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O N T H E O S C I L L A T I O N O F N O N L I N E A R D I F F E R E N T I A L 

S Y S T E M S W I T H R E T A R D E D A R G U M E N T S 

PA VOL MARUSlAK 

1. Introduction 

We consider systems of nonlinear differential inequalities with retarded argu
ments of the form 

y5 (0 - / . ^y . + i ( 0 , y i + . ( f c + . ( 0 ) ) = o, 1 = 1,2,... , n - i , (S) 

{y'M+Uu y.(0, y.(*.(0))} sgn yi(fci(0)^o. 
where the following conditions are always assumed: 

(a) h,: [a, oo)—>R ( i = l , 2, ...,,n) are continuous and 

/i,(0 = * for t = a, l im/i,(0 = °°, (i = l, 2, ..., n ) ; 

(b) /,: [a, oo)xi^2—>,R (/ = 1, 2, ..., n) are continuous, 
tt/.O, w, t>) = 0 (i = 1, 2, ..., n) for w > 0 
and not identically zero on any subinterval of 
[tf, °°); / ( - \ u, v) (i = l, 2, ..., n - 1 ) are nondecreasing 
in u and v for each fixed fe[a . oo). 

Denote by W the set of all solutions y (0 = (y.(0> •••> y«(0) of the system (S) 

which exist on some ray [Ty, oo)c:[a, oo) and satisfy sup | 2 l y « ( 0 l - ^ = T | > 0 for 

any T^Ty. 

Definition 1. A solution y e W is called oscillatory (resp. weakly oscillatory) if 
each component (resp. at least one component) has arbitrarily large zeros. 

A solution y e W is called nonoscillatory (resp. weakly nonoscillatory) if each 
component (resp. at least one component) is eventually of a constant sign. 

Definition 2. We shall say that the system (S) has the property A, if every 
solution y e W is oscillatory for n, even, while for n odd it is either oscillatory or y, 
( /= 1, 2, ..., n) tend monotonically to zero as t—•oo. 
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The oscillatory properties of solutions of two-dimensional differential systems 
with deviating arguments are studied in the following papers: K i t a m u r a and 
Kusano [2, 3], Varech , Gr i t s a i and Sevelo [4], Sevelo and Varech [5, 6]. 
The oscillation results for the system x'k(t) = fk(t, x(qx(t)), ..., x(qn(t))), k = \, 2, 
..., n were studied, followd by Fo l tynska and Werbowsk i [1], 

In the present paper we proceed further in this direction to extend the theory 
developed in [4—6] to the systems of the form (S). Our results in lude some of the 
results in [1, 5, 6] and they do not follow from Theorem 1 in [1]. 

2. O cill tionth orems 

We introd ce the notation : 

y,(0 = sup {s^O; h(s)<t} for t^a,i~\,2 .. n, 

y ( 0 - m a x { y i ( 0 , . - . , y . ( 0 } . 

Lemma 1. Lef y (y,, .. , y„)eW be a weakly nonosillatory solution of (S), 
then y is nonoscillatory. 

Proof. Suppose that yk is a nono dilatory component of solution y = (y , ..., yk, 
..., y„)eW and y * ( 0 ^ 0 for t^t^a. 

i) Lef l<k = n. With the help of (a), (b), the system (S) implies that either 

yi , (0 = 0 or y'k , (0 = 0 for t = y(u)-tx, (1) 

and not identically zero on any infinite subinterval of [tx, o°). We remark that 
yk , ( 0 ^ 0 for all t = t2 = U. If yk \(t) = 0 for t = t2, then yk x(t) = 0 for t = t2 and 
the (k-l)-st equation of (S) qwes that fk ,(t, yk(t), yk(hk))) = 0 for all t.= t , 
which contradicts assumption (b). From (S) we get that yk x(t) is the monotone 
function and thus there exists a U^tx such that yk x(t)=t0 for t>-U. We have 
proved that yk , is the nonoscillatory component of y. Analogously we can 
prove that yk-2(t), ..., y,(t) are also nono dilatory components of y. 

ii) Let k = 1. From the rc-th inequality of (S) we obtain y'n(t) sgn yx(hx(t))=^0 
for t>U and not identically zero on any subinterval of [tx, °°). Thus there exists 
at4 = tx such that yn(t) + 0 for t ̂  U. If we consider now the case i) for k — n, we get 
that all components of y are nonoscillatory. 

