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NON-UNIQUE FACTORIZATIONS 

IN BLOCK SEMIGROUPS AND 

ARITHMETICAL APPLICATIONS 

A. GEROLDINGER F. HALTER KOCH 

ABSTRACT. We study the structure of non-unique factorizations in block semi­
groups over finite abelian groups G with #C7 > 3 . As an application we obtain 
asymptotic formulas for certain functions associated with the non-uniqueness of 
factorizations in algebraic number fields. 

§ 1 . Fac tor i za t ions in b lock s e m i g r o u p s 

Throughou t this paper , let G be an additively writ ten finite abelian group 
with # G > 3 . 

We recall briefly the notion of block semigroups . Let J~(G) he the multi­
plicative free abelian monoid with basis G . The elements of Jr(G) are of the 
form 

geG 

where vg(S) G No , and we set 

B(G) = [Be T(G) | Y, V9(B)<J = ° e G } ; 
gee, 

B(G) is called the block semigroup over G , the elements of B(G) arc called 
blocks. More generally, for a subset Go C G , we set 

B(GQ)={BeB(G)\ vg(B) = 0 for all geG\G()}. 

T h e semigroups B(GQ) are Krull monoids; if Go -= G , then the embedding 
B(G) c—> J~(G) is a divisor theory, the divisor class group is isomorphic to G , 
and every class contains exactly one prime divisor; see [7, Beispiel 6j and [G, §3]. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 11R27, 11R44. Secondary 20M14. 
K e y w o r d s : Factorizations, Block semigroups. 
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In par t icular , every B E B(G) is a product of (finitely many) irreducible 
elements of B(G) , which we call irreducible blocks. 

Block semigroups were first introduced by W . N a r k i e w i c z [12] as a 
combinatorial tool for the investigation of non-unique factorizations in algebraic 
number fields. In the sequel, they turned out not only to be an in fact very 
powerful tool [3] but also to be of s t ructural interest [6]. 

For a block B E B(G), we denote by f(B) the number of distinct factoriza­
tions of B into irreducible blocks (factorizations which differ only in the order 
of their factors are regarded as being equal). We set 

Bk(G) = {B E B(G) | f(B) < k} and 

Bk(G) = {BeB(G)\f(B) = k}. 

Clearly, 
k 

Bk(G)=[jBJ(G), 
7 = 1 

and we are going to describe the s t ructure of the sets Bk(G) and Bk(G) in some 
detail . For this , we introduce the notion of independent subsets , cf. [2, §16]. 

D E F I N I T I O N 1. A subset Q C G is called independent, if 

\ ngg = 0 with ng E Z 

geQ 

implies ngg = 0 (i.e., ng = 0 mod ovd(g)) for all g E Q . We set 

p(G) = m a x j ^ Q \ Q C G is independent} . 

A subgroup H < G is called essential, if H D G\ ^ {0} for every subgroup 

{ 0 } ^ G , <G. 

The group G is called elementary, if every element of G has square-free 

order. Obviously, a finite abelian group is elem,entary, if and only if it is a di­

rect sum of cyclic groups of prime order; then it contains no proper essential 

subgroups. 

For a pr ime p, we denote by rp(G) the p-rank of G , and for a subset 
£ c G , we denote by (E) the subgroup generated by E. For n E N , let Cu be 
the cyclic group of order n . 

The notion of independence as introduced differs slightly from the usual one, 
where 0 is excluded. 
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L E M M A 1. Let Q C G be an independent subset. 

i) Q is a maximal independent subset if and only if 0 G Q and (Q) is 

an essential subgroup. 

ii) If G is elementary, then Q is maximal independent if and only if 

OeQ and G = (Q). 

P r o o f . [2, §16]. • 

P R O P O S I T I O N 1. We have 

p(G) = 1 + $ > P ( G ) 

(where the sum is taken over all prime numbers), and for an independent subset 

Q c G , the following assertions are equivalent: 

i) #Q = p(G); 
ii) Q is maximal independent and contains only elements of prime power 

order. 

P r o o f . By [2, §16] we have 

#Q = l + £rp(G) 
p 

for every maximal independent subset Q C G containing only elements of prime 

power order. Therefore it is sufficient to prove that #Q < p(G), if Q C G is 

an independent subset containing an element which is not of prime power order. 

If Q = { g i , . . . , g n } C G is independent and ord(g\) = de , where r/, c £ N , 

d > 1 , e > 1 and (rf, e) = 1, then the set Q' = {dg\, eg\, O2, • • • , <Jn) is also 

independent , and #Q < #Q' < p(G). • 

D E F I N I T I O N 2 . 

i) A system (in G) is a pair (Q,&), consisting of a subset Q C G and a 

function a: G \ Q —• No ; we set 

W\= JZ ^(g)^No 
gea\Q 

(the extremal cases Q = 0 and Q = G are not excluded). 

ii) For a system (Q,cr) and / E No, we .set 

ÍÌ(Q,<7)(0 = { ß є ß ( G ) vg(B) 
= o(g) for all gЄG\Q, 

9 ' - ' \ >l foтall gЄQ. ) 
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and 

ft(Q,<r) = fi(Q,<r)(0). 

iii) Let (Q,cr) be a system and k G N . (Q,O~) is called a k-system, if 

0 / 0 (Q,c r ) C Bk(G); (Q,o) is called a maximal k-system, if it is a k-system 

and if there is no k-system (Q',a') such that Q ^ Q' and a' = cr\^\QI . 

