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SHARP AND FUZZY ELEMENTS 
OF AN RC-GROUP 

DAVID J . FOULIS 

(Communicated by Anatolij Dvurečenskij ) 

A B S T R A C T . Effect algebras serve as algebraic models for logical calculi and 
thereby provide semantic interpretations for both sharp and fuzzy logical propo­
sitions. Most of the effect algebras t h a t are so employed can be realized as intervals 
in partially ordered abelian groups, called CB-groups, t h a t are enriched by a fam­
ily of order-preserving endomorphisms called compressions. For a special class of 
CB-groups called RC-groups, we show t h a t every element of the positive cone 
can be decomposed uniquely as a sum of a finite chain of sharp elements and 
a fuzzy element of the unit interval t h a t dominates no nonzero sharp element. 
The category of RC-groups includes the additive groups of bounded measurable 
functions on o-fields of sets, abelian ^-groups with Heyting MV-algebras as their 
unit intervals, and the self-adjoint parts of AW* -algebras. 

1. Introduct ion 

Let B be a a -field of subsets of a nonempty set X and define E(X,B,R) to 
be the set of all immeasurable functions e: X —> R such that 0 < e(x) < 1 for 
all x G X ([19]). 

DEFINITION 1.1. If M G B, the characteristic set function (or indicator func­
tion) of M is denoted by \ M

 G E(x> # > K ) • T h e mappings ^: E(X, B, R) -» 
E(X,B,R) and ' : E(X,B,R) -> E(X,B,R) are defined for e G E(X,B,R) by 
e±(x) := 1 — e(x) for all x G X and e' : = Xe-i(o) • 

Elements e G E(X, B, R) can be regarded as (possibly) fuzzy subsets of X in 
the sense of L. Z a d e h [26]. According to this interpretation, if e G E(X, B, R) 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 06F20; Secondary 03B52, 06D35. 
K e y w o r d s : sharp, fuzzy, blunt, CB-group, Rickart CB-group, general comparability property, 
RC-group. 
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and x G X, the real number e(x) represents the "degree of membership*', on 
a scale from 0 to 1, of x in the (possibly) fuzzy set e. If e(x) = 1, then x is 
a full-fledged member of e; if e(x) = 0, then x is a full-fledged member of the 
(possibly) fuzzy complement eL of e. 

Elements e G E(X, B, R) can manifest varying levels of "fuzziness". No fuzzi-
ness at all is associated with the characteristic set function \M ° ^ a se^ M € B; 
indeed each x G X has either full status as a member of XM o r a s a m e m _ 

ber of its complement (XM) ~ X(x\M) according to whether XM(X) ~ 1 o r 

XM(x) = 0. On the other hand, if b G E(X,B,R) and b(x) < 1 for all x e X, 
then no element in X has full status as a member of b. 

DEFINITION 1.2. An element p G E(X,B,R) is sharp iff it has the form 
p = xM f° r some M G B. The set of all sharp elements in E(X,B,R) will be 
denoted by P(X,B,R).X 

An element b G E(X, B, M) is blunt iff b(x) < 1 for all x e X. 

The constant functions %0 a n d Xx m P(X, B, R), which we shall denote 
simply by 0 and 1, represent the sharp empty set and the sharp universal set 
X, respectively. The elements / G E(X,B,R) such that both / and f1 are 
blunt are "totally fuzzy" in the sense that no element x G X has full status as 
a member of either / or f1-. We note that 0 is the only element of E(X, B, R) 
that is both sharp and blunt. 

The system E(X, B, R) is richly endowed with mathematical structure. It is a 
distributive lattice under the pointwise partial order with the pointwise minimum 
and maximum of e, / G E(X, B, R) as the infimum e A / and supremum e V / of 
e and / . The constant functions 0 and 1 are the smallest and largest elements 
of E(X, B, R). The unary operations e ^ e 1 and e i-> e' serve as two notions of 
"complementation" or "negation" on E(X, B, R); both are order inverting, and 
e ^ e 1 , but not e i-» e', is of period two. The system E(X, B, R) carries partially 
defined binary operations / B e , defined only when e < / , and e 0 / , defined only 
when e < / x , according to (fQe)(x) := f(x) — e(x) and (e(&f)(x) := e(x)-\-f(x) 
for all x G A". It also carries binary operations (e, / ) t-> e + / and (e, / ) i-r e D f 
defined by ( e+/ ) (x) := min{e(x)+/(x) , l } and e D f := (e Q (e A / ) ) ' V / . 

Under the pointwise partial order and with p H> p1- as the Boolean com­
plementation, P(X,B,R) is a cr-complete Boolean algebra isomorphic to the 
a -field B. Under the partial binary operation 0 , E(X, B, R) is a D-poset ([22]); 
under the partial binary operation 0 , it is an effect algebra ([1], [15], [18]); it 
is a Heyting algebra with D as the Heyting implication connective and e 4 t ' 
as the Heyting (or intuitionistic) negation connective2 ([6]); and with + as 

1 This notation is chosen to correspond to the more general notion of a "projection" in a 
CB-group — see Lemma 4.7. 

2For d,e,f £ E(X,B,R), dAe< f <^=^ d < (e D f) and e' = (e D 0) . 
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the MV-sum and e 4 e x as the MV-negation, E(X,B,R) is an MV-algebra 
([23], [25]). 

