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NON-UNIQUE FACTORIZATIONS
IN BLOCK SEMIGROUPS AND
ARITHMETICAL APPLICATIONS

A. GEROLDINGER -- F. HALTER KOCH

ABSTRACT. We study the structure of non-unique factorizations in block semi-
groups over finite abelian groups G with #G > 3. As an application we obtain
asymptotic formulas for certain functions associated with the non-uniqueness of
factorizations in algebraic number fields.

§1. Factorizations in block semigroups
Throughout this paper, let G be an additively written finite abehan group
with #G > 3.

We recall briefly the notion of block semigroups. Let F(G) be the multi-
plicative free abelian monoid with basis G. The clements of F(G) are of the

form
5 - H glyg(S)s

g€lC

where v4(S) € Ny, and we set

B(G)={BeF(G)| Y w(By=0ea};

geG:

B(G) 1is called the block semigroup over G, the clements of B(G) are called
blocks. More generally, for a subset Gy C G, we set

B(Go) = {B€eB(G)| vg(B)=0 forall g€ G\Gy}.

The semigroups B(Gp) are Krull monoids; if Gy = G, then the embedding
B(G) — F(G) is a divisor theory, the divisor class group is isomorphic to G,
and every class contains exactly one prime divisor; see [7, Beispiel 6] and [6, §3].

AMS Subject Classification (1991): Primary 11R27, 11R44. Secondary 20M11.
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In particular, every B € B(G) is a product of (finitely many) irreducible
clements of B(G) , which we call irreducible blocks.

Block semigroups were first introduced by W. Narkiewicz [12] as a
combinatorial tool for the investigation of non-unique factorizations in algebraic
number fields. In the sequel, they turned out not only to be an in fact very
powerful tool [3] but also to be of structural interest [6].

For a block B € B(G), we denote by f(B) the number of distinct factoriza-
tions of B into irreducible blocks (factorizations which differ only in the order
of their factors are regarded as being equal). We set

Bk(d) ={B € B(G)|f(B) <k} and
Bi(G) = {B € B(G) | f(B) = k}.

Clearly,

k
Bi(G) = U B,(G),

and we are going to describe the structure of the sets Bx(G) and Bi(G) in some
detail. For this, we introduce the notion of independent subsets, cf. [2, §16].

DEFINITION 1. A subset Q C G s called independent, of

angzo with ng € Z
9€Q

implies ngg =0 (r.e., ng =0 mod ord(g)) for all g € Q. We set
p(G) =max{#Q | Q CG 1sindependent}.

A subgroup H < G 1s called essential, of HN G, # {0} for every subgroup
{0} £G, < G.

The group G 1s called elementary, if every element of G has square-free
order. Obuviously, a finite abelian group is elementary, if and only if it 1s a di-
rect sum of cyclic groups of prime order; then it contains no proper essential
subgroups.

For a prime p, we denote by r,(G) the p-rank of G, and for a subset
E C G, we denote by (E) the subgroup generated by E. For n € N let C,, be
the cyclic group of order n.

The notion of independence as introduced differs slightly from the usual one,
where 0 1s excluded.
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LEMMA 1. Let Q C G be an independent subset.

1) Q 13 a mazimal independent subset if and only 1f 0 € Q and (Q) s
an essential subgroup.

i1) If G 1is elementary, then Q 1s mazimal independent if and only if
0€Q and G =(Q).

Proof. [2, §16]. 0

PROPOSITION 1. We have

(where the sum 13 taken over all prime numbers), and for an independent subset
Q C G, the following assertions are equivalent:

1) #Q=p(G);
i1) @ 13 mazimal independent and contains only elements of prime power
order.

Proof. By [2, §16] we have

#Q =14 1,(G)
p

for every maximal independent subset @ C G containing only elements of prime
power order. Therefore it is sufficient to prove that #Q < p(G), if Q@ C G 1s
an independent subset containing an element which is not of prime power order.
If Q= {g1,---,9n} C G is independent and ord(g,) = de, where d,e € N,
d> 1, e>1 and (d,e) = 1, then the set Q' = {dg1,€91,92,...,9n} Is also
independent, and #Q < #Q' < p(G). O

DEFINITION 2.
1) A system (in G) is a pair (Q,0), consisting of a subset Q C G and a
function o: G\ Q — Ny ; we set

lo| = Z o(g) € No
9gEG\Q

(the eztremal cases Q =0 and Q = G are not excluded).
1) For a system (Q,0) and | € N, we set

=oa(g) forall g€ G\Q,
> forall ge Q.

Qo)1) = {B € B(G) vg(B)<
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and

AQ,0) = 2Q,0)(0).