P R O P O S I T I O N 2. Let Q C G be a maximal independent subset, 

d = m a x { o r d ( # ) | g G Q) > 2 and k G N . Then there exists a function 

a: G\Q —* No such that (Q,O~) is a k-system, fl(Q,o~)(dk — 1) C Bk(G), 

and moreover: 

i) |O-| = 4 k , if there exists an element go G G such that o r d ( # 0 ) — 4 

and 2go G Q . 

ii) |(j | = dk — 1 . i/ either d > 3 , or i/ t/iere exi-stf elements o j , g2 £ Q 

.such, //iatf #i ^ #2 ftri^ ^ — o r d (g\) — ord (#2) — 2 • 

P r o o f . Since #G > 3 and Q is maximal , Q fulfils one of the three con­

dit ions s ta ted in i) and ii). We set Q = { g i , . . . , gr} , where r > 2 , gi,..., gr 

are dist inct , cf, = ord(^r,) and d\ — d. Then the blocks 1?, = gfi G -3(G) are 

irreducible. 

Case 1. gx — 2go , where o0 G G and o r d ( g 0 ) — 4 . We define a\ G\Q —> N0 

by 

4k - 1 , if g = go , 

O-(#) = { 1 , if g = - g o , 

0 otherwise . 

If B = (2go)^gV-. • ••9rr9o°(-9o)n''> € B(G), then (2n , + n 0 - n 0 ) ^ + n 2 ^ + 
• • • + n r g r = 0 , and since Q is independent , we infer 2n\ + n 0 — n'0 = 0 m o d 4 
and n , = 0 m o d d,- for all i G { 2 , . . . , r } . Therefore every block B G £L{Q,<r) 
has the form 

D t o ^ \ 2 m i —1 ̂ m2<l2 „rnrdr 4fc-1 / _, \ 
B = (2go) g2

22-...-gr
 rg0 ( - g o ) , 

where ^ i G N , m 2 , . . . , m r G N0 , and the only irreducible blocks which 
may divide 5 are Bx = (2g 0 ) 2 , B 2 , . . . , Br, B0 = g*, B'0 = (2g0)g0

2 and 
Bo ^ go(—g0). Hence all factorizations of B into irreducible blocks are given 
by 

B = B[l B?> . . . . . B?r B3
0° B'/° B*0 , 

where ji, j 0 , j 0 € N0 are such tha t 2 j i + j 0 = 2 m i - l and 4 j 0 +2 j 0 = 4 f c - 2 , i.e., 
Jo = 2j — 1 , where 1 < j < m i n ( m i , k) and ji = m i —j,jo = k—j . Consequently, 
f (B) =-. m i n ( m i , k) < k , and f(B) = k if rm > Jb , i.e., B G Q(Q, <7)(2fc - 1 ) . 
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Case 2. d > 3 . We define a: G \ Q -> N0 by 

d k - l , if g = -g\ , 
*(</) = , 

0 otherwise. 

If B = £ n i - . . . . # r
l - ( - < l i ) n i G fi(G), then (n, - n\ )gx +n2g\ + • • • + nrgr = 0 , 

and since Q is independent , we infer n\ — n\ = 0 mod d\ and n, = 0 mod cf, 

for all i G { 2 , . . . , r } . Therefore every block B G Q(Q, or) has the form 

B = g ^ - ' g ^ • ... • gd/m'(-9l)
d<k-\ 

where mi G N , m 2 , . . . , m r G No, and the only irreducible blocks which may 

divide B are B\,... ,Br, B[ = (—g\)dl and B0 = gi(—gi). Hence all factor­

izations of B into irreducible blocks are given by 

B = B[l B™2 • . . . • Br
Jlr B\ J'x B3

0°, 

where j i , j j , jo G No are such that d i j i + j 0 = d i m i — 1 and d\j[ + j 0 = 

<iik — 1, i.e., j 0 = d\j — 1, where 1 < j < m i n ( m i , k ) and j \ = n ^ — j , 

j'x — k — j . Consequently, f (B) = m i n ( m i , k ) < k, and f (B) = k if mj > k, 

i.e., B en(Q,a)(dk-l). 

Case 3. di = d2 = 2 . We define <r: G \ Q -> N0 by 

^Чľ"1' if 9 = 9\ + 92 

otherwise. 

If 5 = g?lg22g2*'--'9?r(9i + <72)
n G 5 ( G ) , then (n , + n ) S l + ( n 2 + n)<?2 + 

^3g3 + • • • + n r y r = 0, and since Q is independent, we infer n\ = n2 = n m o d 2 
and n t = 0 m o d <i, for all i G {3, . . . , r } . Therefore every block B G f2(<3,o~) 
has t h e form 

r> __ 2 m ! - l 2 m 2 - 1 d3m3 ndrmr / , \2A:-1 
& — 9\ 92 93 • • • gr l g l + g 2 J , 

where m\,m2 G N , m 3 , . . . , m r G No, and the only irreducible blocks which 
may divide B are Bi,...,Br, B 0 = (gi + o 2 ) 2 and B 0 = g\g2(g\ + gi). Hence 
all factorizations of B into irreducibles are given by 