MV-algebras were originally introduced by C. C h a n g [3] to serve as alge­
braic models for the multivalued logics of Lukasiewicz. In [23], D . M u n d i c i 
proved that every MV-algebra E can be realized as the unit interval in an en­
veloping abelian £ -group (lattice-ordered group) G with a distinguished order 
unit u. For the MV-algebra E(X,B,R), the enveloping group is the abelian 
^-group G(X, B,R) of all bounded ^-measurable functions / : X' —> R under 
pointwise addition and pointwise partial order. Thus, with the constant function 
1 as order unit, E(X,B,R) is the "unit interval" {e G G(X,B,R) : 0 < e < 1} 
in G(X, B, R), and we have 

P(X, B, R) C E(X, B, R) C G(X, B, R). 

The passage from the system E(X, B, R) to the abelian ^-group G(X, B, R) 
with order unit 1 offers several advantages. For instance, the partially defined 
operations e©f and / © e are naturally extended to the addition g + h and sub­
traction h - g operations on G(X, B, R), and the MV-sum of e, / G E(X, B, R) 
is given by the simple formula e+f = (e + f) A 1. Furthermore, there is a vast 
literature dealing with abelian ^-groups, and the well-developed theory for this 
class of groups can be brought to bear in the study of MV-algebras and the 
logical calculi for which they are models. 

In this article, we take G(X, B, R) as a prototype and proceed to study 
sharp, and fuzzy elements in more general structures called united groups ([7; 
Definition 2.3]), CB-groups ([16; Definition 3.4]), and RC-groups ([16; Defini­
tion 4.3(iv)]. The unit intervals in these structures can serve as semantic models 
for various classes of (possibly nonstandard) logical calculi, including quantum-
logical calculi ([4], [5], [20], [24]). 

The prototype G(X, B, R) is not only an additive abelian ^-group with order 
unit 1, it is also a ring, and even an associative and commutative linear algebra 
with unity element 1 under the pointwise product of functions. In the interest of 
obtaining a desired level of generality, we shall largely ignore the multiplicative 
structure of the prototype G(X, B, R) except for special products pf of sharp 
elements p G P(X, B, R) and functions / G G(X, B, R). In this connection, we 
note that pf = 0 <=> p < f and 

P(X,B,R) = {peG(X,B,R) : p = p2}. 

DEFINITION 1.3. The additive subgroup of G(X, B, R) consisting of the func­
tions / G G(X,B,R) such that f(x) G Z (the system of integers) for all x e X 
is denoted by G(X,B,7L). 

Evidently, G(X, B,7L) is the subgroup of G(X, B,R) generated by the sharp 
elements p G P(X, B, R). Because the functions in G(X, B, R) are bounded and 
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S-measurable, G(X,B,~\) consists of all Z-valued functions / that assume only 
finitely many values and have the property that f~l(z) G B for every z G Z 
(cf. Example 3.2 below). Under pointwise partial order, G(X, B, Z) is again an 
abelian ^-group, 1 G G(X,B,7L), and the unit interval 

E(X,B,Z):= {peG(X,B,Z): 0 < p < l } = P(X,B,R) 

is precisely the set of sharp elements in E(X, B, R). 

The following lemmas and theorem are easily verified. 

LEMMA 1.4. P(X, B, R) = {p G E(X, B, R) : p A p~ = 0} . 

LEMMA 1.5. Let0<te G(X, B, R) with t^O. Then t G G(X, B, Z) iff there 
is a finite sequence px,p2,...,pn of nonzero sharp elements in P(X, B, R) such 
that pl>p2>'">Pn and t = px -\-p2 H \-pn . Moreover, ift G G(X, B, Z ) , 
the sequence px > p2> - • > Pn is uniquely determined by t. 

LEMMA 1.6. If 0 < b G G(X,B,R), then b is a blunt element of E(X,B,R) 
iff the only sharp element p G P(X, B, R) such that p < b is p = 0. 

THEOREM 1.7. Let f G G(X,B,R) with 0 < / . Then there exists a uniquely 
determined element 0 < t G G(X, B, 7L) and a uniquely determined blunt element 
beE(X,B,R) such that f = t + b. 

If X is a singleton set and B = { 0 , X } , then G(X,B,R) may be identi­
fied with the totally ordered additive abelian group R. Then the unit interval 
E(X, B, R) is just the standard unit interval [0,1] in R, the subgroup G(X, B, Z) 
is just the totally ordered additive group Z of integers, the sharp elements in 
[0,1] are 0 and 1, and the blunt elements are real numbers in the half open 
interval [0,1). Thus, Theorem 1.7 just says that every real number r > 0 can 
be written uniquely as r = t + b where 0 < t G Z and 0 < b < 1. 

