $t \in J$ and $\left|u^{\prime}\left(t_{1}\right)-u^{\prime}\left(t_{2}\right)\right|=0$ for $t_{1}, t_{2} \in J$. Thus inequalities (22)-(24) are satisfied.

Let $c \in(0,1]$. Then the equalities

$$
\begin{align*}
u(t)=A_{0}+\int_{0}^{t} g^{-1}\left(B_{0}+c \int_{0}^{s} f_{n}(\tau, u(\tau),\right. & \left.\left.u^{\prime}(\tau), u_{\tau}, u_{\tau}^{\prime}\right) \mathrm{d} \tau\right) \mathrm{d} s \tag{25}\\
& +(c-1) g^{-1}\left(-B_{0}\right) t, \quad t \in J
\end{align*}
$$

and

$$
\begin{align*}
\alpha(u)+(c-1) \alpha(-u) & =0 \\
\beta\left(u^{\prime}\right)+(c-1) \beta\left(-u^{\prime}\right) & =\tilde{\Lambda}\left(u, u^{\prime}\right)+(c-1) \tilde{\Lambda}\left(-u,-u^{\prime}\right) \tag{26}
\end{align*}
$$

SVATOSLAV STANĚK

are satisfied. By Lemma 2 (with $\gamma=\alpha, \mu=1-c$), there exists a $\xi \in J$ such that

$$
u(\xi)=0
$$

and, by Lemma 3 (with $\gamma=\beta, \Phi=\tilde{\Lambda}, \mu=1-c$), there exists an $\eta \in J$ such that

$$
L_{1} \leq u^{\prime}(\eta) \leq L_{2} .
$$

From (25) we deduce

$$
\begin{equation*}
u(0)=A_{0}, \quad u^{\prime}(0)=g^{-1}\left(B_{0}\right)+(c-1) g^{-1}\left(-B_{0}\right) \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
u^{\prime}(t)=g^{-1}\left(B_{0}+c \int_{0}^{t} f_{n}\left(s, u(s), u^{\prime}(s), u_{s}, u_{s}^{\prime}\right) \mathrm{d} s\right)+(c-1) g^{-1}\left(-B_{0}\right), \quad t \in J \tag{29}
\end{equation*}
$$

Using the second equality in (28) we shall prove that

$$
\begin{equation*}
\left|B_{0}\right| \leq\left|g\left(u^{\prime}(0)\right)\right| . \tag{30}
\end{equation*}
$$

Indeed, if $u^{\prime}(0) \geq 0$, then necessarily $B_{0} \geq 0$ and therefore $u^{\prime}(0) \geq g^{-1}\left(B_{0}\right)$ since $(c-1) g^{-1}\left(-B_{0}\right) \geq 0$. Hence $B_{0} \leq g\left(u^{\prime}(0)\right)$ and (30) is satisfied. If $u^{\prime}(0)<0$, then $B_{0}<0$, and consequently $u^{\prime}(0) \leq g^{-1}\left(B_{0}\right)<0$, which implies (30).

We now show that inequalities (22) are satisfied. Assume (cf. (27")) $0<$ $\eta<1$. Let $\max \left\{u^{\prime}(t) ; \eta \leq t \leq 1\right\}=u^{\prime}\left(t_{0}\right) \geq L_{3+\mu}+\frac{1}{n}$ for a $t_{0} \in(\eta, 1]$ where $\mu \in\{-1,1\}$ (for μ see assumption (H)). Then there are $\eta \leq t_{1}<t_{2} \leq t_{0}$ such that $u^{\prime}\left(t_{1}\right)=L_{3+\mu}, u^{\prime}\left(t_{2}\right)=L_{3+\mu}+\frac{1}{n}$ and $L_{3+\mu} \leq u^{\prime}(t) \leq L_{3+\mu}+\frac{1}{n}$ for $t \in\left[t_{1}, t_{2}\right]$; hence $u^{\prime}\left(t_{2}\right)-u^{\prime}\left(t_{1}\right)=\frac{1}{n}>0$. On the other hand (cf. (11)-(13) and (29)),

