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SOME PROPERTIES OF 

BUCK'S MEASURE DENSITY 

MILAN PASTEKA 

ABSTRACT. The purpose of this paper is to describe some properties of Buck's 
measure density. 

1. Introduction 

Denote by N the set of all positive integers and by P(N) the system of all 
subsets of N. Let the symbol a + (d) for a nonnegative and d 6 N denote the 
arithmetic sequence {a + c?n, n = 0,1,2 . . . } . We shall write (d) instead of 
0 + (d). The symbol a + (d) will be also used to denotes the set of elements of 
this sequence. 

For two sets B\,B2 let the symbol Hi C B2 denote that the set B\ \B2 is 

finite. Instead of the facts B\ C B2 and B2 C B\ we shall write B\ = B2 . 

In the paper [1], the measure density of a set A € P(N) has been introduced 
in the following way: Let DQ be the system of all subsets S E N such that there 
exists a finite number of arithmetic sequences a\ + (d\),..., ak + (dk) such that 

S = a\ + (d\)U---Uak + (dk). 

Now we introduce on Do a real function A as follows: For every disjoint 
union of arithmetic sequences 

S = a\ + (d\jU---Uak + (dk) 

we put 

A(S) = -L + .-. + i-. 
d\ dk 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 11B05. Secondary 28E99. 
K e y w o r d s : Measure density, Arithmetic progression, Uniform distribution, Darboux 

property. 
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And for each S' = S we put A(S') = A(S) . It can be easily seen that A(5) 
does not depend on the representation of S as union of disjoint arithmetic 
sequences. 

If A G P(N), then the value 

p*(A) = inf{A(S); A C S and S G D0} 

will be called the measure density of the set A. 

The purpose of this paper is to describe some properties of the function fi* . 

In the next part we shall prove a formula for the evaluation of measure 
density and some corollaries will be deduced from it. The algebra of measurable 
sets will be the object of investigation in the third section. In particular, we 
show there that the measure density has the Darboux property on the algebra 
of measurable sets. The last part is devoted to the relationship between the 
measure density and uniform distribution. We also give a characterization of the 
algebra of measurable sets based on the notion of the uniform distribution in Z . 

In what follows we will employ the following notation 

D(A) = l i m s u p - Y^ * 
n—>oo ^ . ^ 

k<n 
k£A 

and 

d(A) = \\mmi- V 1 
V ' n ^ o o n *—' 

k<n 
k£A 

for A G P(N). 

Obviously 
d(A) < D(A) < lx*(A) (1) 

for every A £ P(N) . D(A) will be called the upper asymptotic density and 
d(A) the lower asymptotic density of the set A. 

2. Limit formula 

In this section we shall prove one formula for evaluation of the measure den
sity. Using this formula we established some properties of ft* . For a, b G N, 
denote by a mod b the least nonnegative remainder of a after division by b. 
For the set S G P(N) and b G N we put 

S mod b = {s mod b; 5 G 5 } . 

The set S mod b will be called the system of representatives of the set S mod
ulo b. If It(S, b) denotes the number of elements of the set S m o d b , then the 
measure density can be evaluated according to the following theorem: 
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T H E O R E M 1. Let {Bn} be a sequence of positive integers for which the fol
lowing condition is satisfied : 

(i) For every d £ N there exists no such that for n > no we have d \ Bn. 

Then 

*ro\ v R(S,Bn) 
n—•oo t)n 

for every S £ P(N) . 

P r o o f . Suppose tha t {a\n , . . . , a)*1 } is the system, of representat ives of 

the set S modulo Bn(n = 1 , 2 , . . . ) . Then 

5 C Q «»• + (Bn) 

and 

kn = R(S,Bn). 

Since the ar i thmetic progressions on the r ight-hand side are disjoint, the defini
tion of /i* , gives tha t 

„.(_) < -_&__-) (2) 
L>n 

for every n = 1 ,2 , . . . . 