B = BllBJ
2

2Bp •...• B?'BJ
0° B'/0, 

where j ^ j 2 , Jo, Jo G N 0 are such that 2ji + j 0 = 2m i - 1, 2 j 2 + j 0 = 2 m 2 - 1 
and 2jo + Jo = 2A: — 1, i.e., j 0 = 2j — 1, where 1 < j < m i n ( m i , m 2 , k) a n d 
Jo = fc-J , J i = roi-j, j 2 = m2-j. Consequently, f ( B ) = m i n ( m i , m 2 , fc) < k, 
and f ( £ ) = fc, if B € ft(<2, <T) ( 2 * - 1) . D 

645 



A. GEROLDINGER — F. HALTER-KOCH 

D E F I N I T I O N 3 . For every maximal independent subset Q C G and k G N . 
•we set 

V'k(Q) — max{|cr| | (Q,a) is a k-system] , 

V'*(Q) = max{|(7| | (Q, a) is a k-system, tt(Q,a) n Bk(G) ^ 0} 

(by Proposition 2 , the sets {\a\ | . . . } are not empty), and 

4'k(G) = max{V'*(Q) | Q C G is independent, #Q ~ p(G)} , 

4<k(G) — ma,x{ij>k(Q) | Q C G is independent, #Q ~ p(G)) . 

We shall investigate the combinatorial invariants rpk(G) and ipk(G) in §3. 
We shall obta in es t imates from above and from below, and in a few cases we 
shall de termine their precise values . Obviously, we have 

MG) = max{i>j{G) | 1 < j < k} . 

In the next Proposi t ion we characterize the independent subsets of G. 

P R O P O S I T I O N 3 . For a subset Q C G, the following assertions are equivalent: 

i) Q is independent. 
ii) B(Q) is a free abelian monoid. 

iii) There exists a function a: G \ Q —> No and integers k G N . / G No 
such that 0 / ft(Q, a)(l) C Bk(G). 

If Q is independent, Q — { g i , . . , g r } , where gi,...,gr are distinct, 

dt = ord (</,-) and Bt = g•';. then B(Q) is the free abelian monoid with ba­

sis B\,..., Br . 

P r o o f . We set Q = { g i , . . , g r } , where < 7 i , . . . , g r are dist inct and 

di — ord(<7,); then the blocks B{ ~ g, * are irreducible. 

We prove first t ha t ii) and iii) are violated, if Q is not independent . Indeed, 

suppose t ha t there is a relation of the form n\g\ + • • • + nrgr = 0 , where 0 < 

nt < dt and (n\,... , nr) ^ ( 0 , . . . , 0 ) . Then we have B0 = g"1 •... • g?r G B(Q), 

and we may assume tha t Bo is irreducible. We set d = d\ • . . . • dr, d\ — d~ld 

and B - B*d(B\ • . . . • Br)
1 G B(Q) (where / G N0 is a rb i t r a ry ) . For every 

0 < j < l ; , B has the factorization 
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NON-UNIQUE FACTORIZATIONS IN BLOCK SEMIGROUPS ... 

into irreducible blocks, whence f(B) > k -f 1. 

i) = > iii) follows from Proposition 2. 

If Q is independent , then every B G B(Q) has a unique representation in the 
form B = B\11 • . . . • Br

lr ; therefore B(Q) is free abelian with basis Bx,...,Br. 

• 
T h e following Theorem uncovers the structure of the sets B^{G) and Bk{G). 

T H E O R E M 1. Let k G N be a positive integer. 

i) There exist only finitely many maximal k-systems (Q\, o\ ), . . . , 

(Qm,Vm), and 

m 

Bk(G)=\Jn(Q},a}). (*) 
> = 1 

ii) 2/e^ (Q,a) be a k-system. Then we have either 

fi(Q,a)n.5t(G) = 0, 

or tftiere exists an integer I G No .sucK //iatf 

fi(g,ff)(/)C-5t(G). 

iii) There exist (finitely many) k-systems (Q\, Oi),..., (Qr, <Jr) and inte­
gers l\,... , lr G No such that 

Bk(G) = (Jil(Q„ä,)(l,). 
1=1 

iv) Let (Q,o~) , ( (5i ,O i ) , . •. ,(Qn,Vn) be k-systems, / G N0 and 

n 

íí(Q,a)(/)C UWi> f f i)- ' 
1=1 

T7ien we have Q C Q,- ana7 ox = ^ | g f \ n . / o r some i G { 1 , . . . , n} . 

i n particular, in the representations (*) ana7 (**) ^n i) and ii) above, every 
maximal independent subset Q of G appears among Q\,. . . , QTn as well as 
among Q i , . . . , Q r , anli ^tie corresponding constituent of the union cannot be 
left out. 
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P r o o f . 

i) If B G Bk(G) and o: G -> N0 is defined by o(g) = vg(B), then (0,<r) 

is a k-system, and B G $7(0, O"). Since for every k-system (Q,o) there ex­

ists a maximal fc-system (Qf,of) such that Q,(Q,o) C {^(Q'.r/') it remains to 

prove tha t there are only finitely many maximal k-systems. If not , then there 

exists an independent subset Q C G , and there exist infinitely many functions 

o: G \ Q —• No for which (Q,o) is a k-system. In par t icular , there exists a se­

quence of functions (on : G\Q --• No) > 0 such tha t all (Q,on) are fc-systems, 

and lim on(g\) = oo for some g\ G G\Q. By extract ing subsequences of 
n—•oo 

(&n)n>o , we arrive, in a finite number of steps, at the following si tuat ion: there 

exists a subset 0 / Q\ C G \ Q, an integer M G N and a sequence of functions 

(on: G\Q —• N 0 ) . n such that all (Q,on) are k-systems, lim on(g) = oo for 

all g G Qi , and O-„(g) < M for all n > 0 and all </ G G \ (Q U Q\). Therefore 

there exists a function o: G \ (Q U Q\) —> No and a subsequence (oUj )7>0 of 

(&n)n>o such tha t oUj(g) = o(g) for all j > 0 and all g G G \ (Q U Q i ) . 