$$
\begin{aligned}
& u^{\prime}\left(t_{2}\right)-u^{\prime}\left(t_{1}\right) \\
& =g^{-1}\left(B_{0}+c \int_{0}^{t_{1}} f_{n}\left(s, u(s), u^{\prime}(s), u_{s}, u_{s}^{\prime}\right) \mathrm{d} s+c \int_{t_{1}}^{t_{2}} f\left(s, \overline{u(s)}, L_{3+\mu}, \tilde{u}_{s}, \tilde{u_{s}^{\prime}}\right) \mathrm{d} s\right) \\
& \\
& -g^{-1}\left(B_{0}+c \int_{0}^{t_{1}} f_{n}\left(s, u(s), u^{\prime}(s), u_{s}, u_{s}^{\prime}\right) \mathrm{d} s\right) \leq 0
\end{aligned}
$$

since g^{-1} is increasing and $c \int_{t_{1}}^{t_{2}} f\left(s, \overline{u(s)}, L_{3+\mu}, \tilde{u}_{s}, \tilde{u}_{s}^{\prime}\right) \mathrm{d} s \leq 0$ by (H), a contradiction.

Let $\max \left\{u^{\prime}(t) ; 0 \leq t \leq \eta\right\}=u^{\prime}\left(t^{*}\right) \geq L_{3-\mu}+\frac{1}{n}$ for a $t^{*} \in[0, \eta)$. Then there are $t^{*} \leq t_{3}<t_{4} \leq \eta$ such that $u^{\prime}\left(t_{3}\right)=L_{3-\mu}+\frac{1}{n}, u^{\prime}\left(t_{4}\right)=L_{3-\mu}$ and $L_{3-\mu} \leq u^{\prime}(t) \leq L_{3-\mu}+\frac{1}{n}$ for $t \in\left[t_{3}, t_{4}\right]$; hence $u^{\prime}\left(t_{3}\right)-u^{\prime}\left(t_{4}\right)=\frac{1}{n}>0$. On the other hand (cf. (11)-(13) and (29))

$$
\begin{aligned}
& u^{\prime}\left(t_{3}\right)-u^{\prime}\left(t_{4}\right) \\
= & g^{-1}\left(B_{0}+c \int_{0}^{t_{3}} f_{n}\left(s, u(s), u^{\prime}(s), u_{s}, u_{s}^{\prime}\right) \mathrm{d} s\right) \\
& -g^{-1}\left(B_{0}+c \int_{0}^{t_{3}} f_{n}\left(s, u(s), u^{\prime}(s), u_{s}, u_{s}^{\prime}\right) \mathrm{d} s+c \int_{t_{3}}^{t_{4}} f\left(s, \overline{u(s)}, L_{3-\mu}, \tilde{u}_{s}, \widetilde{u_{s}^{\prime}}\right) \mathrm{d} s\right)
\end{aligned}
$$

$$
\leq 0
$$

since g^{-1} is increasing and $c \int_{t_{3}}^{t_{4}} f\left(s, \overline{u(s)}, L_{3-\mu}, \tilde{u}_{s}, \tilde{u_{s}^{\prime}}\right) \mathrm{d} s \geq 0$ by (H), a contradiction. If $\eta=0$ (resp. $\eta=1$) we can similarly prove that $\max \left\{u^{\prime}(t) ; t \in J\right\}<$ $L_{3+\mu}+\frac{1}{n}$ (resp. $\max \left\{u^{\prime}(t) ; t \in J\right\}<L_{3-\mu}+\frac{1}{n}$). This proves $u^{\prime}(t)<L_{4}+\frac{1}{n}$ for $t \in J$. The proof for $u^{\prime}(t)>L_{3}-\frac{1}{n}$ on J is similar. The inequalities $L_{3}-\frac{1}{n}<u^{\prime}(t)<L_{4}+\frac{1}{n}$ for $t \in J$ and (27') show that the first inequality in (22) is satisfied. Then (23) follows from (22), (28) and (30).