Lower bound . Let e > 0 . Then , according to the definition of fJ>(S), there 
exists a disjoint system of ar i thmet ic sequences ai + (d\),..., a* + (dk) such 
tha t 

5 C a i + ( a , i ) U . - - U a f c + (a ,0 (3) 

and 

J_ + ... + J__£</A5). (4) 
d\ dk 

Condit ion (i) implies t ha t there exists no such tha t for n > no we have 
di | _? n , i = 1,2, . . . , k . This divisibility relation implies tha t the ar i thmet ic 
progression ai + (_?,-), i = 1 , 2 , . . . , k, can be represented as a disjoint union of 
the ar i thmet ic progressions of the form 

*«• + (*) = U ^i + rdi + (Bn),) 
г=0 
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where kt- = —- — 1, i = 1, 2 , . . . , k , n > n0 . Consequently 
a,-

Rn 
uM i1+(d1)U---Uak + (dk) = ( J b)n) + (BB>, (5) 

j=0 

where b^ £ N, j == 1,2,. . . , Itn, n > n0 and 

SГ + - + SГ-V (G) 

From (3) there follows that the set 

k 

H = S\{Jai + (di) 
i = l 

is finite. Denote the number of its elements by h. 

From (3) and (5) we have 

Rn 

S\Hc{Jbj + (Bn), n>n0. (7) 
j i 

The system of repre entatives of the set S \ H modulo Bn has at least 
ii(S, Bn) — h elements. Two integers contained in the same arithmetic sequence 
b + (Bn) are congruent modulo Bn , (7) implies that 

Rn > R(S,Bn) — h, n > n 0 . 

From the last inequality and from (2), (4) and (6) we ha\e for n > n0 

R(S,Bn)-h BJ^Bn} 
Bn

 £ < M ^ ) < Bn • 

From this 
h\b\Bn) * / C x ^ h 

0 < /i (5) < — + e, n > n0 . 
JJn JJn 

On the other hand lim —— = 0 and the proof of Theorem is complete, 
n—•oo Bn 

Note that the system of sequences satisfying the condition (i) is non-empty: 
One of such sequence is Bn , with Bn = n! ( n — 1, 2 , . . . ). 
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The second one can be constructed in the following manner : Let 2 = pi < 
P2 < ... be the increasing sequence of all primes. Let 

p(n) =pip2...pn (8) 

for n = 1,2,... . Then the sequence p(n) satisfies the condition (i) too. 

There follows from Theorem 1 that p,* has the properties of the so called 
strong submeasure, i.e.: 

ACB => n*(A) < fi*(B) (ii) 

fi*(A UB) + fi*(A H B) < ii*(A) + pT{B) (\\\) 

for every A, B G P(N) . 
The following four corollaries are immediate consequences of Theorem 1. 

COROLLARY 1. Let A G P(N) . Then ft* (A) = 1 if and only if for every 
couple a,d, (a > 0, d G N) the set a + (d) fl A is non-empty. 

If for 5 G P(N) and a G N, denote 

a + S = {a + s; s G S} 

aS = {as; s G S}. 

Then Theorem 1 in turn implies : 

COROLLARY 2. If S G P(N) and a G N, then 

fi*(a + S) = p*(S). 

COROLLARY 3. If S G P(N) and a G N. then 

n*(n<!\ ^ ( 5 ) 

a 

P r o o f of C o r o l l a r y 3. With any sequence {Bn} of positive integers 
also the sequence {aBn} satisfies condition (i). Since 

s\ = S2 ( m o d P n ) <=> as\ = as2 (modaB n ) 

for every 5i,^2 G N, then 

R(aS,aBn) = R(S,Bn) 

and thus 
R(aS,aBn) _ lR(S,Bn) 

aBn a Bn 

Theorem 1 finishes the proof. 
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COROLLARY 4. If for A\,A2 £ P(N) there exists an arithmetic sequence 
a + (d) with A\ C a + (d) and A2 H a + (d) = 0, then 

^*(AiUA2) = /i*(Ai) + |i*(A2). 

P r o o f . Let the sequence {Bn} satisfy the condition (i). Then there exists 
no such that for n > no we have d \ Bn . Therefore for n > no 

R(A, U A2,Bn) = R(AuBn) + R(A2,Bn) 

and the assertion follows. 

3. Measurable sets 

In [1] the following concept of a measurable set A £ P(N) has been intro 
duced: A set A £ P(N) is called measurable if 

f(A) + f(N\A) = l. (9) 

The system of all measurable sets in P(N) will be denoted D^ . 

Let D be the class of all the A £ P(N) possessing the asymptotic density, 
i.e. for which d(A) = D(A) holds. In [1] it is proved that D^ C D. This result 
can be concerning in the following form: 

THEOREM 2. If A is an arbitrary set from D^ , then 

d(A) = fi*(A) = D(A). 