The proof of Lemma 1 is complete 

Lemma 2. Suppose that 

r ( y y.)ew (2) 

is a nonoscillatory solution of (S) in the interval [a, °°) If 

[ |A(f,c, c) |df = °o forall c * 0 , lfc = l, 2, .... n 1, (3) 
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then there exist an integer le{l,2, ..., n}, n + l even, and a t0 = a such that 

yt(t)yi(t)>0 on [fo,«>) for i = l , 2 , ...,/, (4) 

( - i r + ' y I ( 0 y i ( 0 > 0 on [r0, oo) for / = / + l , . . . , n (5) 

hold. 
Proof. Without loss of generality we may suppose that y i ( 0 > 0 for t^a. 

Similar arguments hold if y i ( 0 < 0 . According to (a) there exists a Tii_y(a) such 
that y . (ft i(0)>0 for t^T}. Then the n-th inequality of (S) implies that yn(t') is 
nonicreasing on [Ti, oo) and not identically zero on any infinite subinterval of 
[Ti, oo). We shall show that y „ ( 0 > ° f o r t^T2^Tx. If y „ ( 0 < 0 for some U^T2, 
then yn(t)^yn(u) = c„ < 0 for t^U. Taking this into account and then integrating 
the (n — l)st equation of (S) from t2 = y(ti) to t, we have 

y„-i(0 = yn-i('2)+ \ fn-\(s,yn(s),yn(hn(s)))ds^ 
Jt2 

__y„-i(f2) + /„_i(s, c„, c„ )d s -> -oo as t->oo. 
Jt2 

Then there exists a f3i_y(f2) such that y„_i(0 = c„_i < 0 , y„_i(/i„_i(0) = c„_i for 
t ^ U. Integrating again the (n — 2)nd equation of (S) we prove that y„_2(t)—> - oo 
as t—•oo. Similarly we shall prove that y,(0—* — °° as f—>oo (i = n — 3? ...9 2, 1), 
which contradicts y i ( 0 > 0 for t^a. Therefore y „ ( 0 > 0 on [T2, oo). Thus with the 
help of the (n — l)st equation we obtain that y*-i(0 is a nondecreasing function for 
ri_ T3 = Y(T2) and that it is eventually of one sign, ai) Let y„_i(0 = c«- i>0 for 
ti_ T4^T3. Taking this into account and integrating the (n — 2)nd equation of (S) 
from T4 to t, we obtain 

y„_2(0-^yn-2(T4) + fn-2(s, c„_i, c„_i) 
JT4 

às-

as t—»oo. Repeating this method, we prove that y . ( 0 > 0 (/ = 1, 2, ..., n — 1) for 
t^T5^T4. Therefore (4) is true for l = n. 