Finally, we verify (24). Fix $t_{1}, t_{2} \in J$. Then (cf. (14), (23) and (29))

$$
\begin{aligned}
\mid u^{\prime}\left(t_{1}\right)-u^{\prime}\left(t_{2}\right)= & \mid g^{-1}\left(B_{0}+c \int_{0}^{t_{1}} f_{n}\left(s, u(s), u^{\prime}(s), u_{s}, u_{s}^{\prime}\right) \mathrm{d} s\right) \\
& -g^{-1}\left(B_{0}+c \int_{0}^{t_{2}} f_{n}\left(s, u(s), u^{\prime}(s), u_{s}, u_{s}^{\prime}\right) \mathrm{d} s\right) \mid \\
\leq & M_{g^{-1}}\left(\left|\int_{t_{1}}^{t_{2}}\right| f_{n}\left(s, u(s), u^{\prime}(s), u_{s}, u_{s}^{\prime}\right)|\mathrm{d} s|\right) \\
\leq & M_{g^{-1}}\left(\left|\int_{t_{1}}^{t_{2}} p(s) \mathrm{d} s\right|\right)
\end{aligned}
$$

4. Existence results

Lemma 5. Let f satisfy (H) and $\varphi, \psi \in C_{r}$. Then for each $n \in \mathbb{N}, n \geq n_{0}$, the operator equation $\left(21_{n}\right)_{1}$ has a solution (u, A_{0}, B_{0}) satisfying (22)-(24).

Proof. Fix $n \in \mathbb{N}, n \geq n_{0}$. Set ($L=\max \left\{-L_{3}, L_{4}\right\}$)

$$
\begin{aligned}
\Omega_{n}=\{(x, A, B) ; & (x, A, B) \in \mathbf{Y} \times \mathbb{R}^{2},\|x\|<L+\frac{1}{n},\left\|x^{\prime}\right\|<L+\frac{1}{n} \\
& \left.|A| \leq L+\frac{1}{n},|B|<\max \left\{-g\left(L_{3}-\frac{1}{n}\right), g\left(L_{4}+\frac{1}{n}\right)\right\}\right\}
\end{aligned}
$$

Then Ω_{n} is an open bounded subset of $\mathbf{Y} \times \mathbb{R}^{2}$ and is symmetric with respect to $0 \in \Omega_{n}$. Define the operator $W_{n}:[0,1] \times \bar{\Omega}_{n} \rightarrow \mathbf{Y} \times \mathbb{R}^{2}$ by

$$
W_{n}(c, x, A, B)=T_{n c}(x, A, B)
$$

Clearly, W_{n} is continuous and we show that W_{n} is a compact operator. Let $\left\{\left(c_{j}, x_{j}, A_{j}, B_{j}\right)\right\} \subset[0,1] \times \bar{\Omega}_{n}$ be a sequence and set

$$
\left(z_{j}, R_{j}, V_{j}\right)=W_{n}\left(c_{j}, x_{j}, A_{j}, B_{j}\right)
$$

for $j \in \mathbb{N}$. Then

$$
\begin{aligned}
& z_{j}(t)=A_{j}+\int_{0}^{t} g^{-1}\left(B_{j}+c_{j} \int_{0}^{s} f_{n}\left(\tau, x_{j}(\tau), x_{j}^{\prime}(\tau), x_{j \tau}, x_{j \tau}^{\prime}\right) \mathrm{d} \tau\right) \mathrm{d} s \\
& +\left(c_{j}-1\right) g^{-1}\left(-B_{j}\right) t
\end{aligned}, \begin{aligned}
& R_{j}=A_{j}+\alpha\left(x_{j}\right)+\left(c_{j}-1\right) \alpha\left(-x_{j}\right), \\
& V_{j}=B_{j}+\beta\left(x_{j}^{\prime}\right)+\left(c_{j}-1\right) \beta\left(-x_{j}^{\prime}\right)-\tilde{\Lambda}\left(x_{j}, x_{j}^{\prime}\right)-\left(c_{j}-1\right) \tilde{\Lambda}\left(-x_{j},-x_{j}^{\prime}\right),
\end{aligned}
$$

and so (cf. (14))

$$
\begin{aligned}
& \left|z_{j}(t)\right| \leq L+\frac{1}{n}+g^{-1}\left(S_{n}+\int_{0}^{1} p(s) \mathrm{d} s\right)+\max \left\{-g^{-1}\left(-S_{n}\right), g^{-1}\left(S_{n}\right)\right\}, \\
& \left|z_{j}^{\prime}(t)\right| \leq g^{-1}\left(S_{n}+\int_{0}^{1} p(s) \mathrm{d} s\right)+\max \left\{-g^{-1}\left(-S_{n}\right), g^{-1}\left(S_{n}\right)\right\}
\end{aligned}
$$

for $t \in J$ and $j \in \mathbb{N}$, where

$$
S_{n}=\max \left\{-g\left(L_{3}-\frac{1}{n}\right), g\left(L_{4}+\frac{1}{n}\right)\right\} .
$$