We contend tha t (Q U Q\,o) is a k-system (contradict ing the maximal i ty 

of the k-systems (Q,onj)). Indeed, 0 ^ Q(Q, oUj) C Q(Q UQ\,o), and if 

5 G £l(Q U Q\,o), then there exists an index j > 0 such tha t O"rlj(g) > vg(B) 

for all g £ Q\ , and therefore there exists a block i? G $2((y,O"n>) such tha t 

5 = BB' for some 5 ' G 0 ( G ) , whence f (B) < f(B) < k, i.e., J3 G £ * ( G ) . 

ii) Fix a block B0 G fl(Q,cr) n Bk(G), and set / = nmx{vg(B0) I 9 £ Q) -

If B G ft(Q,<r)(/), then B = B0B' for some B' G 0 ( G ) , and therefore we have 

k = f ( B 0 ) < f ( B ) < ib, i.e. B G Bik(G). 

iii) By i), we have 

m 

0*(G) = \JSl{Qh<Tj)nBk{G). 

i=i 

and therefore it is sufficient to prove the following s ta tement : 

Given a fc-system (Q,o) such t h a t Q(Q,o) D Bk(G) ^ 0 , then there exist 
finitely many k-systems (Qi,ot) (i' = 1 , . . . , n ) and / ] , . . . , / „ G No such tha t 

n 

n(Q,a)nBk(G) = [Jn(Qt,at)(lt). 
i — \ 

We do this by induction on # Q . For Q = 0 , there is nothing to prove. Thus 

suppose Q ^ 0; by ii), there exists an integer / G N0 such tha t Q(Q,cr)(/) C 

Bk(G), and we obta in 

fi(Q,<T) = ft(Q,a)(OU (J fi(Q>'), 
( Q V ) 
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where the union is taken over all proper subsets Q' ^ Q a n d all functions 

a':G\Q' ~> N0 satisfying <T'\Q\Q = cr, a'(g) < I for all g E Q \ Q' and 

Sl(Q',cr')£Q. This implies 

Sl(Q,a)nBk(G) = tt(Q,a)(l)U U n(Q'^')n-3fc(G), 
(Q>') 

and the assertion follows by induction hypothesis. 

iv) Let B £ $XQ,<r)(0 °e a block satisfying vg(B) > max{|<Ji | , . . . , |<rn|} 

for all g £ Q . If then B £ ^ ( Q t , ^t) f ° r some z, we infer Q C Qt , and 

O-t(#) = ^ ( A ) = r/(^) for all g E G \ Qt . 

Now let Q C G be a maximal independent subset. By Proposit ion 2, there 
exists a function a: G \ (J —* No and / £ No such that 

m 

ft(Q,<Oc0jb(G)= U"(G>'a>) 
>=-

and 
r 

fi(Q,*)(0cB*(G) = Un(0i^i)('i). 
i=i 

By the above argument , we infer Q C Q3, o3 — a\Q\Q f ° r s ° n i e 3 ^ {1-

. . . , 7 i } , and Q C Qt;, o", = ^ | / ^ \ / ) . f ° r some z E { l , . . . , r } . Since Q is a 

maximal independent subset of G, this implies Q = Qj and Q = Qi , whence 
the assert ion. D 

§2. A r i t h m e t i c a l app l i ca t ions 

Let A' be an algebraic number field, R its ring of integers, X the semigroup 
of non-zero ideals of R, H, the semigroup of non-zero principal ideals of R, 
G = I/Ji the ideal class group, and h = # G the class number of A". If V 
denotes the set of all maximal ideals of R, then I is the free abelian monoid 
with basis V. For a E I, we denote by [a] E G the ideal class containing a, 
and we wri te G additively so that [ab] = [a] + [b] for all a, b E 1 -

Every element a E I?^ = . f t \ ( i ? x U { 0 } ) has a factorization a = u\ • 
. . . • u r , where u, E A are irreducible elements of A ; we call r the length 

of the factorization. If h = 1, then A is factorial, and the factorization of 

any a E A # into irreducibles is essentially unique (i.e., it is unique up to 
associated irreducibles and the order of the factors). If h > 1, then there are 

649 



A. GEROLDINGER — F. HALTER-KOCH 

elements a £ R^ with several distinct factorizations, and G is said to measure 
the deviation of R from being factorial. For concrete results supporting this 
philosophy see [7] and the literature quoted there. 

The arithmetic of R is connected with the arithmetic of the block semigroup 
B(G) in the following way (cf. [3]): 

For a £ R^ , we consider the prime ideal decomposition 

(a) = p, . . . . - p m 

with pj £ V and set 

(3(a) = [Pl}....-[pm}eB(G)-

(3(a) is called the block of a . An element a £ R& is irreducible in R if and only 
if /3(a) £ B(G) is an irreducible block. If a = u\ • . . . • ur is a factorization of a 
into irreducible elements of R, then (3(a) = (3(u\) • . . . • (3[ur) is a factorization 
of (3(a) into irreducible blocks, and every factorization of (3(a) in B(G) arises 
in this way. 

