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ABSTRACT. A node of a graph G = (V, E) dominates itself and all nodes 
adjacent to it. A subset S C V is a dominating set for G if each node is dominated 
by some node of S. This concept can be extended to k -tuple domination by 
requiring tha t each node in V be dominated by at least k nodes in S. The 
domatic number of G has been defined as the largest number of sets in a parti t ion 
of V into dominating sets. Similarly, we define the k-tuple domatic number of 
G as the largest number of sets in a parti t ion of V into k-tuple dominating 
sets. We derive bounds for the k-tuple domatic number. Results involving the 
ordinary domination and domatic numbers are improved as a consequence of this 
generalized approach. 

1. Introduction 

In general, we follow the terminology and notation of [4]. A node in G = 
(V,E) is said to dominate itself and all nodes adjacent to it, the nodes in its 
closed neighbourhood N[v]. A dominating set S C V has each node of G 
dominated by some node in S. The domination number 7(G) is the smallest 
cardinality of a dominating set. A dom,atic partition is a partition of V into 
dominating sets, and the domatic number d(G) is the largest number of sets in 
a domatic partition. 

In [5], we defined S C V to be a multiple dominating set or a k-tuple domi
nating set by requiring that each node in V be dominated by at least k nodes 
in S. The order of a smallest k-tuple dominating set is the k-tuple domination 
number, written ^k(G). It is easy to see that not every connected nontrivial 
graph has a k-tuple domination number for k > 2. For example, no tree has a 
3-tuple domination number, and no cycle Cn has a 4-tuple domination number. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 05C70. 
K e y w o r d s : domination, domatic number, k-tuple domination, double domination, k-tuple 
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However, any graph G without isolates has a 2-tuple domination number, and 
in general, any graph G with 8(G) > k — 1 has a k-tuple dominating set ([5]). 
We extend the concept of a domatic partition to a k-tuple domatic partition by 
partitioning V into k-tuple dominating sets. Then the k-tuple domatic number 
dk(G) is defined as expected. Note that for k = 1, dk(G) is simply the domatic 
number introduced by C o c k a y n e and H e d e t n i e m i [3]. Z e l i n k a [10] 
and K u 11 i [8] studied a different type of multiple domination. For each generic 
invariant /i of a graph G, let /i = fi(G) and Jl = fi(G). 

2. The A:-tuple domatic number 

We establish a bound on the k-tuple domatic number in terms of the mini
mum degree 8. 

THEOREM 1. Let k be a positive integer, and G have 8 > k — 1. Then 

P r o o f . Let G be a graph with 8 > k — 1, and consider a partition of V into 
k-tuple dominating sets VX) V2)..., Vdk. Without loss of generality, let u G Vd . 
Then u must have at least k neighbours in each V{) 1 < i < dk — 1, and at 
least k — 1 neighbours in Vd . Hence, each node has degree at least kdk — 1, so 
dk < 1(5 + l ) / k j . Complete graphs Kn with n > k achieve the upper bound 
with 8 = n - 1, -fk(Kn) = k, and dk(Kn) = [n/k\. • 

A result due to C o c k a y n e and H e d e t n i e m i [3] follows. 

COROLLARY 1.1. ([3]) For any graph G, d < 8 + 1. 

Since the k-tuple domination number is defined only for graphs G with 5 > 
k — 1, we also have the following corollary. 

COROLLARY 1.2. If G has k - 1 < 5 < k, then dk = 1. 

A natural question to ask is for which G is dk > 2. Corollary 1.2 implies that 
if d2 > 2, then 8 > 3. However, the converse is not true. Consider the Petersen 
graph P which has 8(P) = 3 and 72(P) = 6, implying that d2(P) = 1. But a 
cubic graph can have d2 > 2 as can be seen with d2(K4) = 2. A characterization 
of the graphs with dk > 2 remains an open question. 

By Corollary 1.2, any graph with no isolates and 8 < 2 has d2 = 1 and 
^2 = L(̂  + 1)/2J. For example, cycles and trees fall into this category. 

We now give a Nordhaus-Gaddum inequality involving the k-tuple domatic 
numbers of G and G. 
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THEOREM 2. For a graph G with S, ~5>k-l, 

( n - A + tf + 1) 
dk + dk< . 

P r o o f . Let G be a graph with £, 8 > k — 1. By Theorem 1, 

dk< 

Hence 
{8 + 1) , ( í + l ) _ {8 + 1) , ( n - Д ) 

h + dk< —г^ + ^r-^ = ^-г^ + 

And the theorem holds. • 

Again a result concerning the domatic number follows as a corollary. 

COROLLARY 2.1. ( C o c k a y n e and H e d e t n i e m i [3]) For any graph G, 
d + d < n + 1 with equality if and only if G = Kn or Kn . 