Moreover,

$$
\begin{aligned}
& \left|z_{j}^{\prime}\left(t_{1}\right)-z_{j}^{\prime}\left(t_{2}\right)\right| \\
\leq & \mid g^{-1}\left(B_{j}+c_{j} \int_{0}^{t_{1}} f_{n}\left(s, x_{j}(s), x_{j}^{\prime}(s), x_{j s}, x_{j s}^{\prime}\right) \mathrm{d} s\right) \\
& -g^{-1}\left(B_{j}+c_{j} \int_{0}^{t_{2}} f_{n}\left(s, x_{j}(s), x_{j}^{\prime}(s), x_{j s}, x_{j s}^{\prime}\right) \mathrm{d} s\right) \mid \\
\leq & M_{g^{-1}}\left(\left|\int_{t_{1}}^{t_{2}}\right| f_{n}\left(s, x_{j}(s), x_{j}^{\prime}(s), x_{j s}, x_{j s}^{\prime}\right)|\mathrm{d} s|\right) \\
\leq & M_{g^{-1}}\left(\left|\int_{t_{1}}^{t_{2}} p(s) \mathrm{d} s\right|\right)
\end{aligned}
$$

for $t_{1}, t_{2} \in J$ and $j \in \mathbb{N}$. This proves that $\left\{z_{j}\right\}$ is bounded in \mathbf{Y} and $\left\{z_{j}^{\prime}(t)\right\}$ is equicontinuous on J. Furthermore, $\left\{R_{j}\right\}$ and $\left\{V_{j}\right\}$ are bounded in \mathbb{R} because of $\left\{c_{j}\right\},\left\{A_{j}\right\},\left\{B_{j}\right\}$ are bounded in $\mathbb{R},\left|\alpha\left(\pm x_{j}\right)\right| \leq \max \left\{-\alpha\left(-L-\frac{1}{n}\right), \alpha\left(L+\frac{1}{n}\right)\right\}$, $\left|\beta\left(\pm x_{j}^{\prime}\right)\right| \leq \max \left\{-\beta\left(-L-\frac{1}{n}\right), \beta\left(L+\frac{1}{n}\right)\right\}$ and

$$
\left|\tilde{\Lambda}\left(\pm x_{j}, \pm x_{j}^{\prime}\right)\right| \leq \frac{1}{2} \min \left\{-\beta\left(L_{1}\right), \beta\left(L_{2}\right)\right\}
$$

By the Arzelà-Ascoli theorem and the Bolzano-Weierstrass theorem, $\left\{\left(z_{j}, R_{j}, V_{j}\right)\right\}$ is compact in $\mathbf{Y} \times \mathbb{R}^{2}$; hence W_{n} is a compact operator.

By Lemma $4, W_{n}(c, x, A, B) \neq(x, A, B)$ for each $(x, A, B) \in \partial \Omega_{n}$ and $c \in$ $[0,1]$. Thus $\mathrm{D}\left(W_{n}(1, \cdot, \cdot, \cdot)-I, \Omega_{n}, 0\right)=\mathrm{D}\left(W_{n}(0, \cdot, \cdot, \cdot)-I, \Omega_{n}, 0\right)$, where " D " denotes the Leray-Schauder degree and I is the identity operator on $\mathbf{Y} \times \mathbb{R}^{2}$. Since

$$
\begin{aligned}
W_{n}(0,-x,-A,-B)= & T_{n 0}(-x,-A,-B) \\
= & \left(-A+\left(g^{-1}(-B)-g^{-1}(B)\right) t,-A+\alpha(-x)-\alpha(x),\right. \\
& \left.\quad-B+\beta\left(-x^{\prime}\right)-\beta\left(x^{\prime}\right)-\tilde{\Lambda}\left(-x,-x^{\prime}\right)+\tilde{\Lambda}\left(x, x^{\prime}\right)\right) \\
& =-T_{n 0}(x, A, B)=-W_{n}(0, x, A, B)
\end{aligned}
$$

for each $(x, A, B) \in \bar{\Omega}_{n}, W_{n}(0, \cdot, \cdot, \cdot)$ is an odd operator and then $\mathrm{D}\left(W_{n}(0, \cdot, \cdot, \cdot)\right.$ $\left.-I, \Omega_{n}, 0\right) \neq 0$ by the Borsuk theorem. Thus $\mathrm{D}\left(W_{n}(1, \cdot, \cdot, \cdot)-I, \Omega_{n}, 0\right) \neq 0$, and consequently $\left(21_{n}\right)_{1}$ has a solution $\left(u, A_{0}, B_{0}\right) \in \Omega_{n}$. This solution satisfies (22) - (24) by Lemma 4.

