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STRONG SUBDIRECT 
PRODUCTS OF MF-ALGEBRAS 

J A N JAKUBIK 

(Communicated by Anatolij Dvurecenskij ) 

ABSTRACT. In this paper we investigate the Dedekind completion of a strong 
subdirect product of MV-algebras. 

1. Introduction 

Strong subdirect products of lattices and of pseudo MF-algebras have been 
investigated in [8]. 

In the present paper we apply this notion for dealing with Dedekind comple­
tions of MT^-algebras. 

We recall that the Dedekind completion D(A) of an MV-algebra A is an 
MV-algebra if and only if A is archimedean (cf. [5], or [3; p. 436]; instead of 
"Dedekind completion" the term "MacNeille completion" has also been used). 

Let A be an archimedean MF-algebra. We prove the following result: 

(A) Suppose that A is a strong subdirect product of MV-algebras Ai 

(i G I). Then its Dedekind completion D(A) is isomorphic to the direct 
product of MF-algebras D(A{). 

In [8], b-atomic MV-algebras have been dealt with; for the definition, cf. 
Section 2 below. We apply (A) and [8; Theorem 4.2]; we obtain: 

(B) The following conditions for A are equivalent: 
(i) A is b-atomic 

(ii) D(A) is a direct product of linearly ordered MV-algebras. 
A particular case of a b-atomic MV-algebra is the atomic MV-algebra. In 

this connection, cf. [3; Theorem 6.4.20], where the Dedekind completion of an 
archimedean atomic MV-algebra has been considered. 

2000 M a t h e m a t i c s Sub jec t C l a s s i f i c a t i on : Primary 06D35. 
Keywords : MV-algebra, Dedekind completion, strong subdirect product. 

Supported by Grant GA SAV 2/6087/99. 

507 



JAN JAKUBl'K 

2. Preliminaries 

For the definition of an MF-algebra, several equivalent systems of axioms 
have been applied (cf., e.g., [1], [2], [4]). 

We will use the definition from [2]; thus an AfV-algebra is an algebraic 
structure A = (A;,©,-i ,0) of type (2,1,0) satisfying the axioms MV1-MV6 
from [2]. We put - i 0 = 1. 

We also apply the well-known results on the relations between MV-algebras 
and abelian lattice ordered groups (cf. [2]). Hence there is an abelian lattice 
ordered group G with a strong unit u such that A is the interval [0,H] of G, 
1 = u and for each x, y G A we have x(By=(x + y)Au, -*x = u — x; we put 
A = T(G,u). 

We denote by £(A) the lattice (.A; V, A), where the operations V and A are 
defined as in G. The lattice 1(A) is distributive. 

An element 0 < b G A is called basic if the interval [0, b] of the lattice £(A) is 
a chain. The set of all basic elements of A is denoted by B(A). An MF-algebra 
is said to be b-atomic if for each 0 < a G A there exists b G B(A) such that 
b^a. 

If b G A and the interval [0, b] is a two-element set, then b is an atom of A. 
The AfV-algebra A is atomic if for each 0 < a G A there exists an atom b with 
b ^ a. If A is atomic, then it is b-atomic, but not conversely, in general. 

The direct product of MV-algebras is defined in the usual way; we apply the 
symbols 

AxB, Y[A{. 
iei 

Consider a homomorphism 

V-.A-^YlA^A0 

iei 

of the MF-algebra A into the MV-algebra ^4°. For x G A and i G I we denote 

xi = <p(x){; 

x{ is said to be the component of x in Ai (under the mapping p). We write 
also x- = x(Ai). 

If (p is a bijection, then it is said to be a direct product decomposition of A. 

If for each i G / and each element xl of Ai (— the underlying set of A{) there 
exists x G A with xi = xl, then (p is called a subdirect product decomposition 
of A. 

An analogous terminology and notation will be applied for lattices. 
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3. Strong subdirect produc ts of lattices 

Let L be a lattice. It is well-known that the Dedekind completion D(L) 
of L is defined uniquely up to isomorphism and that there exists a canonical 
embedding of L into D(L). 

A lattice L is said to be a regular sublattice of a lattice V if L is embedded 
into V such that the embedding preserves all existing joins and meets in L . 

3.1 . LEMMA. ([10]) Let L and V be lattices such that V is complete and 
(i) L is a regular sublattice of V ; 

(ii) for each a G L' there exist subsets X and Y of L such that the relation 

sup X = a = inf Y 

are valid in V . 

Then V is a Dedekind completion of L. 