Two factorizations 

a = u\ •. .. • ur, a = u\ • . . . • us 

of a into irreducible elements of R are called block- equivalent, if the correspond­
ing factorizations 

/3(a) = (3(ui) .... (3(ur), 13(a) = (3(u\) •...• (3(u's) 

in B(G) differ at most in the order of their factors. We denote by 

f » = f (/3(a)) 

the number of not block-equivalent factorizations of a . 

Using this terminology, we obtain the following extension of a classical result 
of L . C a r l i t z [1]. 

PROPOSITION 4. FOT an algebraic number field A", the following assertions 

are equivalent: 

i) b<2. 
ii) f*(a) = 1 for all a e R* . 

iii) FOT every a £ R^1 , any two factorizations of a into irreducibles have 
the same length. 
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P r o o f . 

i) ===> i i ) : If h < 2, then G = {Q,g} and B{G) is factorial (it is the free 

abelian monoid with basis {0,g2} ). and therefore f*(a) = 1 for all cv G R& . 

ii) = > ii i) : follows from the simple observation that any two block-equival­

ent factorizations of an element a G R^ have the same length. 

iii) ==> i) : See [1]. • 

T h e quanti t ies f*(o) give rise to the following quantitative1 results . For k G N 

a n d x E K>o , we set 

Bk{x) = #{{<*) e n \ O G T ? # , \AT{c*)\<x, f > ) < k } , 

Bk(x) = # { ( a ) G H\ a G i t # , \AT{a)\ < ,r , f*(o) = k} , 

a n d we determine the asymptotic behaviour of these1 functions as follows. 

T H E O R E M 2. For k G N aHJ x > ce , we have 

Bк(x) = x(\ogx 

Bк(x) = T(logx) 

,\-i + ňSL 
h 

-l-f-

14(log log x) + 0 (( log x)-"{log log .;• ) A / ) 

V,(log log x) + O((log.r)-^(log log .,•)'") 

where Vk,Vk £ C[-Y] are polynomials with positive leading coefficient, dvg\\ ---

iftk(G), degVk = ^k(G),/Jh = y - ( l — c o s — - J , and M G N depends on k and 

K. 

P r o o f . By Theorem 1, we have 

m r 

-3fc(G)= (Jf^.O- , ) , 13,(G) = U^g>; ) ( / ? ) , 
> = 1 1 = 1 

where (QJ,<?J) and (Q^cr,-) are k-systems, /t G N0 , 

p(G) =max{#Qj \ j = 1, . . . , / / / } = max{#C/ . | ? = 1, !•} , 

and 

V'*(G) = iiiax{|crj| | j = l , . . . , m , #Qj = p(G)}, 

^ ( G ) = max{|O-; | | z = l , . . . , r , #Q\ = p{G)} . 

Now the assertion follows from the following Lemma, due to J . K a c z o -

r o w s k i [11] (Lemma 2 and p. 66/67): 
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LEMMA 2. Let (Q\,v\),. . . ,(Qn,<rn) be systems in G and li,...,ln G N0 

such that Q.(Qi,&i)(li) 7̂  0 for all ?G {1,.. . , n) , and set 

Q = Qвд.»*. )(/.)• 
i = i 

Then we have, for x > ee , 

# { ( a ) eH\ a G I?#, \AT(a)\ <x, /3(a) G ft} 

= x(logx)" 1 + f [V(loglogx) + 0(( logx)- 7 / l ( logloga:) M ) 

where 
p = max{#Q; | i = 1,.. . ,n} , 

V G C[X] is a polynomial with positive leading coefficient and 

degV = max{|(7j| | z = l , . . . , n , #QX = pt) , 

l h = | - ( l - cos ^ - ) and M = M ( f i ) E N . 

There are several other functions connected with non-unique factorizations 
in algebraic number fields whose asymptotic behaviour has been investigated. 
For a G R^ , let f(a) be the number of essentially distinct factorizations of a 
into irreducible elements of R and 1(a) the number of distinct lengths of such 
factorizations. Among others, the following functions were considered: 

Fk(x) = #{(a)EH\ aeR*, | N ( a ) | < x , f(a) < k) , 

Fk(x) = #{(a)eH\ aeR*, | N ( a ) | < ; r , f(a) = k} , 

Gk(x) = #{(a)eH\ aeR*, | N ( a ) | < x , 1(a) < k) , 

Gk(x) = #{(a)eH\ aeR*, | N ( a ) | < x , 1(a) = k) . 

All these functions have, for x —• oo, an asymptotical behaviour of the form 

(C + o(l))x( logx)- , + '(loglogx) r f, 

where C > 0 , 0 < q < I and d G N. This was shown 

h 
for Fk in [14] (with q = -T- ); d was investigated in [12] and [15], 

- for ^ in [5] and [9] (with q=i~), 

- for Gk and Gk in [16] and [4]. 

In any case, the remainder term o(l) can be made more precise by means of 
the method of K a c z o r o w s k i [11]. All results (also these for Bk and Bk ) 

remain valid in the general context of formations as introduced in [10]. 
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§3. T h e invariants ipk(G) a n d ^k(G) 

Let again G be a finite abelian group and # G > 3 . For k G N , we denote 

by Dk(G) the generalized Davenport constant [8], which is defined as follows: 

Dk(G) is the minimal number such that , for every 

s = 11 gv^S) G f(G) 
gee 

satisfying 

5>,(S)>JMG), 
gee 

there exist irreducible blocks B\,. . . , Bk G B(G) such that 

5 = 1?! '...-BkS' 

for some S ' G T(G). 