Theorem 1. Let f satisfy $(\mathrm{H}), \alpha \in \mathcal{A},(\beta, \Lambda) \in\left[L_{3}, L_{1}, L_{2}, L_{4}\right]_{\mathcal{A B}}$ and $\varphi, \psi \in C_{r},\|\varphi\|_{0} \leq L,\|\psi\|_{0} \leq L$ with $L=\max \left\{-L_{3}, L_{4}\right\}$. Then BVP (5), (6) has a solution x satisfying the inequalities

$$
\begin{equation*}
\|x\| \leq L, \quad L_{3} \leq x^{\prime}(t) \leq L_{4} \quad \text { for } t \in J \tag{31}
\end{equation*}
$$

Proof. For each $n \in \mathbb{N}, n \geq n_{0}$, there exists a solution (u_{n}, A_{n}, B_{n}) of $\left(21_{n}\right)_{1}$ satisfying (22)-(24) (with $\left(u, A_{0}, B_{0}\right)=\left(u_{n}, A_{n}, B_{n}\right)$) by Lemma 5 , and consequently u_{n} is a solution of BVP $\left(19_{n}\right),(20)$. The Arzelà-Ascoli theorem and the Bolzano-Weierstrass theorem show that there exists a convergent subsequence $\left\{\left(u_{k_{n}}, A_{k_{n}}, B_{k_{n}}\right)\right\}$ of $\left\{\left(u_{n}, A_{n}, B_{n}\right)\right\}$ in $\mathbf{Y} \times \mathbb{R}^{2}$ and let $\left(u_{k_{n}}, A_{k_{n}}, B_{k_{n}}\right) \rightarrow(u, A, B)$ as $n \rightarrow \infty$. Then (cf. (16) with $x=u_{n}$ and $\left.x^{\prime}=u_{n}^{\prime}\right)\left\{u_{k_{n} t}\right\},\left\{u_{k_{n} t}^{\prime}\right\}$ are convergent in D_{r} and $u_{k_{n} t} \rightarrow u_{t}, u_{k_{n} t}^{\prime} \rightarrow u_{t}^{\prime}$ as $n \rightarrow \infty$, where

$$
\begin{aligned}
& u_{t}(s)= \begin{cases}\varphi(t+s) & \text { for } t+s \in[-r, 0) \\
u(t+s) & \text { for } t+s \in J\end{cases} \\
& u_{t}^{\prime}(s)= \begin{cases}\psi(t+s) & \text { for } t+s \in[-r, 0) \\
u^{\prime}(t+s) & \text { for } t+s \in J\end{cases}
\end{aligned}
$$

Evidently, $\|u\| \leq L,-L_{3} \leq u^{\prime}(t) \leq L_{4}$ for $t \in J$, and consequently

$$
\sup \left\{\left|u_{t}(s)\right| ; s \in[-r, 0]\right\} \leq L, \quad \sup \left\{\left|u_{t}^{\prime}(s)\right| ; s \in[-r, 0]\right\} \leq L
$$

for $t \in J$ and (cf. (13)) $\lim _{n \rightarrow \infty} h_{k_{n}}\left(u_{k_{n}}^{\prime}(t)\right)=u^{\prime}(t)$ uniformly on J. Taking the limit in the equalities

$$
\begin{gathered}
g\left(u_{k_{n}}^{\prime}(t)\right)=g\left(u_{k_{n}}^{\prime}(0)\right)+\int_{0}^{t} f_{k_{n}}\left(s, u_{k_{n}}(s), u_{k_{n}}^{\prime}(s), u_{k_{n} s}, u_{k_{n} s}^{\prime}\right) \mathrm{d} s, \quad t \in J \\
\alpha\left(u_{k_{n}}\right)=0, \quad \beta\left(u_{k_{n}}^{\prime}\right)=\tilde{\Lambda}\left(u_{k_{n}}, u_{k_{n}}^{\prime}\right)
\end{gathered}
$$