P r o o f . If 
Л ( n ) = £ l (n = l,2,...) 

k<n 
k£A 

for A £ P(N) , then trivially A(n) < R(A,n), for n = 1, 2 , . . . . On the other 
hand P (N\ A, n) denotes the number of the remainder classes modulo n , having 
a non-empty intersection with the set N \ A . Therefore the value n — P(N \ A, n) 
is the number of the remainder classes modulo n which are disjoint with N \ A , 
i.e. which are contained in set A. From this we have for n — 1, 9 , . . . 

n - P(N \A,n) < A(n) < R(A, n). 
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Now let {kn} be an arbitrary sequence of positive integers, and p(n) defined 
by (8). Then Theorem 1 yields for the sequence {knp(n)} that 

1 - M*(N \ A) < liminf 4*=£<2» < limsup ^ ^ » < »*(A). 
"-*<*> knp(n) n_oo knp(n) 

Therefore, if A E D^ , then (9) implies 

n-+oo knp(n) 

Put 
Kn =- max{k; p(k) < n}. 

It can be seen that 
lim Kn = co. (11) 

n—•oo 

Every n £ N can be represented in the form 

n = knp(Kn) + rn , 0 < r'n < p(Kn) 

n = knp(Kn - 1) + r n , 0 < rn < p(Kn - 1). 

Since p(I\n — 1) | p(Kn), we have 

rn = r n (modp( I \ n - 1)). 

The last congruence implies 

rn<r'n, n = l ,2 (12) 

Put 
(13) 

(14) 

вn 
= Ыi<n -: i). 

From this it follows that n = Bn 
+ rn and 

A(n) 
Ä» + 0 ( 

^ г n \ 

кBn) 
n i+rt 

According to (12) it holds that Bn > knp(Kn) > p(Kn). Now we have 

°<-k<-p-^<-^~° 
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for n - > o o . F r o m (11), (10) a n d (14) it follows 

Jim -t-1-= AI V ) 
n—»oo n 

a n d t h e proof is finished. 

Note t h a t the inclusion D C D^ does not hold . To see this consider t h e set 

A = {n + nl; n = l , 2 , . . . } . 

According to T h e o r e m 1 we have fi*(A) = 1 . But it is easily seen t h a t d(A) = 

D(A) = 0 . Therefore A G D a n d A # D„ . 

From the propert ies (ii) and (iii) we can deduce t h a t D^ is an algebra of sets 

a n d t h a t t h e function 

Dџ 
[i = /i 

is a finitely-additive probability measure on D^ . In [1] it is proved t h a t 

M 5 ) ; SeD,} = [0,1]. (15) 

Seeing ideas of t h e proof of (15) a more precise result can be established. Before 

s ta t ing it, we reproduce here for the convenience of the reader the following 

result [1], p . 5C2 relation (ii)]: 

L E M M A . H G D^ if and only if for every e > 0 there exist the sets 5 i , 5 2 G 

5 i C H C 5 2 and A ( 5 2 ) - A ( 5 i ) < e. 

D^ such that 

T H E O R E M 3 . Let {Hn}, n = 1 ,2 . . . be a system of disjoint measurable sets. 

Let 

n ^°° H = n ' 

oo 

Then the set H = [J Hk belongs to D^ and 
k=i 

oo 

v(H) = Y,tiHk). (17) 
к=í 

P r o o f . Let e > 0 . T h e n according to (16) there exists no such t h a t for 
n > no we have 

• OO \ 

e Ą\Jвi) 
\ L _ „ / 

< . 
Ч=„ ' 2 
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Therefore by the definition of /i* there exists a set G G -DO such tha t for n > n0 

we have 

k=n 

and 

\jHkcG 
:=n 

A ( G ) < e. 

For n > no we have evidently 

Hi U • • • U Hn C H C Hi U • • • U Hn U G. 

Lemma implies tha t H £ D^ . But 

n n 

Y,^H3)<^H)<YJ^HJ) + e 
j=i ; = i 

for n > n 0 . Let t ing n —+ oo we obta in 

oo oo 

YJ^H3)<^{H)<YJ^Hj) + e. 
j=i j=i 

This being t rue for every e > 0 implies (17) and the proof is complete . 