The main theorems of this article, Theorem 5.8 and 5.9, constitute a gen­
eralization to RC-groups of Theorem 1.7. In Section 2 below, we review7 the 
basic definitions underlying the notion of an RC-group, using G(X, B, R) as a 
running example to illustrate the concepts involved. In Section 3 we give some 
examples of RC-groups, including the self-adjoint part of an AW*-algebra and 
unital abelian ^-groups with Heyting MV-algebras as their unit intervals. In 
Section 4, we review some basic properties of CB-groups and RC-groups, and in 
Section 5, we state and prove our main theorems. Background material, more 
examples, and more details of the basic theory can be found in [1], [7], [8], [9], 
[10], [11], [12], [13], [14], [16]. 
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2. Basic definitions 

Let G be an additively-written partially ordered abelian group with positive 
cone G + := {g G G : 0 < g}. If, as a partially ordered set, G is a lattice, then 
G is said to be an abelian £ -group. An element u G G + is called an order unit 
([17; p. 4]) iff each element in G is dominated by an integer multiple of u.3 An 
order unit u is generative iff every element in G + is a sum of a finite sequence 
of elements in G + each of which is dominated by u ([1; Definition 3.2]). 

A unital group is a partially ordered abelian group G together with a specified 
generative order unit u G G + called the unit ([7; Definition 2.3]). If G is a unital 
group with unit u, then E := {e G G : 0 < e < u} is called the wm£ interval 
in G, and elements e £ E are called effects.4 For instance, if Z? is a cr-field of 
subsets of a nonempty set X, then G(X, B, R) is a unital group with unit 1 and 
unit interval E(X, B, R). 

Let G be a unital group with unit interval £ . B y a sub-effect algebra of 15 
we mean a subset P C E such that 

(i) o,ueP, 
(ii) p G P = > u-p € P, 

(iii) if p, r/ G P , then p + qe E =i> p + q e P. 

A sub-effect algebra P of S is said to be normal iff, whenever d, e, f <E E with 
d + e + / G £ , the conditions d + e G P and d + f G P imply that d G P ([11; 
Definition 1]). For instance, the set P(X,B,R) of sharp elements in E(X,B,R) 
is a normal sub-effect algebra of E(X, B, R). 

By definition, a retraction on G with focus p, is an order-preserving group 
endomorphism J : G -» G such that 

(i) P = J W G ^ , 
(ii) if e G £7, then e < p ==> J(e) = e. 

If J is a retraction on G, then J is idempotent, i.e., J o J = J ([9; Lemma 2.2]). 
Let J be a retraction on G with focus p. If, for all e G £7, J(e) = 0 =^> 
e < u — p, then J is called a compression on G. A retraction J : G -> G is 
said to be direct iff g G G + = > J(#) < g. Every direct retraction on G is 
a compression. 

A compression base for the unital group G is a family ( J ) G p of com­
pressions on G, indexed by their own foci, such that the set P is a nor­
mal sub-effect algebra of the unit interval E in G and, for all p, q, r G P, 
p + q + r G P =$> J p + r o Jq+r = Jr. A CB-group is a unital group G with a 
specified compression base (Jp)peP ([13; Definition 2.3]). A proper CB-group is 

3Some authors refer to such an element as a strong order unit or simply a strong unit. 
4 This terminology is borrowed from the quan tum theory of measurement ([2]). 
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a CB-group G such that every direct compression on G belongs to its compres­
sion base. A CB-group that is also an ^-group is called a CB£-group. 

If G is a CB-group with compression base ( j p ) then elements p G P 
are called projections. With the partial order inherited from G, P is a regular 
orthomodular poset with p i-> it — p as orthocomplementation ([20], [24]). 

E X A M P L E 2 .1 . If B is a a -field of subsets of the nonempty set X, then each 
sharp element p G -P(-X", # , R) C E(X, B, R) determines a direct compression J 
with focus p on G(X, 5 , R) according to Jp{f) := P/ (pointwise product) for all 
/ G G ( X , # , R ) . Every retraction J on G(K , i?,R) has the form J = Jp where 
p = J ( l ) G P (X , /3, R), and G(X, B, R) is a proper CB-group with compression 
base (Jp)pep^x1B,R)m 

As per the following example, any unital group can be organized into a proper 
CB-group in at least one way. 

E X A M P L E 2.2. If G is a unital group and ( J ) p is the family of all direct 
compressions on G, indexed by their own foci, then G is a proper CB-group 
with compression base ( J ) p. A CB-group G for which the compression base 
consists precisely of all direct compressions on G is called a direct CB-group. In 
a direct CB-group G with compression base ( J ) p , the projections P form a 
Boolean algebra. The CB-group G{X, B, R) in Example 2.1 is a direct CB-group. 

Standing assumption. In the sequel, G is a proper CB-group with unit u, 

unit interval E, and compression base ( J ) p. 

If p G P, we define the set 

C(p):={g_G: g = Jp(g) + Ju_p(g)} , 

and if g G C{p), we say that g is compatible with the projection p ([12; Defini­
tion 2.1 (i)]). Evidently, C{p) is a subgroup of G. If g G G, we also define 

CTC(#) := f]{C{p) : p G P and g G C(p)} ([12; Definition 2.1(iii)]). 

Thus, CPC{g) is a subgroup of G, and h G CPC{g) iff /i is compatible with 
every projection p with which g is compatible. For the CB-group G{X, /3,R) 
in Example 2.1, and more generally, in any direct CB-group, every element is 
compatible with every projection. 