P R O P O S I T I O N 5. 

i) If e is the exponent of G , then we have, for k G N , 

V'*(G)< Y {ord(g)-l) + (k-l)c-p(G) + l. 
o^gec 

ii) / / G is an elementary group, then we have, for k G N, 

MG)<Dk(G)-\. 

P r o o f . We assume that there exists a subset Q C G and a function 
a : G \ Q —» No such tha t (Q,o) is a k-system, # Q = p(G), and |cr| exceeds 
the bounds given in the Proposit ion . 

i) Suppose tha t \a\ > ]T (ovd(g) - l ) + (k - l)c - p(G) + 1 , / > kc and 

i? G ft(Q,<r)(/) C /5^(G) . We assert that there exist elements r/,, . . . ,ak G G\Q 

such tha t rf,- = ord(a,-) and B = Of1 « . . . - O ^ B ' for some B' G /3(G). Indeed, 

if i G { 1 , . . . , * } and a , , . . . ,a,-_i eG\Q are such that B = ad
x » . . . • a?!",1 Bx 

for some £ , G .6(G), then 

J ] 1^(50= Y vg(B)~di rf--i > k| - (? - l)r 
<7<EC\Q <?eC\Q 

> £ (ord(O ) - l ) - (O (G)- l )> Y (ord(flf)-l), 
O^gEG geG\Q 
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and therefore there exists an element a, G G\Q such tha t B{ = a%
 x B\ for some 

B'teB(G). 

It follows tha t B is divisible by a block Bo of the form 

Bo = adS •...-<£ -X[gk\ 
geQ 

and hence f(B0) < f(B) < k. 

Since Q is a maximal independent subset of G, the subgroup (Q) of G is 
essential (Lemma 1), and therefore we obta in relations 

-miai = ] P n9tig (i = 1,... , k), 
i?ec7 

where 1 < mt < dx and 0 < ngi < oxd(g) < e . If we choose these relat ions so 

tha t , for each i , m, + ^P n^ i is minimal, then the blocks 
geQ 

Ci = a?* • J ] 9n'J e B^ 
geQ 

are irreducible. Now we obta in , for j = 0 , 1 , . . . , k , 

j j 

geQ «=i 

and therefore f(Bo) > k + 1, a contradict ion . 

ii) Let G be elementary, | a | > D * ( G ) , / > ke and B G ft(Q,a)(Z) C Bjb(G) • 
By definition of Dk(G), there exist irreducible blocks A i , . . . , Ak G B(G \ Q) 
such tha t A] • . . . • Ak divides B . Therefore B is also divisible by a block Bo 
of the form 

geQ 

and hence f(Z?0) < f(B) < k. For every i G { 1 , . . . , k} , let a, G G \ Q be 
an element satisfying ua.(.A;) > 0 , and set Ax = alA'l. By Lemma 1, (Q) is 
an essential subgroup of G, and since G is elementary, we have (Q) = G . 

Therefore there exist relations of the form 

-a,- = ^ n^.O (?: = 1 , . . . , k ) , 

2<EQ 
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where 0 < ng^ < o r d ( o ) < e , and the blocks 

Ci = a, JJ gn" £ B(G) 
geQ 

are irreducible. Now we obtain, for j = 0 , 1 , . . . , k , 

J 

Bo = Cx • . . . - CjAj+x Ak J J g ' " - "'*' • A\ • . . . • A) , 
geQ 

and therefore f(-Bo) > A: + 1, a contradiction. • 

Proposi t ion 5 ii) becomes false if G is not elementary. For G = Cpr , this is 
shown by the next result; by [8], we have Dk(Cpr) = kpr . 

P R O P O S I T I O N 6. Let p be a prime, k,r £ N and r > 2 . Then 

tl>k(Cpr)>kpr-l+(r-l)(p-l). 

P r o o f . For Cpr = (go), w ^ set Q = { 0 , p r - 1 O o } , and we define 
a: G \ Q - > N 0 by 

kpr - 1 , if g = -g{) , 
a ( g ) — \ P ~ 1 ? if g — P^go for some // £ {(), 1,. . . , r — 2} , 

0 otherwise. 

We shall prove tha t n(Q,cj)(kp - 1) C Bk(Cpr); since #Q = 2 = p(Cpr), this 

implies ii>k(Cpr) > \a\ = A7;
r - 1 + (r - l ) (p - 1) . If B £ Sl(Q<or)(kp- 1 ) , then 

r - 2 

I? = (-go)""'-* • H(pvgo)p-i(pr-]g0)'"'-](or , 
i/ = 0 

where 7t/,7t £ No , m > kp — 1, ?I > L We shall prove tha t , for every 
j £ { 1 , . . . , r} , all blocks of the form 

r - 2 

B, = (-•*>rv-',r~>- n ( A o r ' i r ' j o r ' i o r , 
v-r-2 

( m, n > k ) lie in Bk(Cpr) (for j = r , the assertion follows). 
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We use induction on j . For j = 1, we have 

Bx = ( -9o ) f c p r - p r " (p r - 1 ^o) n p - 1 (0 ) m ; 

the irreducible blocks dividing B\ are A0 = (—go)p , A\ = (—go)p (P r - 1go) , 
A2 — (pr~lgo)p and (0) . Therefore all factorizations of B\ into irreducibles are 
given by 

B, =A}
0°A?A?(0)m, 

where ji E No are such that pr jo + Pr-1ji = ^Pr ~ p r _ 1 a n ( i j i + PJ2 = np—-1, 
i.e., j i = j p — 1 for 1 < j < A: and jo = k — j , j 2 = n — j ; this implies 
f (B , ) = * . 