1) Let (Q,0) be a system and k € N. (Q,0) is called a k-system, iof
0 #QQ,0) C Bi(G); (Q,0) 1s called a mazimal k-system, if 1t is a k-system
and if there is no k-system (Q',0') such that Q G Q' and o' = OiG\Q"

PROPOSITION 2. Let Q@ C G be a mazimal independent subset,
d = max{ord(g)| ¢ € Q} > 2 and k € N. Then there exzists a function
o: G\ Q — Ny such that (Q,0) is a k-system, Q(Q,o)(dk — 1) C Bx(G),
and moreover: )

1) |o| = 4k, if there exists an element go € G such that ord(go) = 4

and 2go € Q.
1) |o| = dk — 1, if either d > 3, or if there exist elements ¢y, g2 € Q
such that g; # g, and d = ord(g;) = ord(g2) =2.

Proof. Since #G > 3 and Q is maximal, @ fulfils one of the three con-
ditions stated in i) and ii). We set Q = {g1,...,9r}, where 7 > 2, ¢1,...,¢r
are distinct, d; = ord(g;) and d; = d. Then the blocks B; = gf‘ € B(G) are
irreducible.

Case 1. g; = 2gy, where g9 € G and ord(go) = 4. We define 0: G\ Q — N
by

4k -1, if ¢g=go,
o(g) =41, if g=-go,
0 otherwise.

If B =(2g0)" 95%...-97795°(~g0)" € B(G), then (2n:1+n0—nj)go+n2g2+
“+*+nrgr = 0, and since @Q is independent, we infer 2n; +ng —ng =0 mod 4
and n; =0 mod d; for all 7 € {2,...,7}. Therefore every block B € Q(Q,0)
has the form

B = (2g0)*™ g7 - g7t s T (—g0),

where m; € N, mg,...,m, € Ny, and the only irreducible blocks which
may divide B are By = (2¢0)?, Bs, ..., By, By = g3, By = (290)g2 and
B = go(—go). Hence all factorizations of B into irreducible blocks are given
by
B=B'B}.....B™BlB, B

‘f‘:here J1s jo, jo € Ny aresuch that 2j;+j5 = 2m;—1 and 4jo+2j} = 4k—2, i.e.,
Jo = 2j—1, where 1 < j < min(my, k) and j; = m;—j,jo = k—j . Consequently,
f(B) = min(m,, k) < k, and f(B) =k if m; >k, i.e., B € QQ,0)(2k —1).
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Case 2. d > 3. We define 0: G\ Q — Ny by

dk—]., if 9= -0,
o(g) =

0 otherwise.
If B=g" -..ug;”(—gl)"" € B(G), then (ny —n')g1 +n291+---+n,9, =0,
and since @ is independent, we infer n; —n} =0 mod d; and n; =0 mod d;

for all 7 € {2,...,r}. Therefore every block B € Q(Q,0) has the form

d —1 _da1 d,m, dyk—
B:gllml 922" gy (—a) "
where m; € N, my,...,m, € Ny, and the only irreducible blocks which may

divide B are B,,...,B,, B} = (=g1)* and By = g;(—g¢1). Hence all factor-
izations of B into irreducible blocks are given by

. N .
_ ph gpm2 m, ! plo
B=B{'B"-...-B""B,"'By°,

where ji, 71, Jo € Ny are such that dyj; + jo = dymy — 1 and dij] + jo =
dik -1, 1e, jo =dyj—1, where 1 < j < min(my,k) and j; = my — 7,
J1 = k — j. Consequently, f(B) = min(m;,k) < k, and f(B) = k if m; >k,
ie., Be QQ,o0)(dk—1).

Case 3. dy =d; =2. We define 0: G\ Q — Ny by

2k—1a lf g:gl+g27
o(g) = .
0 otherwise.

If B=g1"'95%95"...-977 (91 +92)" € B(G), then (n) +n)g1 +(n2 +n)g2 +
n3gs+---+n.g, = 0, and since @ is independent, we infer ny = n, =n mod 2
and n; =0 mod d; for all ¢ € {3,...,r}. Therefore every block B € Q(Q,0)
has the form

2 -1 2 -1 d d,m, k—
B:glmx lgzmz gsams_.“.gr m (91+g2)2 ]’

where m;,m2 € N, m3,...,m, € Ng, and the only irreducible blocks which
may divide B are By,...,B,, By = (g1 +¢2)? and B} = g192(g1 + g2). Hence
all factorizations of B into irreducibles are given by

B=BBPBl ... B BI By,
where j1, j2, Jo, jo € No are such that 25, 4+ j{ =2m; — 1, 2j, +j{ =2mg — 1
and 2jo + jo = 2k — 1, i.e., jo = 27 — 1, where 1 < j < min(m;,ms, k) and