It can be easily seen tha t the condition (16) cannot be omi t ted . To see this 
take again the set 

A = {n + n\, n = 1 , 2 , . . . } (18) 

and the disjoint system of the sets Hn = n + n!, n = 1 ,2 , . . . . Then Hn G D^ , 
for every n = 1 ,2 , . . . but 

oo 

•(ÍН-1-Kk= 

oo 

However, the set A = (J H£ does not belong to D^ , as we see above . 
*=i 

COROLLARY. Let Hi G -D^, I = 1 ,2 , . . . be a system of disjoint sets. Let 

B E Dp be a set such that Hi C B for i = 1 ,2 , . . . and 

oo 

£>(#,-) = AW (19) 

23 



MILAN PASTEKA 

oo 

Then the set H = \J Hi belongs to D^ and 
t = i 

n(H) = v(B). 

P r o o f . It is obvious tha t 

oo 

\jHicB\(H1u---uHn.1) 
i=n 

for i = 1 , 2 , . . . . Then (19) implies 

Xk=n / 

Then according to Theorem 3 we have H 6 Dp and 

oo 

/z(ff) = £>(#.) =/.(B). 
1 = 1 

T h e proof is complete. 

Using Theorem 3 we can establish a stronger result, t h a n tha t of (15), namely 
tha t the measure m has the Darboux proper ty on the algebra D^ . A different 
proof of this result can be found in [7]. 

THEOREM 4 . Let A e Dh. Then for every a E [0,//(;!)] there exists a set 
B G Dp such that B C A and fJ>(B) = a. 

P r o o f . If a = fi(A), then the assertion is trivial. Let a < f-i(A). Then 

there exists an e > 0 such tha t 

a < fi(A) — e. 

It follows from lemma tha t there exists the sets Hi, H2 G DM such tha t 

H i c A C H2 

and 

A(H2)-A(H1)<
£-. (20) 
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Then there exists a finite set S with 

H\SCA (21) 

whereas the set H = H\ \S is a union of a finite number of arithmetic sequences. 
Let d be the least common multiple of the moduli of these arithmetic sequences. 
Then H can be represented as a disjoint union 

H = ai + (d)U---Uait + (.i), 

where 

t = A(H1) = A(H). 

But (20) implies &(H) = A ( # i ) > A(H2) - I > KA) ~ £ • Therefore 

a < -d . (22) 

Let 
oo 

Ci 

J ' = l 

be the d-adic expansion of the number a. Then (22) implies that Oi < k. If 

Cl 

Si = \Jai + {d), 
i = l 

then 5i C H, S\ fl a + (d) = 0 and /i(5i) = — . Now denote 
d 

Sn= \Jak+jdn-l + (dn) 
i= i 

for n = 2 , 3 , . . . . ( I f c n = 0, then 5 n = 0). The union on the right-hand side is 
disjoint and therefore 

/ . ( S „ ) = ^ , n = 2 , 3 , . . . . (23) 

It is obvious that for n > 2 we have 

Sn C ak + (d"-1). (24) 
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We claim that the sets Sn are disjoint. Suppose on the contrary that the inter
section Sm H Sn is non-empty for some 1 < m < n. Then there exist numbers 
j,ji,h,hi G N such that 

1 < j , h < d 

and 
jd"1'1 + hdm = jid71-1 + h ^ . 

However, this yields d \ jd™"1 , which is impossible. Therefore the sets Sn, n = 
1,2,.. . are disjoint and moreover 

Denote 

Then (24) implies that 

for n > m. Thus 

Sn CH C .4,1. = 1,2,... . (25) 

OO 

B = (J Sn. 
n = l 

SnCak + (dm) 

lim J II Sn) =0. 

Theorem 3 and (23) implies B G D^ and fi(B) = a . Moreover (25) implies that 
B C A and the proof is complete. 

Consider the set A = {n + n!; n = 1 ,2 , . . . } . Using (15) and Theorem 1 we 
prove the following result: 

THEOREM 5. {/i*(5); S C / 4 } - [ 0 , l ] . 

P r o o f . Let a G [0,1]. From (15) we can deduce that there exists a set 

KB) = a. (26) 
B G Dp such that 

Let B = {Oi < a<i < . . . } and 

S = {ak + (ak)\; k = l , 2 , . . . } . 

Then S C A. If 5 is finite, then so is B is finite and consequently fi(B) 
[i*(S) = 0. Therefore suppose that S is an infinite set. Then 

lim an — oo 
n—UDO 
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and the sequence {(an)!} satisfies the condition (i). For n > k we have 

an = an + (an)\ (moda*!). 

Therefore 

R(S,ak\) = R(B,ak\) + 0(k) 

for every k £ N . The relation (26) and Theorem 1 yield H*(S) = a and the 
proof is complete. 