Suppose now that 2 < j < r and J5j-i G Bk(G). There is only one irre­
ducible block Cj dividing Bj for which v

P
r->g0(Gj) > 0, namely 

Gj = (pr~39o)(—9o)p • Therefore Gj~ occurs in every factorization of Bj , 

and since Bj = Cp~ Bj-\ , we infer f(Bj) = f(F?7_i) = k. • 

P R O P O S I T I O N 7. 

i) 7/ G = G! © G2 , # G ; > 3 and k{ € N for i = 1,2, then 

^klk2(G\®G2)>xPkl(G\) + rPk2(G2) and 

0 * ^ , ( 0 , © G 2 ) > 0 A l ( G i ) + 0 f c a(G2). 

ii) If Go < G is a subgroup and k £ N, t/teri 

i M G ) > ^*(G0) anrf </>*(G) > V*(G0)'. 

P r o o f . 

i) It is sufficient to prove the assertion for ^ , since then we have 

^ W G i ©G2)-=max{^>(G, © G 2 ) | 1 < j < &ifc2} 

> m a x { ^ l > 2 ( G , © G2) | 1 < j , < A, , 1 < j 2 < k2} 

> max{tPil{Gi) + tJ>,2(G2) | 1 < j , < *, , 1 < h < k2} 

2 

= ~lmBx{^.(Gi) | l<j,<k,}= V*,(G,) + t M G 2 ) . 
1 = 1 

We may suppose that G\ C G and G2 C G. For i = 1,2 let # i C G; be an 
independent subset and rjt: Gt \ Qi -—• No a function such that ^ Q ; = p(G t ) , 
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\crt\ =z jpk.(Gt) and (Qi,<Ti) is a kz-system with f2(Q,, O.) n Bk%(Gt) ^ 0 . Then 
Qi U Q 2 is an independent subset of G, and # ( Q i U Q 2 ) — # Q i + #Q2 - 1 
= />(G). We define a: G\(Q\ U Q 2 ) -> N0 by 

' <Ti(g), if g G Gi \ Q i , 

^(g) = { <?2(g), if g£G2\Q2, 

0 otherwise . 

Then we have \a\ = |O~i | + | c 2 | , and every block B G f2(Qi U Q 2 ,O ) has the 
form B = 5 i 5 2 , where 5 , G fi(Q,,at). This implies f(Z?) = f(Bl){(B2) and 
therefore J7(Qi U Q2,O~) is a kik2-system with 

ft(Qi U Q 2 , O") n 0 * ^ ( 0 , (I) G2) ^ 0 and 

V^*2(G)> ^ ^ ^ ( G O + ^ifc^G'i). 

ii) Again it suffices to show the assertion for t/>. Let Q{) C G0 be an in­

dependent subset and O"0 : G0 \ Qo —• N0 a function such that jkQ{) = />(G0), 

jcr01 = 4>k(Go) and f i (Q 0 , O~o)n/!?*;(G0) 7̂  0- By Proposition 1, Q{) contains only 

elements of pr ime power order. Let Q 0 C Q C G be such that Q is a maximal 

independent subset containing only elements of prime power order, and define 

cr: G\Q-+ N0 by *\G{)\QQ = <Jo and H G \ ( G 0 U Q) = 0 ' T h e n ^Q = p(G) 

by Proposi t ion 1, and every block B G $l(Q,a) has the form 

B = H gii° n yao{g) 

<?eQ g£G0\Qo 

where ng G No . 

We contend tha t an element 

a. = n y"9 - n ^ e w ) 
<7<EQ g€G0\Qo 

(where mg,ng G No) is a block if and only if 

5* = Yl 9n° I I ^ G ^(Go)^ and n* = ° mo(1 ord(g) 
geQo g£G0\Qo 

for all g G Q \ Qo • Indeed, if B\ is of the indicated form, then it is a block. 
Conversely, if 

J2n9g+ Yl mg9 = Q< 
g£Q geG0\Q0 
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t h e n we o b t a i n 

E 
gЄQ\Q0 

ngg Є G0 

If g* = 0 , then n p = 0 mod ord(g) for all g G Q \ Qo , and the assertion 

follows. If g* ^ 0 , then there exists an integer d G N such t h a t 0 ^ dg* G (Qo) , 

since (Qo) is an essential subgroup of G 0 • This implies 

Yl dn99 = Yl e9g ^ ° 
g£Q\Qo g£Qo 

(where e^ G No ), which contradicts the independence of Q. 