Jo=k—j, 1 =my—j, jo = my—j. Consequently, f(B) = min(m;,mq,k) <k,
and f(B) =k, if B€ Q(Q,0)(2k-1). a
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DEFINITION 3. For every mazimal independent subset Q ¢ G and k € N,
we set

Pi(Q) = max{|a| | (Q,0) is a k-system}
(@) = max{|o| | (Q,0) 1s a k-system, Q(Q,0) N Bi(G) # 0}

(by Proposition 2, the sets {|o|| ...} are not empty), and

Pe(G) = xllax{l/)k(Q) | Q@ C G s independent, #Q = p(G)} ,
Ye(G) = max{d)k(Q) | @ C G s independent, #Q = p(G)} .

We shall investigate the combinatorial invariants ¥x(G) and ¥x(G) in §3.
We shall obtain estimates from above and from below, and in a few cases we
shall determine their precise values. Obviously, we have

¥k(G) = max{s;(G)| 1<) <k}.

In the next Proposition we characterize the independent subsets of G.

PROPOSITION 3. For a subset Q C G, the following assertions are equivalent:
1) @ 13 independent.
i1) B(Q) is a free abelian monoid.
ii1) There ezists a function 0: G\ Q — Ny and integers k € N, 1 € Ny
such that O # Q(Q,o)(1) C Bx(G).
If Q s independent, Q = {g1,...,9+}, where ¢1,...,g9, are distinct,

d;i = ord(gi;) end B, = g;i‘, then B(Q) 1is the free abelian monoid with ba-
sis By,...,B,.

Proof. We set Q@ = {¢1,...,9r}, where g;,...,g, are distinct and
d; = ord(g;); then the blocks B; = g:-i" are irreducible.

We prove first that ii) and iii) are violated, if @) is not independent. Indeed,
suppose that there is a relation of the form ny;91 + -+ + n,¢, = 0, where 0 <
n; < d; and (n1,...,n,) #(0,...,0). Then we have By = gi''-... g7 € B(Q),
and we may assume that By is irreducible. We set d =d, -... - d,, d; = di—ld
and B = BY(B, -... - B,)" € B(Q) (where | € Ny is arbitrary). For every
0 < j <k, B has the factorization

.
B =B [ B ™4

1=1
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into irreducible blocks, whence f(B) >k + 1.
1) = 1ii) follows from Proposition 2.

If @ isindependent, then every B € B(Q) has a unique representation in the
form B = By''-...- B}'"; therefore B(Q) is free abelian with basis By, ..., B, .
O

The following Theorem uncovers the structure of the sets Bi(G) and By (G).

THEOREM 1. Let k € N be a positive integer.

1) There exist only finitely many mazimal k-systems (Qy,o0y),...,

(Qm yOm ) y and

m

By(G) = |J Q. 0,). (+)
j=1
ii) Let (Q,0) be a k-system. Then we have either
AQ,a)NBr(G) =0,
or there ezists an integer | € Ny such that
UQ, o)1) C B(G).
iii) There exist (finitely many) k-systems (Qy,51),...,(Qy,0,) and inte-
gers ly,... 1, € Ny such that
Bu(G) = |J Qi ai)(1). (+%)
i=1
iv) Let (Q,0),(Q1,01),...,(Qn,0n) be k-systems, | € Ny and

2Q, o)) c |J Qi 0i).

1=1

Then we have Q C Q; and o; :UIG\Q,’ for some 1€ {1,...,n}.

In particular, in the representations (%) and (*x) in 1) and ii) above, every
mazimal independent subset Q of G appears among Qi,...,Q,. as well as
among Q1,...,Qr, and the corresponding constituent of the union cannot be
left out.
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Proof.

1) If B € Bx(G) and o0: G — Ny is defined by o(g) = vy(B), then (0,0)
is a k-system, and B € (#,0). Since for every k-system (Q,#) there ex-
ists a maximal k-system (Q',0') such that Q(Q,s) C QQ',0') it remains to
prove that there are only finitely many maximal k-systems. If not, then there
exists an independent subset ) C G, and there exist infinitely many functions
o: G\ Q — Ny for which (Q,0) is a k-system. In particular, there exists a se-
quence of functions (o,: G\ Q — No)n>0