3.1.1 . COROLLARY. Let L and V be as in 3.1. Let p,q G L, p ^ q. We 

denote 

Px = {x e L: p^x^q} , 

P2 = {x G L' : p 5S x ^ q} . 

Then P2 is a Dedekind completion of Px. 

We recall a definition from [8]. 
Assume that L° is a direct product of lattices L- (i G I). For each i G L{ 

let 0? be the least element of L{. The elements of L° are denoted as (xt)ieI. 
For any fixed i G i" we put 

L• = {x G L° : x. = 0 j for each j G / \ {i}} . 

Let L1 be a sublattice of L° . For i G / we denote 

L\ = {x&L': xt = V). 

The lattice L1 is said to be a strong subdirect product of the lattices L{ (i £ I) 
if the relation 

Ll=Ltx I ' , (1) 

is valid for each i G / . 
In more details, the relation (1) is understood in the sense that the following 

conditions are valid: 

(a) L{ C L 1 ; 

(b) the morphism ^pt(x) = (x{l,xi2) is an isomorphism of L1 onto L{x L{, 
where 
xn eJ> (̂ 1); = ^ 
Xi2 ^ L\ > iXi2) j = Xj for e a c h 3 E I \ W ' 
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Assume that L1 is a strong subdirect product of lattices L{ (i G I). Further, 
suppose that for each i G I, Li has the greatest element V. Then there exist 
elements el, e*1 in L° such that 

( ^ = 1*, ( e ^ t y for j€l\{i}, 

{e*% = 0\ {e*% = V for jel\{i}. 

For each x G L° and i G I we denote by x- the element of L- such that 

fo)i " xi • 

It is obvious that the mapping 
x - -> xi 

is an isomorphism of the lattice L{ onto the lattice L{. 

3.2. LEMMA. For each x G L° , £/ie relation 

x = \Jxi (2) 
zs ua/za7 m L° . 

P r o o f . For each i,jel we have (x{) • _ x . Hence x is an upper bound 
of the set { x j -G / . Let y e L°, y _ x^ for each z G I . Thus y. _ (x-) for each 
?,j G / , whence yt _ x^ for each i G / . Therefore (2) holds. • 

We have clearly 
x • = x A el for each z G / . 

For x ^ L° and z E J let x* be the element of L° such that 

(X*)i = XH 

(x*) • = V for each j G / \ {i} . 

Further, we denote 
! * = {**: X G L 1 } . 

Then L{ is a sublattice of L 1 . 
By analogous method as in the proof of 3.2 we obtain: 

3.2.1. LEMMA. For each x G L° , the relation 

x=f\, 
is valid in L° . 

Also, we have 
x*. - x V e1' = x • V el. 

By a simple calculation we can verify 
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3.3. LEMMA. The mapping defined by x{ -> x* is an isomorphism of the lattice 

L- onto the lattice L{ . 

Denote 
I?(L.) = ^ , D = UD(. 

Hence both L° and L1 are sublattices of the lattice JD, and D is a complete 
lattice. 

3.4. LEMMA. Let 0 ^ X C L° and suppose that the relation y = sup A" is 
valid in L° . Let i G I. Tberc 

?d. = sup{x .} a : G X 

bo/ds 77? L^ . 

P r o o f . For each x G Ar we have x _ ?/, whence x?. _ ^ . Let z G L? be 
such that z _ x- for each x G A". There exists z0 G L° with (zo)^ = z and 
(~0) = u. whenever j G L \ {i}- Thus (z0) • _ x- for each j G I and each 
x G Ar. Hence zQ _ x for each x G A . Therefore £0 _ ?/ and (^0)7- _ ?/•. This 
yields that z^.yt, whence ?/• = sup{x 7 } x G V . D 

3.5. LEMMA. Let 0 ^ X C L°. ?/ G L° and suppose that for each i G L tte 
relation sup{x7-}xG Y = ^ is Tja/ia7 m L^. Tben ?/ = sup A bo/ds m L° . 

P r o o f . We have y _ x for each x G A . Let ?j G L°, v _ x for each x G A". 
Hence vi _ x7 for each i G I and each x G X. Thus ^ _ yi for each i G L and 
therefore v _ ?y. Thus ?/ = sup A . D 

Analogously we can verify the assertions which are dual to 3.4 or to 3.5, 
respectively. 

3.6. LEMMA. Let L1 and L° be as above. Then L1 is a regular sublattice 
of _ ° . 

P r o o f . Let 0 ^ A C L1 , y G L1 and suppose that the relation 

sup X = y 

holds in L1. Let z G L°, z _ x for each x G X. 