b,) Let y„_i( t)<0 on [T3, oo). Then the (n-2)nd equation of (S) implies that 
yn-i(t) is nonincreasing for fi_T6 = y(T3) and that it is eventually of one sign. 
We show that y„_2(t)>0 for t^T7__T6. If y„_ 2 (0<0 for some f4__T7; then 
y„_2(0 = yr.-2(^) = c„- i<0. Similarly as in the assumption y„(fi)<0 we can 
prove that y i ( 0 - * - o o as t—»oo, which contradicts the assumption y i ( 0 > 0 
on [a, oo). Therefore y„_ 2 (0>0 on [T7, oo). According to the (n — 3)rd equation 
of (S) we obtain that y„-3(0 is nondecreasing for fi_T8 = y(T7) and y„-3(0 is 
either positive for f__T9__;T8 or y„_ 3 (0<0 for fi_T8. a2) If y„_ 3 (0>0 for t^T9, 
we can prove that y((t)>0 (i = l, 2, ..., n-3) for f^T i 0 ^T 9 . Then (4) is true 
for l = n — 2. b2) If y„- 3 (0<0 for f^T8 , we can proceed as in the case of bi), 
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only instead of n -1 we have n - 3 . So we get that either y,(f)>0 (i = 1, 2, ..., 
n-4 = l) or yn_4(f)>0 and yn_5( t)<0 for sufficiently large t. Proceeding further 
similarly to the case of b,), b2) we prove (4) and (5) for / = n - 4, ..., 4 ,2 
(/ = n - 4 , ..., 3, 1) if n is even (odd). This completes the proof. 

Lemma 3. Suppose that the assumptions of Lemma 2 hold. If a component yk 

(fce{l, 2, ..., n}) of a solution y = (yi, ..., y„)eW has the property 

liminf \yk(t)\ = Lk, 

then 

a) limy ((f)= + oo(-oo), (; = 1, 2, ..., fc-1) when L f c>0, fc>l; 

b) liminf |y«COI = 0, (i = fc + l, ..., n) when Lfc<oo, k<n. 
I—»oo 

Proof. Lemma 3 may be proved in the same way as Lemma 2 [1] and therefore 
we omit here the proof. 

Theorem 1. Suppose that 

fn (t, x, y) is nondecreasing in x and y for each fixed t i_ a. (6) 

If, in addition, 

[ |/fc(t, c,c)\ df = oo for fc = 1,2, ..., w (7) 

for every c=£0, then the system (S) has the property A. 
Proof. Suppose that the system (S) has a nonoscillatory solution y = 

= (yi, ..., yn)_ W. Without loss of generality we may suppose that y i ( 0 > 0 for 
t__t0i_a. According to (a), yl(hl(t))>0 for ti_ti = y(t0). Then the rz-th inequality 
of (S) implies yA(t) = 0 for t i_fi and it is not identically zero on any subinterval of 
[fi, oo). As yi(f)>0, y^(f)_iO for fi_fi, by Lemma 2 there exists an integer 
/ _ {1, ..., n), n + I is even and a T0i_fi such that 

y,(f)>0 or [T0, oo) for i = l , 2 , . . . , / , (8) 

( - l ) n + , y I ( t )>0 on [To, oo) for i = / + l, ..., n 

hold. 
I. Let I i_ 2. In view of (8) and (a) we have yi(f) > 0, y2(t) > 0 for t i_ T. Then by 

the 1st equation of (S), in view of (b) we get y 1(0 = 0 for t__t2 = y(T0) and not 
identically zero on any subinterval of [f2, oo). The function yi(t) is nondecreasing 
and therefore yx(t) i_ dx > 0 for t i_ f2. From the n-th inequality of (S), we have, with 
the help of (b) and (6), 
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y ; , ( t )g - / „ ( t , y , ( t ) , y , ( / i , ( t ) ) ) ^ - / „0 , d„ d,) for t^u = Y{h). 

Integrating the last inequality from f3 to t, we obtain 

P/*(s,dw^)dsSy„03)-y„(0?iy„(t,), 

which contradicts (7) for k = n, as f—>oo. 
II. Let / = 1 (n is odd). According to (8) and (b) we have y 2 ( 0 < 0 , y2(ri2(0)<0 

for t = ri = y(?o). Then the 1st equation of (S) gives that y,(f) is nonincreasing and 

therefore lim yi(f) = 6 = 0. We suppose that 6 > 0 . Proceeding analogously as in 
t—»oo 

the proof of I, we obtain a contradiction to (7). Therefore 6 = 0. Then applying 

Lemma 3 we get lim y,(t) = 0 for i = 1, 2, ..., n. 
t—»oo 

The proof of Theorem 1 is complete. 
Theorem 1 generalizes the results in [5, Theorem 1] and in [1, Remark 1]. 