and lim o,(g;) = oo for some ¢; € G\ Q. By extracting subsequences of
n-—oo

such that all (Q, 7, ) are k-systems,

(0n)n>0, we arrive, in a finite number of steps, at the following situation: there
exists a subset # Q1 C G\ Q, an integer M € N and a sequence of functions
(on: G\Q — No), 5o such that all (Q,0n) are k-systems, ”12130 on(g) = oo for
all g€ @y, and 0,(¢9) <M forall n >0 and all ¢ € G\ (Q U Q). Therefore
there exists a function ¢: G\ (Q U Q;) — Ny and a subscquence (0n; );>0 of
(0n)n>0 such that o,,(9) = o(g) for all j > 0 and all ¢ € G\ (QU Q).
We contend that (Q U Q,0) is a k-systemn (contradicting the maximality
of the k-systems (Q,on;)). Indeed, § # QQ,0,,) C QUQ U Qy,0), and if
B € QU Qy,0), then there exists an index j > 0 such that o,,(g) > vy(B)
for all ¢ € Qy, and therefore there exists a block B € (Q,0n;) such that
B = BB' for some B' € B(G), whence f(B) < f(B) <k, i.e., B € Bx(G).

ii) Fix a block By € Q(Q,0) N Bi(G), and set | = max{vy(Bo) | g € Q}.
If BeQQ,o0)(l), then B = ByB' for some B' € B(G), and therefore we have
k=f(By) < f(B)<k,iec BeBiyG).

1) By 1), we have

Bi(G) = | Q,,9,;) N B(G),
j=1

and therefore it is sufficient to prove the following statement:

Given a k-system (Q,0) such that Q(Q,0) N Bi(G) # 0, then there exist
finitely many k-systems (Qi,oy) (1 =1,...,n) and [,,...,l, € Ny such that

Qo) N Bi(G) = | J AQi o))
i=1

We do this by induction on #@Q. For Q = @, there is nothing to prove. Thus
suppose @ # @; by ii), there exists an integer [ € Ny such that Q(Q,o)(l) C
Bi(G), and we obtain

Qo) =AQo)HU | AQ,a",
(Q',0)
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where the union is taken over all proper subsets Q' G @ and all functions
o': G\ Q' — Ny satisfying Ul'G\Q =0, d'(g) <l forall g€ Q\Q and
QQ',0") # 0. This implies

QUQ,0)NBL(G) =AQ,0)HU | 2Q',0")NBk(G),
(Q',0")

and the assertion follows by induction hypothesis.

iv) Let B € Q(Q,0)(l) be a block satisfying vy(B) > max{|o1],...,|on|}
for all ¢ € Q. If then B € Q(Q;,0:) for some i, we infer @ C @i, and
0i(9) = vg(B) = 0o(g) forall g€ G\Q;.

Now let ) C G be a maximal independent subset. By Proposition 2, there
exists a function o: G\ @ — Ny and | € Ny such that

QQ, o) C Bu(G) = | AQ;,0;)

=1

and

2@, o)1) C Bu(G) = | AQi,:)(L:).

j=1

By the above argument, we infer Q C Q;, o, = UIG\Q- for some j € {1,
j

..,n},and Q C Q,, a; = U‘G\Q_ for some 7 € {1,...,r}. Since @ is a

maximal independent subset of G, this implies Q = @, and Q = Q; , whence
the assertion. O

§2. Arithmetical applications

Let A be an algebraic number field, R its ring of integers, 7 the semigroup

of non-zero ideals of R, H the semigroup of non-zero principal ideals of R,

G = I/H the ideal class group, and h = #G the class number of K. If P

denotes the set of all maximal ideals of R, then T is the free abelian monoid

with basis P. For a € T, we denote by [a] € G the ideal class containing a,
and we write G additively so that [ab] = [a] + [b] for all a,b€ T.

Every element a« € R*¥ = R\ (R* U {0}) has a factorization a = u; -

- u,, where u; € R are irreducible elements of R; we call r the length

of the factorization. If h = 1, then R 1is factorial, and the factorization of

any a € R#* into irreducibles is essentially unique (i.e., it is unique up to

associated irreducibles and the order of the factors). If h > 1, then there are
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elements o € R#* with several distinct factorizations, and G is said to measure
the deviation of R from being factorial. For concrete results supporting this
philosophy see [7] and the literature quoted there.

The arithmetic of R is connected with the arithmetic of the block semigroup

B(G) in the following way (cf. [3]):

For a € R# | we consider the prime ideal decomposition

(a):pl’---'pm

with p; € P and set
Bla) =[] ... [pm] € B(G);

B(a) is called the block of a. An element o € R* isirreducible in R if and only
if B(«) € B(G) is an irreducible block. If & = wuy -... u, is a factorization of «
into irreducible elements of R, then B(a) = B(uy1)-...-B(u,) is a factorization
of B(«) into irreducible blocks, and every factorization of B(«) in B(G) arises
in this way.