If g G G, we define 

P±(g) :={pePn CPC(g) : g _ C(p) and Ju_p(g) < 0 < Jp(g)} . 

A projection p _ P±(g) splits g = J'(g) + Ju_p(g) into a "positive part" 

Jp(ff) > 0 a n < i a "negative part" Ju_p(g) < 0. If P±(g) is nonempty for every 
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g G G, then we say that the CB-group G has the general comparability property 
([8; Definition 4.6]). If G has the general comparability property and g G G, 
then 

g+ := -7p(s) and g" := -Ju_p(g) 

are independent of the choice of p G P±(g) ([12; Theorem 3.2]). Moreover, 

g = g+-g~ and 0 < g + , g " . 
If a direct CB-group has the general comparability property, then it is a 
CB£-group ([8; Theorem 4.9]) and for all g G G, we have g+ = g V 0 and 
a - = - ( O A 0 ) . 

E X A M P L E 2.3. In Example 2.1, if / G G(X,# ,M) , let M := / - 1 ( [0 ,oo ) ) and 
let p := x M

 G -P(-Y,/3,R). Then p G P ( X , / 3 , M ) ± ( / ) , so G(X,B,R) has the 
general comparability property. 

If g G G, it is easy to see that p is the largest projection in the set 
{p G P : g G C(p) and Jp(g) = 0} iff u — p is the smallest projection 
in the set {q G P : <Ig(g) = g} • By definition, G is a Rickart CB-group 
iff, for every g G G, there is a largest projection, denoted by gf, in the set 
{p e P : g G C(p) and Jp(g) = 0} ([12; Definition 6.1]). Thus, if G is a 
Rickart CB-group, then the mapping '': G -> P, called the Rickart mapping, 
has the following property: 

(Vg G G)(VP G P ) ( p < g' ^ (g G C(p) & Jp(g) = 0)) . 

E X A M P L E 2.4. In Example 2.1, G(X, 5,M) is a Rickart CB-group with 
g \-^ gf := Xo-i(o) as the Rickart mapping.5 

As a consequence of [8; Theorem 6.3], the orthomodular poset P of projec­
tions in a Rickart CB-group is an orthomodular lattice ([21]) with p i-> p ' = -u— p 
as the orthocomplementation. 

DEFINITION 2.5. An RC-group is a Rickart CB-group with the general com­
parability property, and an RCl-group is an RC-group that is also an £-group 
([16; Definition 4.3(iv)]). 

As per Examples 2.3 and 2.4, our prototype G(X, B, M) is a direct RC^-group. 

3. Examples of CB-groups and RC-groups 

The following additional examples of CB-groups and RC-groups will help to 
fix ideas and indicate the scope of our theory. 

5 Note tha t g i-> g' is the na tura l extension to G(X, 13, R) of the Heyting negation mapping 
e h > e ' o n E(X,B,R). 
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E X A M P L E 3 .1. Let .A be a unital C*-algebra with unity element 1 and let 
G(A) := {a G A : a = a*} be the additive subgroup of A consisting of all 
self-adjoint elements. Then G(A) is a unital group with positive cone G(A)^ = 
{aa* : a e A} and unit 1. Let P(A) := {p G G(A) : p = p2} and for 
each p G P(A) define Jp: G(A) -> G(A) by Jp(a) := pap for all a G G(A). 
Then J is a compression on G(A) and, if J is any retraction on G(A) and 
p = J ( l ) ? then p G P(A) and J = Jp ([9; Corollary 4.7]). The unital group 
G(A) is a proper CB-group with compression base (Jp)pep(^) • If a G G(A) and 
p G P(A), then a G C(p) <<--=> ap = pa. 

If .4 is a Rickart C*-algebra, i.e., if the right annihilating ideal of every 
element in A is a principal right ideal generated by a projection, then G(A) 
is a Rickart CB-group. If A is an AW*-algebra, i.e. A is a Rickart C*-algebra 
and P(A) is a complete (orthomodular) lattice, then G(A) is an RC-group. In 
particular, if A is a von Neumann algebra, then G(A) is an RC-group. 

The following example generalizes the unital group G(X, B,7L) of Defini­
tion 1.3 in that B need only be a field of sets, not necessarily a cr-field. 

E X A M P L E 3.2. Let B be a field of subsets of a nonempty set A" and let 
G(X,B,7L) be the partially ordered group under pointwise partial order and 
pointwise addition consisting of all bounded functions / : X —» 7L such that 
f~l(z) G B for every z G Z . Then G(X,B,rL) is a unital ^-group with the 
constant function 1 as the unit. Let P(X,B,Z) be the subset of G(X, B,7L) 
consisting of the characteristic set functions \M of sets M G B. If p G P(X, R), 
define Jp: G(X,B,7L) -> G(X,B,Z) by Jp(f) := pf (pointwise product) for 
all / G G(X,B,Z). Then Jp is a compression with focus p on G(X,B,Z), 
every retraction J on G(X, B,Z) has the form J — J where p = J ( l ) , and 
G(X, B, Z) is a proper RC£-group with compression base (Jp)pep(x B Z)-

In Example 3.2, P(X, B, 7L) is isomorphic to B as a Boolean algebra of sets. 
By the Stone representation theorem, every Boolean algebra is isomorphic to a 
Boolean algebra of sets B; hence, every Boolean algebra can be realized as the 
Boolean algebra of projections in a proper RCl-group. 