Theorem 2. Suppose that (3) holds and in addition 

fn(t, x, y) = pn(t)gn(x, y), (9) 

where pn: [a, °°)—»[0, oo), gn: R
2-*R are continuous functions with pn not 

identically zero on any subinterval of [a, °°), ygn(x, y ) > 0 for jcy>0 and 
liminf \gn(x, y)\>0 for all x±0. 

|y | -»oo 

If 

J pn(t)dt = co, (10) 

fhen the system (S) has the property A. 
Proof. Arguing as in the proof of Theorem 1 we can show that (8) holds, a) In 

case I 0 = 2) we have proved that yi(t) is a nondecreasing function for which 

y , 0 ) £ d i > 0 f o r t==r2andlim yi(t) = d2^0, where either d2<oo or d2 = oo. Then in 
r—»oo 

view of (9) there exists a K>0 such that 

0*(y.(O,y.(MO)=^ for r^t3 = r02). 

From the n-th inequality of (S) with the help of the last inequality we have 

y';0) = - / „ 0 , y,(0, yi(hl(t))) = -pn(t)gn(y>(t), yMt)))^ 

^-Kpn(t), for t^t3. 

Integrating the last inequality from t3 to t, we obtain 
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к{' pn(s)dsŠy„(b)-yn(t)Šy.(h), 

which gives a contradiction to (10) as £—>oo. 
b) Let 1 = 1. Analogously as in case II of the proof of Theorem 1 we can show 

that lim yi(t) = 0. Then by Lemma 3 we ge lim yt(t) = 0 for / = 1, 2, ..., n. 

The proof of Theorem 2 is complete. This Theorem generalizes Theorem 2 [6]. 
We turn now to the system (S), where 

f(t,x,y) = Pi(t)x, i = l,2,...,n-2 (11) 

fk(t, x, y ) sgny = p / c ( 0 M ° \ a*>0 , k = n-l,n, 

where 

p.:[a,°°)->[0,oo), 1 = 1 ,2 , . . . ,* (12) 

are continuous functions and not identically zero on any subinterval of [a, oo), 

í ( t )dř=oo, î = l , 2 , ..., n-1. 
J p, 

The system (S), in the particular case where (11), (12) hold andp,( f)>0, / = 1, 2, 
..., n — 1, a„-i = l, hn(t) = t on [a, oo), is equivalent to the n-th order scalar 
differential inequality 

K;^w (™teb> U s >'(,))T -)')'+*«>wH • 
•sgny(/zi(t))__0. 

We introduce the notation. a„_i = a, an = /? ; 

p,(t) = min {pi(s); t/4^s^t}, t^a, i=l, ..., n-1 

Pi(t) = Pi(t)P,-i(t)...Pi(t) for *__/, 

p ; ( 0 = i for i>j, P)(t) = Pi(t). 

Let ike {1, 2, ..., n}l__k__n — 1 and t, s e[a, oo). We define I0= 1 = J0, and 

Ik(t,s;pik, ...,pik) = j pik(x)Ik-,(x,s;pik_x, ...,pix)dx, 

Jk(t,s;pik, ...,p£l) = J piy(x)Jk-x(t,x\ pik, ...,pi2)dx. 

Lemma 4. Suppose that (11), (12) hold. Let y be a solution of (S) on the 
interval [a, oo). Then the following relations hold: 
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(14) 

y,(s)^"2 (-iyyi+I(t)l(t, s; pi+i-u ..., p,) + (13) 

+ ( - ! )" ' J P- lW|>-„(/l„(jc))|*"sgny„(/T„(x))J„-i_1U,5;p„ 2, .... p.) d*, 

for a^s^t, i = l, 2, ..., n — 1; 
m 

^ 0 = S y ^ ) ^ ^ ; p ^ . . . P i + j - . ) + 
1=0 

+ J >''+^+1(x)pl+.n(x)Jm(r, x; pi, ..., pi+m-i) dx, 

for r^s^a,i<n-l,0^m<n-i-l. 