Two factorizations

!
a=uy- ... Up, O =Uyp...c U

of o into irreducible elements of R are called block-equivalent, if the correspond-
ing factorizations

Bla) = Blur) ... Blur),  Bla)=Buy) ... B(u)

in B(G) differ at most in the order of their factors. We denote by

f*(a) = f(B(a))

the number of not block-equivalent factorizations of a .

Using this terminology, we obtain the following extension of a classical result

of L.Carlitz [1].

PROPOSITION 4. For an algebraic number field I\, the following assertions
are equivalent:
1) h<2.
i) f*(a)=1 for all a € R¥.
iii) For every a € R* | any two factorizations of o into irreducibles have
the same length.
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Proof.

1) = ii): If h <2, then G = {0,¢} and B(G) is factorial (it is the free
abelian monoid with basis {0,¢%} ). and therefore f*(a) =1 for all o € R# .

i1) == ii1): follows from the simple observation that any two block-cquival-
ent factorizations of an element a € R¥ have the same length.

i) = 1): See [1]. 0

The quantities f*(a) give rise to the following quantitative results. For A ¢ N
and z € R5q, we set

Bi(z) = #{(a) e H| a € R*, |N(a)| <, f'(a) <k},
Bi(z) = #{(a) € H| a € R*, |N(a)| <o, f'(a) =k},

and we determine the asymptotic behaviour of these functions as follows.

THEOREM 2. For k€ N and v > ¢, we have

Vi(loglog &) + O((log o)™ (log log )M )J .

Bi(z) = z(log .1:)"+Ahﬂ [

Bi(z) = z(log .L')A”"#l [Vk(logl()g.l:) + O((log ) " (log log .:')"’)J ,

where Vi, Vi € C[X] are polynomials with positive leading coefficient, deg Vi =
. 9
Yi(G),deg Vi = Yi(G),yn = Tll—(l — cos :ZE), and M € N depends on b and
K.
Proof. By Theorem 1, we have

Be(G) = | Qj05),  BuG) = Q o).
1=1

j=1
where (Q;,0;) and (Q},0}) are k-systems, I; € Ny,
p(G) =max{#Q, | j=1,....m} =max{#Q, | 1=1,....r},
and

Yi(G) = max{|o;|| j=1,....m, #Q, = p(G)},
vi(G) =max{|o]| | 1=1,...,r, #Q,=p(G)}.

Now the assertion follows from the following Lemma, due to J. Kaczo-

rowski [11] (Lemma 2 and p. 66/67):
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LEMMA 2. Let (Q1,01),...,(Qn,0n) be systems in G and ly,..., 1, € N
such that QUQi,0:)(li) # 0 for all 1 € {1,...,n}, and set

Q= 2AQi o))

1=1
Then we have, for x > €,
#{(a) e H| a € R*, |N(a)| <z, Bla)e 0}
= z(logz)~ "tk [V(loglog z) + O((log x) " " (log log .’L‘)M)] ,
where
p=max{#Q.| 1=1,...,n},

V € C[X] s a polynomial with positive leading coefficient and

degV =max{|oi|| i=1,...,n, #Q:i=pi},

Th = 71;(1 — cos —2-h7—r—) and M = M(Q2) € N.

There are several other functions connected with non-unique factorizations
in algebraic number fields whose asymptotic behaviour has been investigated.
For a € R* | let f(a) be the number of essentially distinct factorizations of «
into irreducible elements of R and l(a) the number of distinct lengths of such
factorizations. Among others, the following functions were considered:

Fi(z) = #{(a) e H| a € R*, |N(a)| <z, f(a) <k},
Fi(z) = #{(a) e H| a € R¥, |N(a)| <z, f(a)=k},
Gi(r) = #{(a) eH| a € R¥, |N(a)| <z, I(a) <k},
Gi(z) = #{(a) e H| a € R¥, |N(a)| <z, I(a)=k}.

All these functions have, for £ — oo, an asymptotical behaviour of the form
(C + o(1))z(log z)~"*(log log x ),
where C >0, 0 < ¢< 1 and d € N. This was shown
~ for Fy in [14] (with ¢ = —}1;
~ for Fy in [5] and [9] (with ¢ = 711_)’
— for G and Gy in [16] and [4].
In any case, the remainder term o(1) can be made more precise by means of

the method of Kaczorowski [11]. All results (also these for By and Bx)
remain valid in the general context of formations as introduced in {10].

); d was investigated in [12] and [15],
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§3. The invariants ¥x(G) and ¥(G)

Let again G be a finite abelian group and #G > 3. For k € N, we denote
by Di(G) the generalized Davenport constant (8], which is defined as follows:

Di(G) is the minimal number such that, for every
S=[[9¢""® € F(G)
9€G

satisfying
Y 0y(S) = Di(G),

g€l

there exist irreducible blocks By,..., By € B(G) such that
S=D,-...-BS

for some S' € F(G).