as $n \rightarrow \infty$, we obtain (cf. (11) and (17))

$$
\begin{gathered}
g\left(u^{\prime}(t)\right)=g\left(u^{\prime}(0)\right)+\int_{0}^{t} f\left(s, u(s), u^{\prime}(s), u_{s}, u_{s}^{\prime}\right) \mathrm{d} s, \quad t \in J \\
\alpha(u)=0, \quad \beta\left(u^{\prime}\right)=\Lambda\left(u, u^{\prime}\right) \\
u_{0}(s)=\varphi(s), \quad u_{0}^{\prime}(s)=\psi(s) \quad \text { for } \quad s \in[-r, 0)
\end{gathered}
$$

Hence u is a solution of BVP (5), (6) satisfying (31).

Corollary 1. Let $h \in \operatorname{Car}\left(J \times \mathbb{R}^{2} \times D_{r}^{2}\right), q \in C^{0}(\mathbb{R})$ and there exist constants $L_{3}<L_{1}<0<L_{2}<L_{4}$ such that $q\left(L_{i}\right)=0$ for $i=1,2,3,4$. If $\alpha \in \mathcal{A}$, $(\beta, \Lambda) \in\left[L_{3}, L_{1}, L_{2}, L_{4}\right]_{\mathcal{A B}}$, then $B V P$

$$
\begin{equation*}
\left(g\left(x^{\prime}\right)\right)^{\prime}=q\left(x^{\prime}\right) h\left(t, x, x^{\prime}, x_{t}, x_{t}^{\prime}\right) \tag{6}
\end{equation*}
$$

has a solution x satisfying (31) provided $\varphi, \psi \in C_{r},\|\varphi\|_{0} \leq L,\|\psi\|_{0} \leq L$ with $L=\max \left\{-L_{3}, L_{4}\right\}$.

Proof. Let us set $f(t, x, y, u, v)=q(y) h(t, x, y, u, v)$ for $(t, x, y, u, v) \in$ $J \times \mathbb{R}^{2} \times D_{r}^{2}$. Then f satisfies the assumptions of Theorem 1 . The proof is completed by applying Theorem 1 .

Applying Theorem 1 to (7) we give the following corollary.
Corollary 2. Suppose that there exist constants $L_{1}<L_{3}<0<L_{2}<L_{4}$ and $\mu, \nu \in\{-1,1\}$ such that

$$
\begin{array}{ll}
\nu h\left(t, x, L_{3}\right) \geq 0, & \nu h\left(t, x, L_{1}\right) \leq 0 \\
\mu h\left(t, x, L_{2}\right) \geq 0, & \mu h\left(t, x, L_{4}\right) \leq 0
\end{array}
$$

for a.e. $t \in J$ and each $x \in[-L, L], L=\max \left\{-L_{3}, L_{4}\right\}$. Then BVP

$$
\begin{equation*}
\text { (7), } \quad \alpha(x)=0, \quad \beta\left(x^{\prime}\right)=\Lambda\left(x, x^{\prime}\right) \tag{33}
\end{equation*}
$$

has a solution x satisfying

$$
\|x\| \leq L, \quad L_{3} \leq x^{\prime}(t) \leq L_{4} \quad \text { for } t \in J
$$

provided $\alpha \in \mathcal{A},(\beta, \Lambda) \in\left[L_{3}, L_{1}, L_{2}, L_{4}\right]_{\mathcal{A B}}$.
Example 1. Consider the functional differential equation

$$
\begin{equation*}
\left(g_{p}\left(x^{\prime}\right)\right)^{\prime}=q(x) \sin \left(x^{\prime}\right)+h\left(t, x, x^{\prime}, x_{t}, x_{t}^{\prime}\right) \tag{34}
\end{equation*}
$$

where $g_{p}(u)=|u|^{p-2} u, p>1, g_{p}(0)=0, q \in C^{0}(\mathbb{R}), h \in \operatorname{Car}\left(J \times \mathbb{R}^{2} \times D_{r}^{2}\right)$, subject to the boundary conditions