Take any fixed i £ I. Since L1 is a strong subdirect product of lattices L7, 
the relation (1) above is valid. 

We apply 3.4 for the direct product decomposition (1) (i.e., we have now L1 

instead of L°). Thus the relation 

Vix - s u p f o j . ^ 
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is valid in L{. In view of the above mentioned isomorphism between L • and L? 

we obtain, that 

yi - s u p { x j x e x 

holds in L{. 

In view of 3.2 we infer that the relations 

z = V ^ ' y = \Jyi 
iei iei 

are valid in L° . Further, z{ ^ x{ for each i € I and each x € X. Hence z{ _ yi 

for each i G / . Then z ^.y. Thus sup Ar = ?/ in L° . Analogously we can verify 
the dual result. Therefore L1 is a regular sublattice of L° . D 

3.7. LEMMA. L° is a regular sublattice of the lattice Yi D(L{). 
iei 

P r o o f . It is obvious that L° is a sublattice of the lattice Y\ ^ ( ^ ; ) 5 w e 

denote this lattice by Ld. ieI 

Let 0 ^ A" C L° and suppose that sup X = y holds in L° . We remark that 
for each t G L° and each z G / we have 

t(L.) = f (D(L i ) ) . 

According to 3.4, the relation 

H. = s u p { x j i e / 

is valid in L{. In view of 3.1, this relation holds also in D(L{). Now we apply 
3.5 with the distinction that instead of L° we consider the lattice Ld. Hence the 
relation y = sup X holds in Ld. The corresponding dual result can be proved 
analogously. Hence L° is a regular sublattice of Ld. D 

3.8. LEMMA. Let L1 and Ld be as above. Then L1 is a regular sublattice 
ofLd. 

P r o o f . This is a consequence of 3.6 and 3.7. D 

Let i e i . We denote by D(L{) the set of all x G Ld such that x- = 

x(D(Lj)) = Oj for each j el\{i}. 

In view of the isomorphism between Li and L{ we immediately obtain: 

3.9. LEMMA. D{L{) is the Dedekind completion of the lattice L{ 
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3.10. LEMMA. Let t e Ld. Then there exists a subset X C Ll such that the 
relation sup X = t is valid in Ld. 

P r o o f . Let i £ I. The symbol t{ is defined analogously as the symbol xi 

above (cf. 3.2) with the distinction that we now deal with Ld instead of L°. In 
view of 3.2 we have 

t=ytt 
in Ld, where ti €D(Lt).

 i € / 

According to 3.9 and 3.1, for each ii there exists a subset {a^} (j € J{) of 

Lt such that the relation 

\ = V °« 
jEJi 

is valid in the lattice D(L{)] hence this relation holds in Ld as well. Put 

x = iaij}ieijeJi • 

Then t = sup X holds in Ld. • 

Now let us suppose that the lattice L1 satisfies the condition 

e*{ e L1 for each i e l . (*) 

Then for each x G L1 and each i G / , the element 

belongs to L1. 

By the method dual to that just applied above and by using 3.2.1 instead of 
3.2 we conclude: 

3 .10.1 . LEMMA. Let t e Ld. Then there is a subset Y C L1 such that the 
relation inf Y = t is valid in Ld. 

From 3.1, 3.6, 3.10 and 3.10.1 we obtain: 

3 .11. PROPOSITION. Let the lattice L° be a direct product of lattices L{ 

(i G I). Assume that L1 is a sublattice of L° such that 

(i) L1 is a strong subdirect product of lattices L{ (i G I); 
(ii) i 1 satisfies the condition (*). 

Let Ld be the direct product of lattices D(L{) (i G / ) . Then Ld is the 
Dedekind completion of L1 . 
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3.11.1. COROLLARY. Let L° and Ld be as in 3.11. Then Ld is the Dedekind 
completion of L°. 

We conclude this section by remarking that the considerations contained here 
remain valid (with the obvious modifications) if instead of the assumption 

L° = l[Lt 
iei 

we assume that we are given a direct product decomposition of the lattice L° 

iei 

4. Auxiliary results 

For the sake of completeness, we recall the definition of a particular type of 
direct product decompositions of an MF-algebra which will be called internal 
(cf. [7]). 

Assume that 

V-.A-^YlAi (1) 
iei 

is a direct product decomposition of the MV-algebra A. For each z(l) G I we 
denote 

A°i{1) = {a G A : a- = 0 • for each i G I \ i ( l )} . 