PROPOSITION 5.
1) If e 1is the exponent of G, then we have, for k € N,

Pi(G) < Z (ord(g) = 1) + (k= 1)e — p(G) + 1.
0#g€G

it) If G 1s an elementary group, then we have, for k € N,

Yk(G) < Di(G) - 1.

Proof. We assume that there exists a subset Q G and a function
0: G\ Q — Ny such that (Q,0) is a k-system, #Q = p(G), and |o| exceeds

the bounds given in the Proposition.

i) Suppose that |o] > 57 (ord(g) — 1) + (k= 1)e — p(G) + 1, [ > ke and

0#g€eC
B e QQ,0)(1) C Bi(G). We assert that there exist elements ay,...,ax € G\ Q
such that di = ord(a;) and B = u, - d"B' for some B' € B(G). Indeed,
if1e€{l,....k} and a;,...,a,, € C\Q are such that B = “1 -(lil'_”l'B,-
for some B; € B(G), then
Yo owlB)= > wy(B)—di— - —dicy 2 o] — (1 - 1)
9geEG\Q 9geEG\Q
> Y ford(g) 1) = (p(G) 1) 2 D (ord(g) - 1),
0#geG geEG\Q ’

653



A. GEROLDINGER — F. HALTER-KOCH

and therefore there exists an element a; € G\ Q such that B; = o B! for some
B; € B(G).
It follows that B is divisible by a block By of the form

Boza;l‘n..-a:"-l—lgkc,
9€eQ

and hence f(By) < f(B) < k.

Since @ is a maximal independent subset of G, the subgroup (Q) of G is
essential (Lemma 1), and therefore we obtain relations

—m;a; = an’,’g (t=1,...,k),

9€eqG

where 1 <m; < d; and 0 < n,; <ord(g) < e. If we choose these relations so

that, for each ¢, m, + 3 ngy; is minimal, then the blocks
9eQ

Ci=al"- H g" e B(G)
geQ

are irreducible. Now we obtain, for 7 =0,1,...,k,

; :
J

v dj 41 d ke“-g e di—m;

By =Cy-...-Cja;l -...-ak“-”g i=1 . a; ,
geQ =1

and therefore f(By) > k + 1, a contradiction.

11) Let G be elementary, |o| > Di(G), | > ke and B € Q(Q,o)(1) C Bx(G).
By definition of Dy(G), there exist irreducible blocks A4,,..., Ay € B(G \ Q)
such that A, -...- Ay divides B. Therefore B is also divisible by a block B
of the form

By =Ay-...- A ] ¢~
9€Q
and hence f(By) < f(B) < k. For every ¢ € {1,...,k}, let a; € G\ Q be
an clement satisfying vq, (Ai) > 0, and set A; = a;A,. By Lemma 1, (Q) is
an essential subgroup of G, and since G is elementary, we have (Q) = G.
Therefore there exist relations of the form

—a; = any,-g (2=1,...,k),
9€eQ
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where 0 < ng; < ord(g) < e, and the blocks

=a;- H gt € B(G

9€Q

are irreducible. Now we obtain, for j =0,1,...,k,

ke—3" ng
By = Cl-...-C]-Aj+1-...~Ak~Hg S Ay LAY
9€Q
and therefore f(By) > k + 1, a contradiction. O

Proposition 5 ii) becomes false if G is not elementary. For G = C)pr, this is
shown by the next result; by (8], we have Dy(C)r) = kp™.

PROPOSITION 6. Let p be a prime, k,r € N and r > 2. Then

J’k(cp") Z kpr -1 + (7' - 1)(1’ - l) .

Proof. For Cpr = (g0), we set @ = {0,p" 'go}, and we define
o: G\ Q — Ny by

kp"—1, if ¢g=—go,
alg)=< p—1, if ¢g=p“go forsome ve{0,1,...,7r—2},

0 otherwise.

We shall prove that Q(Q,0)(kp—-1) C Bk(Cpr); since #Q = 2 = p(Cpr), this
implies Y (Cpr) > |o| = kp" =1+ (r=1)(p—1). If B € QQ.0)(kp— 1), then
r—2
B = (=g = L0907~ (0" g0~ 0y

v=0

where myn € Ny, m > kp -1, n > k. We shall prove that, for every
J € {1,....r}, all blocks of the form

B] — (__(]() k}) - H p (]O l ) ~lgo)np——l(0)m .