Note that the system {5; 5 C A} is small as can be seen from the well-known 
characterization based on the dyadic mapping defined as follows: For S £ P(N) 
we put 

T(S) = J2^k-
kes 

Then the system is measured using the Hausdorf dimension of the image [5, p. 
19]. Thus if d imC denotes the Hausdorf dimension of the subset C C (0,1), 
then Theorem 1 of [6, p. 20] immediately implies that dim {V(5); S C A} = 0 . 

Denote by 5° the system of all the sets S £ P(N) with D(S) = 0. Then 
Theorem 5 implies in turn the next result: 

C O R O L L A R Y . {^(S); S e S0} = [0,1]. 

4. Uniform distribution 

In this part we will use the concept of uniform distribution in Z . The reader 
is referred to [4, p. 335]. For more details it is proved in [2] that if the sequence 
A = {ai,a,2,...} is uniformly distributed in Z , then fJ>*(A) = 1. This fact 
follows also from our corollary 1 of Theorem 1. [2] contains more precise results, 
e.g. 

1. If .A £ Dp, fi(A) = 1 and A = {a\ < a2 < . . . } , then A is uniformly 
distributed in Z . 

2. There exists a sequence having the measure density 1, but which is not 
uniformly distributed in Z . 

The following theorem is closely related to these results: 

THEOREM 6. Let S £ P(N) . Then fi*(S) = 1 if and only if S can be rear
ranged into a sequence which is uniformly distributed in Z . 

For the proof we shall need the following lemma : 
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L E M M A . Let {xn} be a sequence of positive integers, such that xn = n 
( m o d n ! ) , for n = 1 ,2 , . - . • Then {xn} is uniformly distributed in Z . 

P r o o f . Let m G N . Then there exists no such tha t m | n! for n > no . 

Thus for n > no 
xn = n ( m o d m ) . 

Then for N > no and j G N , 0 < j < m we have 

h E >-* E > + s E ' = ^ > * < i 4 
n<iV n < n 0 n 0 < n < 7 V n < ;V 

xn=j ( m o d m ) xn=j ( m o d m ) Xfl=j ( m o d m ) n = j ( m o d m ) 

as N —+ oo and lemma follows. 

P r o o f o f T h e o r e m 6. If S = {x i , #2 , • • • } is a uniformly dis t r ibuted 
sequence in Z , then by virtue of Corollary 1 of Theorem 1 we have kt*(S) = 1. 

If /i*(S) = 1, then S has a non-empty intersection with every ar i thmet ic 
sequence . Therefore for every n G N there exists yn G S such tha t 

yn =n ( m o d n ! ) . 

Then l emma implies tha t {yn} is uniformly distr ibuted in Z . We can assume 
tha t the sequence {yn} is increasing . If the set 5 \ {y„; n = 1 ,2 , . . . } is finite, 
then the proof is complete . 

Suppose therefore tha t the set 

S\{yn\ n = l , 2 , . . . } = {yn ; n = l , 2 , . . . } 

is infinite. Define 
f y n , for n ^ k2, 

Hfc2 for n = (2k ) 2 , 

^ y'k for n = (2k + l ) 2 , 

for n = 1 , 2 , . . . . Clearly {x n ; n = 1 , 2 , . . . } = 5 . Let j , m G N . Then for 
N -* oo 

i_ v i = 4 r i+0(iv-i) —-. N *-^ N -"--' v m 
n<JV n < N 

i n = j ( m o d m ) Vn—j ( m o d m ) 

Thus the sequence {x n } is uniformly dis t r ibuted in Z . The proof of Theorem 
is complete. 

We shall finish this paper pointing out one more analogy between the uniform 
distr ibut ion in Z and uniform distr ibution mod 1. 
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Let {xn} be a sequence of positive integers . Given A £ P ( N ) and k £ N let 

Q(A,{xn},k) = £ 1. 
n<k 

xneA 

Then we have immediately : {xn} is uniformly dis t r ibuted in Z if and only 
if for every II £ DQ there holds 

*->oo к 
(27) 

This result can be extended over t h e whole algebra D^ t h a n t h e next result 
says: 

T H E O R E M 7 . The sequence {xn} of positive integers is uniformly distributed 

in Z if and only if for every set A £ D^ 

k—>oo k 
(28) 

P r o o f . The sufficiency of the condition is obvious. 

To the opposite direction take A £ D^ . Let e > 0 . T h e n by l emma there 

exist sets IIi, II2 £ DQ such t ha t 

and 

Consequently 

HгCAcH2 

Д ( Я 2 ) - Д ( Я i ) < e . 