Proof, a) Let a-Ss§,. I t i s evident that 

y.(s) = y i(0-J ,y:(x)djc = y i(0-J ,piWym(jc)djc, (15) 

for i^-n—2, 

yn .(-0 = y ^ . ( r ) - \*pn-i(x)\yn(K(x))\a sgn yn(hn(x)) dx. 

We calculate the second integral in (15) by parts. Denote: 

v(x) = j pi(r)dT = h(x,s;pi), u(x) = yi+l(x). 

Then we obtain 

y,(s) = y,-(0 - yi+i(t)h(t, s; p.) + J y;+1(x)I.0c, s; p.) dx = 

= y.(0 - y.-+i(r)Ii(r, s; p.) + J y,+200p.+i(*)M*> s ; p,) dx 

for i<n—2. 

If i = n — 2, we get (13). 
Using further the method by parts (n — 2-i) times ( / < / i - 2 ) on the last 

integral, we obtain (13). 
b) Let a'^s^t and let i<n — \. It is clear that 

y.(0 = y*(*) + Jf y!(x)d* = y.(5) + J y,+1(x)p,(x)djc. (16) 

79 



For i = n — 2 (14) is true. Let i<n — 2. We calculate the last integral in (16) by 

parts. Denote v(x)= — P«(T) dr, u(x) = yi+x(x). Then we have 

yM = yi(s) + yi+i(s)\ p , ( x ) d x + J y'i+x(x)Jx(t,x'9 Pi)dx = 

= yi(s) + yi+x(s)Jx(t, s: p,) + yi+2(x)pi+x(x)Jx(t, x ; p,) dx. 

Using further the method by parts m — 1 times on the last integral, we get (14). 

Lemma 5. Suppose that (11), (12) and the assumption (i) of Lemma 2 hold. 
Then there exist I e {1, 2, ..., n}, n + l is even and a TW%a such that (4), (5) hold 
and 

\yi(t/2)\&Gtn-iPn-i(t)\yn(t)\
a for t&T, (17) 

where 

2~2(n-0 

G = ( f ! - l ) ! ( n - i ) ! ' I = 1 ' 2 " ' " - 1 -

Proof. The inequality (4), (5) follows from Lemma 2. Without loss of generali
ty we suppose that yx(t) > 0 for t S f0. Then from (13) we obtain for s = t/2, in view 
of (5) and the monotonicity of yn(t) 

(-l)i+n
yi(t/2)^ f (yn(x))apn-i(x)ln-i-i(x, t/2;pn-2, ..., p() dx 

Jt/2 

=^(yn(t)ypn-i(t) (t-x)pn-2(x)In-i-2(x, t/2; p„-3, ..., p,) dx~~%...^ 
Jt/2 

-S(y-(0) aP--.( . ) . . . pM\'n^~_x^'lvdx. 

Calculating the last integral we get 

( - l ) ' - y l ( , / 2 ) ^ ) " ~ ' ^ ^ ( y B ( 0 Y for t^2t() (18) 

and / = /, / + 1, ..., n - 1. 

According to (4) and the monotonicity of yn(t) we have from (14) for 
m = / - / - l , r = l /2, s = t/4 

y,(f/2)Sy.(f/2) f p,-i(jc)J,_,-,(f/2, x; p„ ..., p,_2) d x ^ 
Jr/4 
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^y,(t/2)p, ,(t)\ (x-t/4)p, 2(x)J, , 2(tl2,x\p„...,p, , ) d ^ - = 
Jt 4 