E X A M P L E 3.3. A partially ordered abelian group H has the Riesz interpolation 
property, or is an interpolation group iff, whenever a,b,c,d G H with a,b < c,d, 
there is an element t G H with a,b < t < c,d ([17; Chapter 2]). Every abelian 
f-group is an interpolation group. If H is an interpolation group and u is an 
order unit in H, then u is automatically generative, hence H is a unital group 
with unit u. If H is a unital interpolation group, then every retraction on H 
is direct, hence there is one and only one way to organize H into a proper 
CB-group, namely by choosing as the compression base all direct contractions 
on H, indexed by their own foci as in Example 2.2. By [8; Theorem 4.9], a 
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proper CB-group with the interpolation and general comparability properties is 
a CB^-group. 

The unit interval E in a unital £-group G forms an MV-algebra, and, con­
versely, by Mundici's theorem ([23]), every MV-algebra can be realized as the 
unit interval E in a unital ^-group G that is uniquely determined by E up to an 
isomorphism of unital groups; moreover, as in Example 3.3, G can be organized 
into a proper CB^-group in only one way, namely as a direct CB-group. If E is 
the unit interval in a proper CB^-group, then E is a Heyting algebra iff G is 
an RC^-group ([14; Theorem 8.7]). 

4. Properties of CB-groups and RC-groups 

As an effort to keep this article somewhat self contained, we assemble in this 
section some known properties of CB-groups and RC-groups that will be needed 
for the proof of our main theorems in Section 5. We maintain our standing 
assumption that G is a proper CB-group with unit u , unit interval J5, and 
compression base (j) p. 

The development in [8], [10], [12] pertains to a restricted class of CB-groups, 
namely the so-called compressible groups, i.e., CB-groups in which every retrac­
tion is a compression and every compression belongs to the compression base. 
The CB-groups G(X,B,R) in Example 2.1, G(A) in Example 3.1, G(X,B,Z) 
in Example 3.2, and any proper interpolation CB-group as in Example 3.3 are 
all compressible groups. The more general notion of a CB-group was introduced 
later in [11]. In [13] it was shown that the proofs of all of the basic properties 
developed earlier in [8], [10], [12] for compressible groups carry over almost ver­
batim for CB-groups. Therefore, in the present article, we can and do make free 
use of results from [8], [10], [12]. 

LEMMA 4 . 1 . Let g eG and peP. Then: 
(i) u,p,u-peC(p) = C(u-p). 

(ii) g e C(p) ^=> u-ge C(p). 
(iii) u,geCPC(g) = CPC(u-g). 

P r o o f . 
(i) Jp(u) =p and Ju_p(u) = u-p, whence u = p + ( u - p ) = Jp(u) + Ju__p(u), 

i.e., u e C(p). Obviously, p, u-p e C(p) = C(u - p). 
(ii) By (i), u e C(p). Hence (ii) follows from the fact that C(p) is a subgroup 

of G. 

(iii) By (i), u e C(p) for all p e P , hence u e CPC(g). That CPC(g) = 
CPC(it - g) follows from (ii), and g e CPC(g) is obvious. • 
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LEMMA 4.2. Ifp,qeP,thenpeC(q) <=> JpoJq = JqoJp <=> q G C(p). 

P r o o f . See [8; Theorem 5.4]. D 

In view of Lemma 4.2, for projections p, q G P, we usually write the condition 
p G C(q) in the more symmetric form pCq> By [8; Theorem 5.4], pCq iff p and 
q are Mackey compatible elements in the orthomodular poset P ([24]). 

LEMMA 4 .3 . Let p ,g G P. Then: 

(i) If pCq, then the infimum p A q of p and q exists in P and Jp(q) = 
Jq(p) = pAq. 

(ii) If p<q, then q-peP, pCq, and Jp o Jq = Jq o Jp = Jp . 
(iii) If pCq, then C(p) n C(q) C C(p A r/). 
(iv) If pCq, then p A (u — q) = 0 => p < q. 

P r o o f . For (i), see [8; Corollary 5.6]. For (ii), see [8; Corollaries 5.2(iv), 5.5]. 
For (iii), see [12; Corollary 2.4]. Assume the hypotheses of (iv). Then pC(u - q), 
whence by (i), 0 = PA (u-q) = J (u — q) —p-Jp(q) —P~pAq, and it follows 
that p = p Aq < q. D 

LEMMA 4.4. Suppose that G is a Rickart CB-group with Rickart mapping 
g i-> g'. Then: 

(i) p G P => p' = u—p and p" := (p')' = p. 
(ii) If g,heG with 0 < g < h, then h! < g'. 

(iii) If e G E, then e" is the smallest projection in {p G P : e < p} . 

P r o o f . For (i), (ii), and (iii) see [12; Lemma 6.2: (iii), (vi), (viii)], respec­
tively. D 

By Lemma 4.4(i), if p G P , then p' = u—p, whence, if g G G, then 
g' G P , so g" = u — g' and g'" = u — (u — g') = g'. Also, p = p" and 
Jp(p') = Jp(u — p) = Jp(u) — Jp(p) — p — p = 0. We make routine use of these 
facts in our proofs in Section 5. 