(m,n > k) liein Bg(Cpr) (for j =1, the assertion follows).
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We use induction on j. For j =1, we have

r_r—1 r— np— m
By =(=g0)* 7" (p" ' g0)"" T (O)™;

the irreducible blocks dividing By are Ag = (—go)? , A1 = (—‘go)”r_l(pr”lgo),

A; = (p""!go)? and (0). Therefore all factorizations of B into irreducibles are
given by

By = AP A AR (O)™,

where j; € Ng are such that p"jo +p "~ 'j; = kp" —p"~! and j; +pj, =np—1,
ie, jg =jJp—1for 1 < j <k and jo = k—j, j2» = n —j; this implies
f(B;)=k.

Suppose now that 2 < j < r and B;_; € Bx(G). There is only one irre-
ducible block C; dividing Bj for which wv,--j,(C;) > 0, namely

Ci = (" 7g0)(—g0 )"~ . Therefore C}'“l occurs in every factorization of B;,
and since B; = C?™'B,_,, we infer f(B,) = f(B;_1) =k. ' 0
PROPOSITION 7.
DIfG=Gi®G,, #Gi >3 and k; €N for 1 =1,2, then
Yr, k(G @ G2) > Pk, (G1) + ¥4, (G2)  and
Yk, (G1 B G2) 2 ¥k, (G1) + ¥k, (G2) -

1) If Go < G 13 a subgroup and k € N, then
Pe(G) > Pk(Go)  and  Pi(G) > Yi(Go).

Proof.

i) It is sufficient to prove the assertion for ), since then we have

Yy ko (Gr @ G2) = max{y;(G1 ®G2) | 1 <j < kiks}
> max {4, ;,(G1 ®G2) | 1< jy <ky, 1< 52 < ko)

> max{1;,(G1) + $,(G2) | 1< jy < ki, 1< 72 < ko)
2

=Y max{1;;(Gi) | 1<ji <ki} =, (G1) + ¥x,(Ga).

=]

We may suppose that G; C G and G2 C G. For : = 1,2 let @i C G; be an
independent subset and o;: G; \ Q; — Ny a function such that #Q; = p(G),
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|oi| = 9, (G:) and (Qq,0;) is a ki-system with Q(Q;,0,) N Bk, (G:) # 0. Then
Q1 U Q2 is an independent subset of G, and #(Q; U Q2) = #Q1 + #Q, — 1
= p(G). We define 0: G\ (Q; UQ2) — Ny by

oi(g), if geGi\Qy,
o(g) =1 o209), if g€ G2\Qy,

0 otherwise.

Then we have |o| = |oy| + |o2], and every block B € (@1 U (2, 0) has the
form B = B;B,, where B; € Q(Q;,o0;). This implics f(B) = f(B)f(B,) and
therefore Q2(Q; U Q2,0) is a kjkz-system with

QQ,UQz,0)N Bk,k;(Gl HGy) £ B and
Yy ky (G) > o] = Vi, (G) + Yk, (G).
i1) Again it suffices to show the assertion for 1. Let Qo € Gy be an in-
dependent subset and oq: Gy \ Qv — Ny a function such that #Q, = p(Gy).
loo] = ¥x(Go) and Q(Qy,00)NBi(Gy) # . By Proposition 1, Qy contains only

elements of prime power order. Let Qg9 C @ C G be such that ) is a maximal
independent subset containing only elements of prime power order, and define

0: G\ @ — Ny by 0|G0\Q0 = 09 and U'G\\(Gn Q)= 0. Then #Q = p(G)
by Proposition 1, and every block B € Q(Q,0) has the form

B=J[o [[ ¢,

9EQ gEGH\Qo

where n, € Ny.

We contend that an element

Bi=[]o" [I o™ erc

9€Q 9€Go\Qo

(where mg,ng € Ny) is a block if and only if

B} = H g"e - H g™ € B(Gy), and ny =0 mod ord(yg)
gEQo 9€Go\Qo

for all ¢ € Q\ Qo . Indeed, if By is of the indicated form, then it is a block.

Conversely, if
ang+ Z meg =0,
geQ g€Go\Qo
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then we obtain

9" = Z nyg € Go.
9€EQ\Qo

If g* =0, then ny = 0 mod ord(g) for all ¢ € Q \ Qo, and the assertion
follows. If g* # 0, then there exists an integer d € N such that 0 # dg* € (Qo) .
since (Qo) is an essential subgroup of Gy . This implies

Z dngg = z egq9 # 0

" 9EeQ\Qo 9€Qo

(where ey € Ny ), which contradicts the independence of Q.