*y,(t/2)p, • 0 ) - P . ( 0 | ' 4
2 ( ( / 1

f
| - ! ! . ) ,

1 ) ' ! ' d j c -

If we calculate the last integral we obtain 

y , ( t / 2 ) g ( £ ) ' jfr^y^/2) for t = 4t()= T,/ = 1, 2, . . . , / - V (19) 

Combining (18) for / = / and (19) we get (17). 
R e m a r k 1. a) The inequality (4) implies \y(t)\^\y,(t/2)\ for / = 1 , 2 , . . . , / - V 

Then (17) can be written in the form 

| y , ( 0 l ^ C r lPn . ( O M O l " for t^T,/ = l , . . . , / - l . (17') 

b) If 0 < a = i l , then it is evident that (17) holds also for i = n. 

Theorem 3. Suppose that (11), (12) hold. If 0 < a / 3 < l and 

JT"(*.(0)("
 ,wP-(0(P» .(fc.W^d^oo, (20) 

then the system (S) has the property A. 
Proof. Suppose that the system (S) has a nonoscillatory solution y = 

= (y,, ..., yn)e W. Without loss of generality we may suppose that y , ( 0 > 0 for 
t^to^a. According to (a) we have yl(hl(t))>0 for t^t] = y(t()). Then the n-tft 
inequality of (S) implies that y^( t )^0 for t^ t, and it is not identically zero on any 
subinterval of [f,, oo). As y , ( 0 > 0 a n d y'n(t) = 0 for t^t\, then by Lemma 5 we get 
(4), (5) and (17), resp. (17'). 

I. Let / ^ 2 . From (17') we have for / = 1 

y,(0 = c,r 'p„ ,(0(y.(0)a, t^t2>u. 

Then the n-t/i inequality of (S) implies 

y:(0=-c^(0(^.(0)(" m(Pn .(/*.(0)Ay*(M0)r^ (2D 

^-aPn(t)(hx(t)T
 l)ft(Pn .(fc.w)r(y-(or 

for tgt3 = y(t2). 

In (21) we have used the fact that yn(t) is nonincreasing. 
Dividing (21) by (y„(0)a^ a n d then integrating from t3 to t, we obtain 

(yM)y '*-^y aP^-a\'Pn(s)(pn iMswoiw ,)pds 
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From the last inequality we get 

l - a / 3 a í"pя(s)(A.(s))("-,w(P«-.(Л.(.v)))" di 
Jt\ 

< : <°°, 

which contradicts (20). 

II. Let 1=1 (m is odd). Then by (5) the function y,(t) is nonincreasing and with 

regard to yi(0>0 it follows that lim y.(0 = <5 = 0. We suppose that <5>0. 

Therefore there exists a K > 0 such that 

i n f J 7 % = K . (22) 
i^/„y,(//2) V 

From (17) we get for / = 1 with the help of (22) 

yM = ^^)yi(t/2)^KC[r
lpll^(t)(yM)r 

for t ^ l ; ^ 2 t , . 

Proceeding further in the same way as in case I, we get a contradiction to (20). 

Then limy,(t) = 0 and by Lemma 3 we have IimyA(l) = 0 for k = \, 2, ..., n. 

Theorem 3 extends the results of Sevelo and Varech [5, Theorem 2]. 

Theorem 4. Suppose that (11) and (12) hold. In addition there exists 
a differentiable function g: [a, °o)^>R such that 

0'(O^O, 0^0(0^/2.(0 for t^T^a. (23) 

If a = U j 8> l and 

L - ^ / r tofrW""^ (24) 

then the system (S) has the property A. 
Proof. Suppose that the system (S) has a nonoscillatory solution y = 

= (y,, ..., y,,)e W. We suppose that y i ( 0 > 0 for ti^t,,. Proceeding in the same way 
as in the proof of Theorem 2 we get (4), (5) and (17). With regard to y , ( t )>0, (4) 
and (5) we have either 

y 2 ( t ) > 0 or y 2 ( 0 < 0 for t ^ t , > t ( ) . 