$$
\begin{gather*}
\max \{x(t) ; t \in J\}=0, \quad x^{\prime}\left(t_{0}\right)=\lambda \int_{0}^{1} \sqrt{1+\left(x^{\prime}(t)\right)^{2}} \mathrm{~d} t \tag{35}\\
x_{0}(s)=\varphi(s), \quad x_{0}^{\prime}(s)=\psi(s) \quad \text { for } \quad s \in[-r, 0)
\end{gather*}
$$

where $t_{0} \in J, \varphi, \psi \in C_{r}$ and $\lambda \in \mathbb{R}$.
Assume that there exists a positive constant K such that $q(z) \geq K$ for $z \in\left[-\frac{3 \pi}{2}, \frac{3 \pi}{2}\right]$ and $|h(t, x, y, u, v)| \leq K$ for a.e. $t \in J$ and each $(x, u, v) \in\left[\frac{3 \pi}{2}\right]_{\mathcal{D}}$, $|y| \leq \frac{3 \pi}{2}$. Then the function $f: J \times \mathbb{R}^{2} \times D_{r}^{2} \rightarrow \mathbb{R}, f(t, x, y, u, v)=q(x) \sin (y)+$
$h(t, x, y, u, v)$ satisfies assumption (H) with $-L_{3}=L_{4}=\frac{3 \pi}{2},-L_{1}=L_{2}=\frac{\pi}{2}$ and $\nu=\mu=1$. Boundary conditions (35) are the special case of those for (6) with $\alpha(x)=\max \{x(t) ; t \in J\}, \beta(x)=x\left(t_{0}\right)$ and $\Lambda(x, y)=\lambda \int_{0}^{1} \sqrt{1+(y(t))^{2}} \mathrm{~d} t$ for $x, y \in \mathbf{X}$. Clearly, $\alpha \in \mathcal{A}$ and $(\beta, \Lambda) \in\left[-\frac{3 \pi}{2},-\frac{\pi}{2}, \frac{\pi}{2}, \frac{3 \pi}{2}\right]_{\mathcal{A B}}$ for $|\lambda| \leq \frac{3 \pi^{2}}{2\left(2+9 \pi^{2}\right)}$ since $\beta \in \mathcal{A}, \Lambda \in \mathcal{B}$,

$$
\begin{aligned}
\sup \left\{|\Lambda(x, y)| ; \quad(x, y) \in \mathbf{X}^{2},\|x\| \leq \frac{3 \pi}{2},\|y\| \leq \frac{3 \pi}{2}\right\} & =|\lambda| \int_{0}^{1} \sqrt{1+\left(\frac{3 \pi}{2}\right)^{2}} \mathrm{~d} t \\
& <\frac{2+9 \pi^{2}}{6 \pi}|\lambda| \leq \frac{\pi}{4}
\end{aligned}
$$

and $\min \left\{-\beta\left(-\frac{\pi}{2}\right), \beta\left(\frac{\pi}{2}\right)\right\}=\frac{\pi}{2}$. By Theorem 1 , for each $\varphi, \psi \in C_{r}$ and $\lambda \in \mathbb{R}$ such that $\|\varphi\|_{0} \leq \frac{3 \pi}{2},\|\psi\|_{0} \leq \frac{3 \pi}{2},|\lambda| \leq \frac{3 \pi^{2}}{2\left(2+9 \pi^{2}\right)}$, there exists a solution x of BVP (34), (35) satisfying the inequalities

$$
|x(t)| \leq \frac{3 \pi}{2}, \quad\left|x^{\prime}(t)\right| \leq \frac{3 \pi}{2} \quad \text { for } \quad t \in J
$$

Example 2. Consider BVP

$$
\begin{gather*}
\left(\operatorname{sh}\left(x^{\prime}\right)\right)^{\prime}=p(t, x)+k{x^{\prime}}^{2}\left(3-x^{\prime 4}\right) \tag{36}\\
\int_{0}^{1} \arctan x(t) \mathrm{d} t=0, \quad \min \left\{x^{\prime}(t) ; t \in J\right\}=\mu \int_{0}^{1} x(t) \sqrt{1+\left(x^{\prime}(t)\right)^{2}} \mathrm{~d} t \tag{37}
\end{gather*}
$$