Now every block B G J7(Q,cr) is of the form 

B= J J 0 m ' o r d < ' > . i ? o , 
<?eQ\Qo 

where J50 G fi(Qo,^o) and r?iy G N0 , and for every g G Q \ Qo , gord(y) is the 

only block dividing B and containing o . This implies i(B) = i(Bo), and since 

Bo G Q(Qo,Vo) can be prescribed arbitrarily, we infer fi((3,cr) VI Bk(G) ^ 0 , 

whence 0*(G) > W\ = k o | = V>*(Go)- • 

COROLLARY 1. 

i) I/ p z.s a prime dividing # G , c 2/ie exponent of G and k G N , tf/ien 

- 1 + fcp < V'*(G) < MG) <a + ke 

for some a G N . 

ii) iJ.Jk(G) = 4'k(G) for infinitely many k G N . 

P r o o f . 

i) We s ta r t with the left inequality. By Proposit ion 7 ii) it is sufficient to prove 

tha t ih(Cp) > kp - 1, if p > 2 , 0*(C 4 ) > 2k - 1 and 4k(C2 0 G2) > 2k - 1. 

But these inequalities follow immediately from Proposit ion 2. 

Obviously ^k(G) < max{?fV,(G) | 1 < j < k} = 0 * ( G ) . The right inequality 

is a consequence of Proposi t ion 5 i). 

ii) Since ^k(G) tends to infinity with k and t/>*(G) — m a x { 0 ; ( G ) | 1 < j < k}, 

we infer ^k(G) = il'k(G) for infinitely many k G N . • 
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P R O P O S I T I O N 8. Let k,r e N and p> 2 be a prime. 

i) Mc;)>Mc;)>(k + r-i)P-r. 
ii) If k = 1 or r < 2, then 

i>k(Cr

p) = MCr

p) = (k + r - 1)P - r . 

P r o o f . 

i) We do the proof by induction on r . For r = 1 Corollary 1 implies %J>k(Cp) > 

kp — 1. For r > 2 we obtain by Proposition 7 i) that 

V ^ ( C ; ) > ^ ( C ; - 1 ) + ^ 1 ( C p ) > ( k + r - 2 ) p - ( r - l ) + p - l = (k + r - l ) p - r . 

ii) By Proposi t ion 5 i) we have ipk(Cr) < Dk{Cr) - 1. For Jfc = 1 or 

r < 2 Dk(Cr) = kp+ (r - l){p - 1) ([8]) and so the assertion follows. • 

PROPOSITION 9. For k,r e N, r > 2 we have 

І) Фk(c;) > мcт

2) > L 2 J 
ii) If k = 1 or r = 2, ^t\en 

+ 2 f c - 2 . 

Vч-(C*2

r) = VÍ,(C2
r) = + 2Л- - 2 . 

P r o o f . 

i) By Proposi t ion 7 ii) it suffices to show the assertion for even r . We set 

r = 2s a n d do the proof by induction on s. Corollary 1 i) gives the assertion 

for ,s = 1. Let s > 2; using Proposition 7 i) we obtain 

Mc2

2

s) = <M(c 2 © c2y) > V'*((c2 © C2)5-1) + Vi(c2 © c2) 

> 5 - l + 2 J k - 2 + l = 3 + 2Jfc-2. 

ii) Case 1. r = 2 : Let G = C2 © C2 and Q = {0,Oi,#2j a maximal inde­

p e n d e n t subset of G ; then G\Q = {Oi + #2} • Therefore we must prove tha t a 

block of the form 
D n\ no/ 1 \ni 

^ = 9\ 92 (9\ +92) , 

where n\,n2,m 6 No , rci + ??? = ??2 + rc? = 0 mod 2 satisfies f ( B ) < k if and 

only if 7rc < 2k — 1. This is done in essentially the same way as Case 3 in the 

proof of Proposi t ion 2. 
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Case 2. k = 1: Let Q C C2
r be an independent subset such tha t 

#Q — p{C^) = r -f 1; then Q is of the form Q = { 0 , g i , . . . , g r } , where 

(9u---,9r) = C%. 

Now let a: G\Q —> No be any function such tha t (Q,O~) is a 1-system, and 

set m = |cr| E No ; we shall prove tha t m < 

we set gj = ]T gj ; then we have 
J€J 

For a subset J C { 1 , . . . , r } , 

G\Q={gj\ J c { l , . . . , r } , # J > 2} . 

We contend tha t a(g) < 1 for all g E G \ Q . Indeed, if cr(g) > 2 and g — gj 

for some J C { 1 , . . . , r } , #J > 2 , then there exists a block B E fs(Q, cr) which 

is of the form 

B = 9y]lg2
rBo 

jeJ 

for some Bo E B(G), and since 

Í-5- ГЫ </-t • П gi 

we o b t a i n f(B)>2. 

Therefore there exist subsets J i , . . . , J m of { l , . . . , r } such t h a t # J ^ > 2 

for all fi a n d a(g) = 1 if and only if g = gj^ for some /u E { 1 , . . . , m } . We 

contend t h a t J^ (1 Ju = 0 for all /i ^ *v . Indeed, \i \i ^ v a n d j 0 = J M fl J^ ^ 0 , 

t h e n there exists a block i? E 0 ( Q , 0"), which is of the form 

B = n ^ n ^ * 9JV9JV - Bo 

>EJM >€J„ 

for some B0 E B(G), and since 

? JM • n gj 
jeJ* 

9J.- n ^ ) = \9j»gj" n s i n »>) • n ^2 

je./* ' v j€J„\Jo jeJ*\Jo J£Jo 

we infer f(B) > 2 . 

Now we obta in 

and hence m < 

Г > ^ # j „ > 2 m ' 

м=l 

as asserted. D 
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