Q(Hu{xn},k) ^ Q(A,{xn},k) ^ Q(H2,{xn},k) 

for k = 1,2, . . . . I f {xn} is uniformly dis t r ibuted in Z , then the last inequalities 

a n d (27) imply 

r Q(A,{xn},k) 
l i m s u p — — fi(A) 

k-^oo & 
<e 

lliminf^фMl-MA) 
k—юo k 

< є. 
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Thus for e —• 0+ we obtain the required relation (28). The proof is finished. 

T h e condition A G D^ cannot be omit ted, which can again be seen using 
A = {n + n\; n = 1 , 2 , . . . } . The sequence {xn} , where xn = n + n\, n -- 1,2, 
is uniformly dis tr ibuted in Z and 

Um Q(^\A,{xn},k) = Q 

k—-oo k 

However, (1) implies /i*(N \ A) = 1 . 

T h e concept of the uniform distr ibution in Z gives us a further possibility 

to characterize the algebra D^ . 

Let A G F(N) and n G N . A set A' C A will be called a remainder system 

of the set A modulo n if 

(vi) For every a £ A there exists an a' G A' such tha t a = a' ( m o d n ) 

(v) For every a', a" G A' a' = a" ( m o d n ) = > a' = a" . 

It is obvious tha t two remainder systems of the set A modulo n have the 

same number of elements and tha t this number is equal to the number of elements 

of the system of representatives of the set A modulo n . 

T H E O R E M 8 . Let A G P ( N ) . If for every uniformly distributed in Z sequence 

{xn} we have 

r Q(A,{xn},k) 

& % = " ( i 4 ) ' 

then A G D^ . 

P r o o f . Let A £ D^ . Then 

l - / / * ( N \ A ) < / i * ( A ) . (29) 

Suppose tha t the sequence {Bn} satisfied the condition (i). Suppose tha t this 
sequence also satisfies the condition 

Bn | i ? n + 1 , n = 1 ,2 , . . . . 

Let A'n be a remainder system of the set A modulo Bn , for n = 1 , 2 , . . . . P u t 
Ai = A[ and 

An = A9
n^ U {y G A'n; Vx G An-U x^y ( m o d B n ) } 

for n = 2, 3 , . . . . In this way an increasing sequence of sets An 

/ 4 i C j 4 2 C - " C 4 C . . , 
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remainder systems of the set A modulo Bn can be constructed. 
Similarly, there exists a sequence 

I i C l 2 C - " C l „ . . . 

such that An is a remainder system of the set N\A modulo Bn for n = 1,2,... . 

Construct the sequence {C(Bn)} of sets, as follows: Set C(Bn) is the com

plete remainder system modulo Bn (n = 1,2,... ) which consists of the elements 

of An and Bn - R(N \ A, Bn) elements of An . 

Clearly 
C(B\)cC(B2)C---CC(Bn)c... . 

Put D\ = B\ . Let us rearrange the set C(D\) into a (finite) sequence 

C\D\) = {x0,...,xDl-\} 

in such a way that Xj = j (mod D\), for j = 0 , . . . , D\ — 1. Let 

D2 = min{5 n ; x\ < Bn,... ,XDX-I < Bn}. 

Rearrange the set C(D2) into the (finite) sequence 

C'(D2) = { x 0 , . . . , X D 1 - i , a : D l , . . . , ^ D 2 - i } , 

where x = j (mod D2), D\ < j < D2 . In this way we can construct a sequence 
{Dn} , for which the condition (i) is satisfied, and the system of finite sequences 

C'(Dn) = {x0,...,xDn_l-\,xDn_l,... ,xDn-\} 

in which Xj = j (mod .Dn), Dn-\ < j < Dn . 

Consider the sequence 
oo 

{xn} = | J C'(Dn) 
n=l 

in which its elements are written in such a way that we begin with elements of the 
sequence C'(D\), then follow the remaining elements of the sequence C'(D2) 
etc. For d G N there exists n0 such that d \ Dno . Therefore for j > Dno

 w e 

have 
Xj = j (mode/). 

This implies that the sequence {xn} is uniformly distributed in Z . 
If n = 1,2,... , then 

Q(A, {Xj}, £ » „ ) - £ > „ - R(N \ A, Dn). 

Owing to (29) and Theorem 1 we have 

Jim 9 ( A ' { ^ } ' Z J " ) < f(A). 
n-->oo Dn 

The proof is complete. 
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