LEMMA 4.5 . Let G be an RC-group with Rickart mapping g i-> g' and let 
aeG. Then: 

(i) (a+)"eP±(a). 
(ii) a+ G CPC(a). 

(iii) (a+) ; = 0 => 0 < a . 
(iv) If p G P, ae C(p), and Ju_p(a) < 0 < Jp(a), then a+ = Jp(a). 

P r o o f . For (i), see [10; Theorem 3.1]. For (ii), see [12; Lemma 4.3(vii)]. 
For (iii), see [12; Theorem 6.5(v)]. For (iv), see [12; Lemma 4.2]. D 

By Lemma 1.4, the sharp elements p in the prototype E(X,B,R) are char-
sicterized by the condition p ApL = 0, i.e., the only effect e G E(X,B,*R) such 
that e < p, \—p is e = 0. This notion is generalized as follows ([18]). 
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DEFINITION 4.6. An element s G E is sharp iff 

(Ve eE)(e< 5, u-s => e = 0) . 

LEMMA 4.7. Every projection p £ P is sharp. Moreover, if G is an RC-group, 
then P is precisely the set of sharp elements in G. 

P r o o f . That every p G P is sharp follows from [9; Lemma 2.3(H)], and the 
converse for an RC-group follows from [12; Theorem 5.7]. • 

5. Decomposition into sharp and blunt elements 

S t a n d i n g a s s u m p t i o n . In this section, G is an RC-group with unit u, unit 
interval E, compression base (Jp) p, and Rickart mapping g H-> g'. 

The following definition generalizes Definition 1.2. 

DEFINITION 5 .1 . An element b G G + is blunt iff the only projection p G P 
such that p < b is p = 0. 

LEMMA 5.2. Let p,q G P, let b, c G E and suppose that b is blunt. Then: 

(i) If c <b, then c is blunt. 
(ii) b<q =* (q-b)' = q'. 

(iii) beC(p) =* ((p'-b)+)'=p. 

P r o o f . Part (i) is obvious. 
(ii) Assume that b < q. Then 0 < q — b<q<u, so q — i) G £ , whence 

q — b < (q — b)" by Lemma 4.4(Hi). In particular, q — (q — b)" < b. Also, by 
Lemma 4.4(H), 0 < q — b < q implies that q' < (q — b)', which in turn implies 
that (q - b)" < q" = q. Therefore, by Lemma 4.3(H), q - (q - b)" G P. Since 
b is blunt, it follows that q — (q — b)" = 0, i.e. (q — b)" = q, cind therefore, 
(q-b)' = q'. 

(iii) We have Jp(p' - b) = Jp(p') - Jp(b) = -Jp(b) < 0. Also, as b < u, we 
have Jpl(b) < Jpl(u) = p', whence Jpl(p' - b) = p' - Jpf(b) > 0. Since b G C(p) 
and p' G C(p), it follows that p' — b G C(p), so Lemma 4.5 (iv) implies that 

(p'-b)+ = Jpl(p'-b)=p'-Jpl(b). 

Now b G C(p) implies that 0 < Jpl(b) < Jp(b) + Jp,(b) = b<u, hence Jpl(b) is 

blunt by (i). Therefore, by (ii) with q := p' and b replaced by Jp,(b) we have 

((p'-b)+)' = (p'-Jpl(b))' = p"=p. a 

DEFINITION 5.3. Define K: G ->• P by ng := ((u - g)+)' for all g 6 G. 
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THEOREM 5.4. Let g G G±. Then ng G CPC(g), g G C(ng), and Kg is the 
largest projection in the set {p G P : p < g G C'(p)} . 

P r o o f . Let k := Kg = ((u - g)+)', so that k' = ( ( ^ - g ) + ) " G P±(u- g) 
by Lemma 4.5 (i). Therefore, 

u-k = k' G CPC(u - g), u - g G C(k') = C(u - k), (1) 

and 

k - Jk(g) = Jk(u -g)<0<Jkl(u-g) = k'- Jk,(g) = (u - g)+ . (2) 

By (1) and Lemma 4.1, Kg = k E CPC(g) and g G C(k) = C(ng). As a 
consequence of (2), 

k<Jk(g) and Jk,(g)<k'. (3) 

As g G G + , we have J^, (g) G G + , and it follows from g G C(k) and (3) that 
Kg = k< Jk(g) < Jk(g) + Jfc/(p) = g. Thus, 

Kge {peP: p<geC(p)}. 