I. Let y 2 ( 0 > 0 for t g t , . Then the 1st equation of (S) implies that y , ( t ) ^ 0 for 
y^t'2 = Y(t\), where y(t) = max (y„(0, sup {s; g(t)<t}) for t^a. 
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We define the function z as follows 
\n 2 i( 

z(t) = -v(t)\' (g(s)T 2f>'(s)P" l ( f l ( 5 ) ) ds (25) 
m Mt)k (y,(fl(s)))fl ds u:>J 

for t^t2 = max {T, y(t,)}. 

It is evident that 

z(t)<0 for t>t2. (26) 
In view of the n-th intequality of (S), (23) and the monotonicity of y, we get 

from (25) the following 

,'ft\>n (Af* (u (t\\* f ' ( f l ( s ) ) " 2 f l ' ( s ) ^ j ( f l ( ^ ) ) _ r 

z (0=^(0(^,(^,(0)) I (y%(s))y
 ds~ 

_ v r A ________________)> 
M ) (y.(fl(O)Y 

=•/>*(') f (0(s))""2fl'(s)Pn-,(fl(s)) d s -

J _ 

_______ ( f l | ( 0 ) . 2g , ( r )p2 l (g(O)p,(0(O/2). (y,(0(O/2)Y 

If we use (17) for / = 2, a = 1 and we substitute g(0 for f, then from the last 
inequality we obtain 

z'(t)^Pn(t) f (fl(s))" y ( s ) P n ,(0(s)) d s - (27) 
J _ 

y2(0(O/2)0'(QPl(0(O/2) 
C2(y,(0(O/2))" 

Using the 1st equation of (S) and then integrating (27) from f2 to t, we obtain 

z(t)^z(t2) + f ?„(*) (X(g(s)r 2
ff'(s)P„_,(0(s)) ds dx-

J _ Jt2 

2y,(0(fe/2))' 'j 

C2(/3-l) ' 

In view of (24) the last inequality implies lim z(0 = 0°, which contradicts (26). 
t—»°° 

II. Let y2(0<0 for * = *.. The first equation of (S) implies that y.(0 is 

a nonincreasing function. Then in view of y,(t)>0 it follows that lim y,(t) = 6 ^ 0 , 
f—»oo 

We suppose that <5>0. 
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We now define the function w as follows: 

Ht) = -y»(t)\' (a(s)r-V(s)P»-t(v(s))ds* ' = '-• (28) 

It is clear that w(t)<0 for t^t2. 
Using the n-th inequality of (S), the monotonicity of y, and (17) for / = 2, we 

obtain from (28): 

wXOi^OXy.tMO))' 1 ! ' (a(s))-1g'(s)Pn t(c,(s)) d.v- (29) 

-y-(O(fl(O)"_20'(OP»-.(tf(O)s 

ad"p-(Of («C0)""2«'C0P..-.(«C0) d.s ІS + 

+-Ty2(fl(0/2)fl'(0p.(fl(0/2). 

Integrating (29) from t2 to t, we get 

w(t)=w(t2) + ̂ | ' p„(x)J^ (a(s))n-2g,(s)PH-l(a(s))ds dx-

~^(a(t2)l2). 

In view of (24) the last inequality implies lim w(t) = o°, which contradicts 

w(t)<0 for t = t2. Therefore 6 = 0, i.e. lim y,(t) = 0. Then by Lemma 3 we have 
(—»oo 

limy* (0 = 0 for it = 1,2, ..., n. 
f--»oo 

Remark 2. Consider now the scalar equation 

y<")(0 + P,(Oly(lt.(0)l' isgny(h,(0) = o, / I S 2 , / 3 > 1 , (E) 

which is a special case of the system (S). 
It is easy to prove that 

f p„0)[' (a(s)y-2

a'(s)dsdt = «> 
iff J T J T 

£p„(0(.</(or'df=oo. 