Now every block B € Q(Q,0) is of the form

B = H gmg ord(g) . By ,
9EQ\Qo

where By € Q(Qo,00) and m, € Ny, and for every g € Q \ Qo, ¢°™*® is the
only block dividing B and containing ¢. This implies f(B) = f(Bo), and since
By € Q(Qq,09) can be prescribed arbitrarily, we infer Q(Q, o) N Bx(G) # 0,

whence ¥x(G) > |o| = |ao] = ¥i(Go). O

COROLLARY 1.
i) If p is a prime dividing #G, ¢ the exponent of G and k € N, then

=1+ kp < Yi(G) < Yk(G) < a+ ke

for some a € N.

i) Yr(G) = Yx(G) for infinitely many k € N.

Proof.

1) We start with the left inequality. By Proposition 7 ii) it is sufficient to prove
that Yx(Cp) > kp — 1,if p > 2, Yi(Cq) > 2k — 1 and Yx(Cy 4 C2) 2 2k — 1.
But these inequalities follow immediately from Proposition 2.

Obviously ¥x(G) < max{y;(G)| 1< j <k} = yx(G). The right inequality
1s a consequence of Proposition 5 1).

ii) Since Yx(G) tends to infinity with & and z,/»k(G):max{ljg',’(GH 1< <k},
we infer ¥x(G) = Yx(G) for infinitely many k € N. O
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PROPOSITION 8. Let k,7 € N and p > 2 be a prime.

) ¥k(CE) > dk(C]) > (k47— 1)p—
) If k=1 or r <2, then

Pr(Cp) = dk(Cy) = (k+7 —p 7.

Proof.
i) We do the proof by inductionon r. For r = 1 Corollary 1 implies yx(C,) >
kp—1. For r > 2 we obtain by Proposition 7 i) that

Ve(Cy) 2 P(Cy ™) +91(Cp) 2 (k47 —=2)p—(r—1)+p-1=(k+r—1)p-r.

ii) By Proposition 5 i) we have ¥x(C]) < Di(Cy) — 1. For k = 1 or
<2 Di(Cp)=kp+(r—1)(p—1) ([8]) and so the asscrtion follows. O

PROPOSITION 9. For k,r € N, r > 2 we have

i) () 2 hu(Ch) 2 [5] +2k -2,
1) If k=1 or r =2, then

Pi(C3) = Pi(Cy) = [ ]+2L—2

Proof.

1) By Proposition 7 i1) it suffices to show the assertion for even r. We set
r = 2s and do the proof by induction on s. Corollary 1 1) gives the assertion
for s = 1. Let s > 2; using Proposition 7 i) we obtain

Pr(C3") = vk ((C2 & C2)*) 2 bk ((C2 @ C2)*™") + 1 (C2 0 C)
>s—14+2k-24+1=s+2k-2.
1) Casel. r =2: Let G =C, ®C, and @ = {0,91,92} a maximal inde-
pendent subset of G; then G\ Q = {g1 + g2} . Therefore we must prove that a

block of the form
B=g"9"(g1 +92)",

where ny,ny,m € No, ny +m =ny +m =0 mod 2 satisfies f(B) < k if and
only if m < 2k — 1. This is done in essontlally the same way as Case 3 in the
proof of Proposition 2.
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Case 2. k = 1: Le¢ @ C C) be an independent subset such that
#Q = p(C;) = r + 1; then Q 1is of the form Q = {0,¢1,...,9-}, where
(91,---9r) = C3.

Now let 0: G\ Q — Ny be any function such that (Q,o) is a 1-system, and

set m = |o| € Ny ; we shall prove that m < [—g—] . For a subset J C {1,...,7},
we set gy = Y. g;; then we have
JEJ

G\Q={gs| JC{l,...,r}, #J =2}
We contend that o(g) <1 for all ¢ € G\ Q. Indeed, if o(g) > 2 and g = g,

for some J C {1,...,r}, #J > 2, then there exists a block B € Q(Q, o) which
is of the form

B:gzj-ngszo
JEJ

for some By € B(G), and since
2
2
g5 Il ¢ = (gJ-Hg]) ,
J€J J€J

we obtain f(B) > 2.

Therefore there exist subsets Ji,...,Jm of {1,...,7r} such that #J, > 2
for all u and o(g) = 1 if and only if g = g, for some p € {1,...,m}. We
contend that J,NJ, =@ for all u # v.Indeed,if p# v and Jo = J,NJ, #0,
then there exists a block B € §2(Q,0), which is of the form

B= ] 9 I 995,90, - Bo

i€, €L
for some B, € B(G), and since
2
(9# : H 91) (!IJV . H g;’) = (gJ,.gJ, H 9; H gj) ’ H 95
J€Ju JEJy J€J\Jo  JELN\Jo J€Jo

we infer f(B) > 2.
Now we obtain

m
P> ) #Ju > 2m,
p=1

and hence m < [—g—] , as asserted. O
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