Now suppose p G P with p < g £ C(p). We have to show that p < k. As 
g G C(p) and k G CPC(g), it follows that kCp, hence that k'Cp. Put r : = 
J^, (p). By Lemma 4.3 (i), r = p A k'. Then, as p < g, 

r = Jfc,(p)<Jfe,(5), 

whence, as r < fc', Lemma 4.3 (ii) implies that 

r = J r ( r ) < J r ( J , , ( 5 ) ) = J r ( g ) . (4) 

Thus, by (2) and (4) 

0 < J P ( (« - 5 ) + ) = ^ r (fc' - Jk. {9)) = r - Jr(g) < 0 , 

and it follows that 
Jr{(u-g)+)=0. (5) 

We have g € C(p), 3 G C(fc) = C(k'), and pcfc ' , whence g£C(pA k') = C(r) 
by Lemma 4.3(iii). Also, by Lemma 4.5(ii) and Lemma 4.1 (iii), 

(u - g)± G CPC(u -g) = CPC(g), 

and therefore (u — g)± G C(r). Consequently, by (5), r < ((u — g)±) = k. But, 
r < fc', therefore p A k' = r = 0, and in view of the fact that pCk, we have 
p < k by Lemma 4.3 (iv). • 
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COROLLARY 5.5. If g E G+, then g - Kg G G+, n(g - Kg) G CPC(g), 
g G C(K(g - Kg)), and K(g - Kg) < Kg. 

P r o o f . Let k := Kg. By Theorem 5.4, k is the largest projection in the set 

{p G P : p < g G C(p)}. In particular, k < g, so g — Kg = g — k G G+. Define 

k := K(g — Kg) = K(g — k). By Theorem 5.4 with g replaced by g - k, 

keCPC(g-k), g-keC(k) and k<g-k<g. 

As g, k G C(k), we have g - k G C(k), whence k G C(k ) . Thus, k G C ( k ) , 
and it follows that g = (g — k) + k G C ( k ) . Consequently, k < g G C ' ( k ) , 
and it follows that k < k. To prove that k G CPC(g), suppose that r G P and 
g G C( r ) . Since k G CPC(g), we have k G C( r ) , whence g - k £ C(r). But, 
k G CPC(g - k), and therefore k G C( r ) . • 

THEOREM 5.6. Let b G G + . Then the following conditions are mutually 
equivalent: 

(i) b is blunt. 
(ii) Kb = 0. 

(iii) b e E and b is blunt. 

P r o o f . That (i) =4> (ii) follows from Theorem 5.4 with g replaced by b. 

(ii) ==> (iii). If Kb = ((u - b)+)' = 0, then 0 < u - b by Lemma 4.5(iii), 
whence 0 < b < u: i.e., b G E. To prove that b is blunt, suppose p G P and 
p < b. Then p < b < w, so p = Jp(p) < <Ip(fr) < ^p(^) — P, a n ( i w e n a v e 

^p(^) = P- Also, 0 < w — b < u — p e P, whence u — b = Ju_p(u — b) = 
J n _ p W - «/u_p(6) = w - p - Ju-P(b), and it follows that J n_ p (b) = b-p. 
Consequently, Jp(b) + Ju_p(b) = p + (b - p) = p, i.e., b G C(p), and we have 
p < b G C(I>). Therefore by Theorem 5.4, p< Kb = 0, so p = 0 and b is blunt. 

Obviously, (iii) = > (i). • 

LEMMA 5.7. Let g eG and let N := {1, 2 , 3 , . . . } . 

(i) If Pi > P2 -*. " ' is a descending sequence of projections such that 
n 

__ Pi < 9 for all n G N. then there exists M G N sz/c/i £/m£ pn = 0 
z = l 

/Or all n> M. 
(ii) If p G P and np < g for every n G N , ^ e n p = 0. 

P r o o f . 
(i) Since u is an order unit in G, there is a positive integer JV such that 

M 

g < Nu. Let M := JV-f-1. Then MpM < E Pi < 9 < Nu, whence NpM+pM = 

MpM = MJ p M (pM) < NJpM(u) = iVPM, and it follows that p M = 0. 
(ii) In (i), put p . := p for all i G N. • 

537 



DAVID J. FOULIS 

THEOREM 5.8. Let g G G+ . Then, either g is a blunt element of E, or there 
is a blunt element b of E and a finite descending sequence p1 > p2 > • • • > pn 

of nonzero projections in P D CPC(g) such that g = p1 + p2 -f • • • + pn + b and 

9£ f)C(Pl). 
2 = 1 

P r o o f . Assume that g is not a blunt element of F. By recursion, define 
sequences g1,g2,... G G and p1,p2,... G P by 

gx := g G G+ , px := Kg = *#-_ , 

and for all n = 1,2, . . . , 

<?n+l : = 9n ~ Pn a n d ^n+1 : = «£„+! • 

As 9 — 9\ is n ° t blunt, p1 = ft(a) / 0 by Theorem 5.6. We shall prove by 
induction that, for every n = 1, 2 , . . . , 

9l,g2,...,gneG+nCPC(g), (1) 

Pl>P2>--->Pn> (2) 
p 1 ) p 2 ) . . . , P n e P n O P C ( 0 ) ) (3) 

n 

1 = 1 

and 

9 € 0 C(P.) • (5) 
i = l 

By hypothesis, gx — g G G + , and it is clear that gl = O G CPC(g) and 
g = px + g2 • By Theorem 5.4, we have 

Pi = Acg G CPC(g) and g G C f o ) ; 

hence (l)-(5) hold for n — 1. As our inductive hypothesis, we assume that 
(l)-(5) hold for a positive integer n. As gn G G + , we can and do replace g in 
Corollary 5.5 by gn and conclude that 

9n+i =9n-Pn=9n- *9n € G + , p n + 1 = ngn+1 G CPC(gn), 

ffn^frn+l) a n d Pn+l^^n-

As On G CPC(g), pn G CPC(g), and CPC(g) is a subgroup of G, it follows 
that 

5 „ + 1 = 5 n - P n e C P C ( 5 ) . 