Then from Theorem 3 we get the following very wel-known 
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Corollary. Suppose that (12), (23) hold. If 

\T Pn(t)(g(t))n l d r = oo1 

then every solution of (E) is oscillatory if n is even while for n odd it is either 
oscillatory or tends monotonically to zero as l—•oo. 

Theorem 5. Suppose that (11), (12) and (23) hold. In addition we assume that 
a /3> l . If 

/ > ( . ) . . _ j d t<oo 
JT 

and 

\\u(t))n y ( t ) P „ i(g(t))(j"pn(s)ds)"dt = c0, (30) 

then the system (S) has the property A. 
Proof. Lety = (yi, ..., yn)e W be a nonoscillatory solution of (S). Proceeding in 

the same way as in the proof of Theorem 4 we get (4), (5) and (17). We may 
suppose that y , ( t )>0 for t = t,. Integrating the n-th inequality of (S) from 
K = l2 = y(i*i)) to T, we get 

yn(x)-yn(t)^ -[pn(s)(y[(h,(s))y ds, 

and then we have for T—>oo 

y„(t)^[pn(s)(yi(h\(s))yds9 t^h. (31) 

I. Let /==2. Since y, is nondecreasing and yn is nonincreasing, (31) implies 

(yn(g(t))y^(y>(g(t))r(j~Pn(s)ds)a, t^u = y(t2). 

From the last inequality we obtain in view of (17) for i = 2 and the monotonicity of 

y. 

y2(g(0/2)gC2(<K0)n^^ (32) 

Multiplying (32) by g'(t)p\(g(t)/2)(y\(g(t)/2))-afi and using the 1st equation of 
(S), we get 

y ( y ^ 
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Integrating the last inequality from f3 to u, we obtain 

^ ( , , ( , ( 0 / 2 ) ) - ^ 

^^^^^"-^'^^-.(^^^({"pnWdsy'dr, 

which contradicts (30) as u—>oo. 
II. Let /= 1. According to Lemma 5, y,(t)>0 for l^l,, we get from the 1st 

equation of (S) y2(0<0, y.(0 = 0 for t^U. Therefore lim y,(r) = 6 ^ 0 . We 
/*—»oo 

suppose that <5>0. Then, in view of the monotonicity of y„, y, we obtain from 
(31): 

(yn(g(t)))"^6""^p„(s) dsj, fSfc-.-nax {T, r,}. 

If we use (17) for i = 2, we get from the last inequality 

-y2(fl(0/2)SC26"'i(fl(0)""2P2-i(fl(0)({"pn(s) ds)" (33) 

for t^t4. 

Multiplying (33) by pt(g(t)/2)g '(t) and using the 1st equation of (S), we obtain 

-y[(fl(0/2).g'(0^C26^(fl(0)"-2fl'(t)P„-1(fl(0)({3Op-,(s)d5)a. (34) 

Integrating (34) from t4 to u, we obtain 

2y,(.fl(f4)/2)g 

gC26'"i|U(fl(0r-2fl'(t)P„-1(fl(t))({°°P„O) ds)" df, 

which contradicts (30) as u—>oo. 

Therefore 6 = 0, i.e. lim yi(t) = 0. Then in view of Lemma 3 we have lim yk(t) 

= 0 
for k = 1, 2, ..., n. 

The proof of Theorem 5 is complete. 
This Theorem generalizes Theorem 5 [5]. 
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О КОЛЕБЛЕМОСТИ РЕШЕНИЙ НЕЛИНЕЙНЫХ СИСТЕМ 
С ЗАПАЗДЫВАНИЕМ 

Ра\о\ Маги81ак 

Р е з ю м е 

В статье приведены достаточные условия колеблемости решений системы (5) и системы 

У'М = Р.О)У,*,0), ' = 1.2 п-2, 

У'„ ,0) = Р„-,О)\УЛШ)\" ^ уЛШ), 

у;(0 88пу.(Л.(0)«-Р-(0|у,(А|(0)Г. 0 < а , 0 < | 3 . 
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