where $p \in \operatorname{Car}(J \times \mathbb{R})$ and $k, \mu \in \mathbb{R}, k \neq 0$. Assume $|p(t, x)| \leq 2|k|$ for $|x| \leq 2$ and a.e. $t \in J$. Then the function $h: J \times \mathbb{R}^{2} \rightarrow \mathbb{R}, h(t, x, y)=p(t, x)+k y^{2}\left(3-y^{4}\right)$ satisfies the assumptions of Corollary 2 with $-L_{3}=L_{4}=2,-L_{1}=L_{2}=1$ and $\mu=-\nu=\operatorname{sign} k$. Boundary conditions (37) are the special case of those for BVP (33) with $\alpha(x)=\int_{0}^{1} \arctan x(t) \mathrm{d} t, \beta(x)=\min \{x(t) ; t \in J\}$ and $\Lambda(x, y)=\mu \int_{0}^{1} x(t) \sqrt{1+(y(t))^{2}} \mathrm{~d} t$ for $x, y \in \mathbf{X}$. Evidently, $\alpha \in \mathcal{A}$ and $(\beta, \Lambda) \in$ $[-2,-1,1,2]_{\mathcal{A B}}$ for $|\mu| \leq \frac{1}{4 \sqrt{5}}$ since $\beta \in \mathcal{A}, \Lambda \in \mathcal{B}, \sup \left\{|\Lambda(x, y)| ; \quad(x, y) \in \mathbf{X}^{2}\right.$, $\|x\| \leq 2,\|y\| \leq 2\}=|\mu| 2 \sqrt{5} \leq \frac{1}{2}$ and $\min \{-\beta(-1), \beta(1)\}=1$. Thus, by Corollary 2, there exists a solution x of BVP (36), (37) for any $|\mu| \leq \frac{1}{4 \sqrt{5}}$ satisfying the inequalities $\|x\| \leq 2,\left\|x^{\prime}\right\| \leq 2$.

FUNCTIONAL BOUNDARY VALUE PROBLEMS

REFERENCES

[1] AZBELEV, N. V.-MAKSIMOV, V. P.-RAKHMATULLINA, L. F.: Introduction to the Theory of Functional Differential Equations, Nauka, Moscow, 1991. (Russian)
[2] BERNFELD, S. R.-LAKSHMIKANTHAM, V.: An Introduction to Nonlinear Boundary Value Problems, Academic Press, Inc., New York-London, 1974.
[3] DE COSTER, C.: Pairs of positive solutions for the one-dimensional p-Laplacian, Nonlinear Anal. 23(5) (1994), 669-681.
[4] DEIMLING, K. : Nonlinear Functional Analysis, Springer-Verlag, Berlin-Heidelberg, 1985.
[5] HALE, J. K.—VERDUYN LUNEL, S. M. : Introduction to Functional Differential Equations. Appl. Math. Sci. 99, Springer-Verlag, New York, Inc., 1993.
[6] HAŠČÁK, A.: On the relationship between the initial and multipoint boundary value problems for n-th order linear differential equations with delays, Arch. Math. (Brno) 26 (1990), 207-214.
[7] KELEVEDJIEV, P.: Existence of solutions for two-point boundary value problems, Nonlinear Anal. 22 (1994), 217-224.
[8] MAWHIN, J. : Topological Degree Methods in Nonlinear Boundary Value Problems. CBMS Regional Conf. Ser. in Math. 40, Amer. Math. Soc., Providence, R.I., 1979.
[9] NTOUYAS, S. K.-SFICAS, Y. G.-TSAMATOS, P. CH.: An existence principle for boundary value problems for second order functional-differential equations, Nonlinear Anal. 2 (1993), 215-222.
[10] RACHŮNKOVÁ, I.-STANĚK, S.: Topological degree method in functional boundary value problems, Nonlinear Anal. 27 (153-166).
[11] RODRIGUES, A.-TINEO, A.: Existence theorems for the Dirichlet problem without growth restrictions, J. Math. Anal. Appl. 135 (1988), 1-7.
[12] STANĚK, S.: On some boundary value problems for second order functional differential equations, Nonlinear Anal. 28 (1997), 539-546.

Received April 9, 1996

Department of Mathematics Faculty of Science Palacký University Tomkova 40 CZ-779 00 Olomouc CZECH REPUBLIC

[^0]: AMS Subject Classification (1991): Primary 34K10, 34B15.
 Key words: existence, functional boundary conditions, generalized solution, Carathéodory conditions, topological degree, Borsuk's theorem, sign conditions.
 Supported by grant no. 201/93/2311 of the Grant Agency of Czech Republic.