A full node has degree n — 1. In [5], we showed that a graph G has 7 2 = 2 
if and only if G has two full nodes. From the definition of the fc-tuple domatic 
number, we have 7k x dk <n. We use these facts and a proof technique similar 
to one used by J o s e p h and A r u m u g a m in [7] to establish a upper bound 
on 7j, + dk. A consequence of this result improves the known upper bound on 
7 + d. 

THEOREM 3. If G is a graph with 5 > k - 1 > 1 and dk>2, then 

7k + dk< [n/2\ + 2 

with equality if and only if one of the statements (1) to (4) holds. 

(1) dk = 2 and 7k = [n/2\ . 
(2) k = 2, n = 9 . and d2 = 7 2 = 3. 
(3) fc = 2 and G^Kn. 
(4) fc = 3 and G^K^. 

P r o o f . Let G be a graph with 5 > fc—1 > 1 and dk>2. Then 7^ x dk < n, 
7k > k imply 7k + dk < n/dk + dk and 2 <dk< n/k. Note that /(#) = n/x + x 
is decreasing for 1 < x < y/n and increasing for y/n < x. Thus 

A + ^ < m a x { | + 2 , ^ + | } < f + 2. 
f̂c 

Obviously, if any one of statements (1) to (4) holds, then 7k + dk = [n/2\ + 2 . 
Conversely, let G be a graph with 8 > k — 1 > 2 and 7^ + ^ = Ln/2J + 2. 
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Assume that *yk = 2 or dk = 2. If dk = 2 and 7^ = [n/2\, then statement 
(1) of the theorem holds. If 7,, = 2 and dk = [n/2\, then lk>k implies k = 2. 
As mentioned above, 72 = 2 if and only if G has two full nodes ([5]). Further, 
since dk = \n/2\, G = Kn and statement (3) of the theorem holds. 

If lk - ^ anc^ dk > 4, then 

lk + dk< n /4 + n /4 < [n/2\ , 

and hence, equality is impossible. 
The remaining possibility is that 7fc = 3 or dk = 3 implying 

3 + [n/3\ = [n/2\ + 2 . 

But this equation is true only for n = 6, 7, or 9. If n = 6 or n = 7, then dfc = 2 
or 7^ = 2, and we have already considered this case. Hence let n = 9. Then 
lk+dk = \n/2\ + 2 = 6. Since 7^ = 3 or dk = 3, we have 7/. = ^ = 3 implying 
that 2 < k < 3 . I f k = 2, then statement (2) holds. If k = 3, then each of the 
three disjoint 3-tuple dominating sets induces a triangle. Furthermore, any node 
not in a given 3-tuple dominating set much be adjacent to all 3 nodes in the 
set. Hence G = K9 and statement (4) holds. • 

The first corollary to this theorem is a known upper bound from [3]. 

COROLLARY 3 .1 . ( C o c k a y n e and H e d e t n i e m i [3]) For any graph G. 
7 + d < n + 1. 

O r e [9] showed that for any graph without isolates, 7(G) < n/2 implying 
that G has d > 2 if and only if G has no isolates. Hence the upper bound of 
Corollary 3.1 is improved for graphs with no isolates and 7 > 2 by our next 
corollary. 

COROLLARY 3.2. / / G has no isolates and 7 > 2. then 7 + d < [n/2\ + 2. 

P r o o f . Let G be a graph with no isolates and 7 > 2. Then d > 2. Thus 
d < [n/2\ and 7 < |_n/2j. The corollary follows when k = 1. • 

The composition P3[-P3] of two P 3 paths is an example of a graph with 
72 = d2 = 3 . Note that the condition dk = 2 alone is not sufficient for sharpness 
as can be seen by G = K4 + K for p > 3 and k = 2. Any two nodes in the 
K4 form a 2-tuple dominating set for G, and no other pair of nodes is a 2-tuple 
dominating set. Hence 

72 + d2 = 2 + 2 < [(4 + p)/2\ + 2 . 

J a e g e r and P a y a n [6] showed that 7 < d, and C o c k a y n e and 
H e d e t n i e m i [3] combined this fact with Corollary 3.1 to establish a Nordhaus-
Gaddum inequality involving domination numbers of complementary graphs. 
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Considering this approach, we tried to find a similar relationship between 7 2 

and d2. However, the 2-tuple domination number of G is not a lower bound for 
d2 as can be seen in the following examples: 

• For the corona G o Kx, 72 = n, d2 = 1, and 7 2 > 2. 

• For the complete bipartite graph Kr s, 3 < r < s, it is a simple exercise 
to show 

72 = 4 and d2 = mm([r/2\, \s/2\) . 

Hence 72(^6 ,8) = 4> 7 2 (^e ,8 ) = 4> a n d ^ ( ^ e . s ) = 3-

We conclude with two interesting open problems: 

• Characterize the graphs for which dk = 2 and 7^ = |_n/2j. 

• Characterize the graphs for which dk = [(S + l ) / 2 j . 
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