As pn+1 G CPC(gn) and #n G CPC(g), it follows that 

pn+1eCPC(<?). 
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By (4), 

/ n \ n+1 
9= ( _ & i ) +Pn+ l+#n+ l -Pn+ l = 5Z P2 + #n+2' 

M = l ' 2=1 

We have gn G C(P n + 1 ) and, since pn+1 < pn < • • • < px, we also have ^ G 
n 

C'vPn+i) f o r i = 1, 2 , . . . , n . By (4), # = E ^ + gn ~ Pn' a n d ilb follows that 
2 = 1 

g G C(I>n + 1). Therefore, n+i 

9 e n cw> 
2 = 1 

and our inductive argument is complete. 
n 

As gn+1 G G + , it follows from (4) that ^2 p{ < g for all n = 1 ,2 , . . . , whence 
2 = 1 

by Lemma 5.7(i), there is a smallest positive integer M such that pM = 0. 
Moreover, p1 / 0 implies that M > 1. Thus, with n := M — 1 and b := # n + 1 , 
we have a descending sequence px > p2 > • • • > pn of nonzero projections in 

n 
P H CPC(g) such that # = p1 + p 2 + • • • + pn + b and g G f| C(p-) . Moreover, 

i=i 
Kb = ftgn+1 = Pn+1 = pM = 0, so b is blunt by Lemma 5.6. • 

n 
If 0 = p1 + p 2 + • • • + pn + b as in Theorem 5.8, then, as g G f] C(p-) and 

2 = 1 

n n 
Pi + P2 "• 1" Pn G fl C f o ) , it follows that b G f| C(PJ . Therefore, by the 

2 = 1 2 = 1 

following theorem, the decomposition g = px + p2 + • • • + pn + b is uniquely 
determined by g. 

THEOREM 5.9. Suppose that Pi>p2>'-->pn is a descending sequence of 
n 

nonzero projections in P, b is a blunt element of E, b G f] C(p^, and g = 
2 = 1 / 772—1 \ 

H,i+P2 + -*-+Pn + O- Then, px = ng, and for m = 2 , . . . , n . pm = nig- £ p{) . 
V 2 = 1 ' 

P r o o f . Define gx := g and by recursion for m = 1, 2, 3 . . . , n—1, 
• n \ m 

2m+l : = 9m-Pm=( Y, Pi ) + 6 = # " S ^ ' 
M = m + 1 ' 2=1 

Since p{ < p1 for 1 < i < n , we have 0 < Jp, (p{) < Jp, (px) = 0. Also, b G E 

implies that Jp, (b) < p[, and it follows that 

< V > - S I ) = - V > ' I - P 2 Pn-b)=p[-jp,(b)>o. (i) 

Also, Jpi(p[) = 0, whence 

Jpi(v-91)=-Jpi(p2 + ---+Pn + l>)<0- (2) 
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Moreover, p[,p2,... , p n , b G C(p1), so u - gx G C(p1), and it follows from (1), 
(2) and Lemma 4.5 (iv) that 

(u - 9l)
+= Jp[(u - 9l) = p[ - Jp,(b). (3) 

As 0 < b G C(p1), we have J , (b) < Jp, (b) + Jpi (&) = &, hence J ^ (b) is a blunt 

element of E. Therefore, by (3) and Lemma 5.2(iii), 

*9i = ((u-9i)^y = (Pi - « / p i ( 6 ) ) / = P i -

The same argument applied to g2 = P2 + " * + Pn + & shows that rc#2 = p2, 
and continuing in this way by induction, we conclude that ng% = pi for i = 
l , 2 , . . . , n . D 

Recall that a partially ordered abelian group H is archimedean iff, whenever 
g,h G H and n/i < g for all n G N = {1,2, . . .} , it follows that h < 0 
([17; p. 20]). By [12; Lemma 3.5], the RC-group G is archimedean iff, for every 
g, h G G + , the condition nh < g for all n G N implies that h = 0. 6 Using some 
of the results developed above, we now show that it is only necessary to check 
the latter condition for the case in which h G E and g = u. 

THEOREM 5.10. The RC-group G is archimedean iff, for every h G E, the 
condition nh < u for all n G N implies that h = 0. 

P r o o f . If G is archimedean, h G E, and nh < u for all n G N, then clearly 
h = 0. Conversely, assume that h G E with nh < u for all n G N implies b = 0. 
Let g,h e G+ with nh < g for all n G N. If p G P and p <h, then np < g for 
all n G N, whence p = 0 by Lemma 5.7(ii), and it follows that h is blunt. Thus, 
by Theorem 5.6, h G E. As ?i is an order unit in G, there exists iY G N such 
that g < Nu, and we have mh < g < Nu for all m G N. Letting m = njN, we 
find that JVn/i < Nu for all n G N. Therefore, by [8; Lemma 4.8(ii)], nh < u 
for all n G N, and it follows from our hypothesis that h = 0. • 
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