We have -4^-x C A and 0 G -40
(1) . We define the operation 0 ^ ^ on -4 i (1 ) as 

follows. Let a,b e -4°(1). There exists c G ^4°(1) such that (a -f- b)i{1) = c-(i). 

We put a ©^-N b = c. Further, we set ""v^a = ( ^ a ) ^ ^ . Then A°i{1) = 

(Al(i)>®i(i)>^i(i)>°i(i)) i s a n M7-algebra. 
Let i G / and let xl be an arbitrary element of A{. We denote by ^pi{xl) the 

element of A® such that 

Then (/? • is an isomorphism of Ai onto A?. 
Further, for each x € A we put 

^ ( x ) = ( . . . , ^t(xt),...)ieI. 

Then </?° is an isomorphism of A onto ["I A?. We say that </?° is an internal 
iei 

direct product decomposition of the MV-algebra A. 
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Now let L be a lattice with the least element 0; consider a direct product 
decomposition of L having the form 

cp.L^ЦL,. 
iei 

Similarly as above, for each i(l) G I we put 

L°i(i) = {^ e L : xi = 0i for each i e l \ {i(l)}} • 

Hence L L C L and O G l L . The lattice operations in L®^ are induced from 

those in L. For each i G I, the mapping (p{: L{ -> L\ is defined analogously as 

in the case of MV-algebras. The definition of the relation 

<p°:L^l[L° 
iei 

is also analogous to that applied for MF-algebras. Then ip° is an internal direct 
product decomposition of L. 

More generally, this notion can be used for connected partially ordered sets 
(cf. [9]) and for algebras having an one-element subalgebra (cf. [6]). 

To each direct product decomposition <p of an MF-algebra (or of a lattice 
with the least element) there corresponds an internal direct product decompo­
sition ip°. When our considerations are made up to isomorphism, then we need 
not distinguish between a direct product decomposition and the corresponding 
internal direct product decomposition. 

We apply the results of Section 3 for an internal direct product decomposition 
of the lattice 1(A). 

Again, suppose that (1) is valid. Let A1 be a subalgebra of A such that for 
each i( l) G I we have 

A0 C A1 

^i(i) -= A » 

where A1 is the underlying set of the MF-algebra A1. Consider the partial 
mapping 

Then we say that 

tp^.A^UAt (2) 
i<EI 

is a strong subdirect product decomposition of the MV-algebra A1. 

This definition is a slight modification of that used in [8] (the difference 
disappears when we are working 'up to isomorphism'). The results of [8] remain 
valid also under the present definition. 

515 



JAN JAKUBIK 

Assume that (2) is a strong subdirect product decomposition of the A/V-al-
gebra A1. Let £(AX) and £(At) (i G I) be the corresponding underlying lattices. 
Then the mapping y1 gives, at the same time, a strong subdirect decomposition 

v'lliA^^HHAi) (2') 
i<E1 

of the lattice ^(A1). 
Let i G I. In accordance with the notation from Section 3 we denote by el 

the greatest element of the lattice £(A®). Further, let ez* be the element of A 
such that 

(e**) • - 0. and (ei*)j = lj for each j e l \ {i} . 

Then we have 
e1' A e2* = 0, e* V e7'* = 1. 

From these relations we easily obtain 

e1* = n e i . (3) 

From (2') we get e{ G A1 and then (3) yields that e2* also belongs to A1. 
Hence we obtain: 

4 . 1 . LEMMA. Le£ A1 be a strong subdirect product of MV-algebras A{ (i G I). 
Then the lattice £(AX) satisfies the condition (*) from Section 3. where L- = 

Consider the relation A = T(G,u) mentioned in Section 2. This relation 
implies: 

4.2. LEMMA. Let a G A. Then -»a is the least element of the set 

{x e A: a 0 x = 1} . 

4 .2 .1 . LEMMA. The operation -> on A is uniquely determined by the operation 
© and the partial order _ on A. 

4.3 . LEMMA. Let i(l) G I and a, b G A°i{l) . Then 

a©. ( 1 ) 6 = a 0 b. 

P r o o f . Consider the direct product decomposition y?0 of A. For each x G 
-4° x) we have 

^ ( ^ ( 1 ) ) = ^ -
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Further, in view of the definition of the operation ®i{1) on the set A®{1) we get 

a®i(1)b=(a®b)(A°i(1)). 

Hence 
a®i(1)b = a{A°i(l))®b(A°{l))=a(Bb. 

D 

We slightly modify the formulation of [7; Theorem 3.5] (cf. also [7; Lemma 3.4]); 
we obtain: 

4.4. PROPOSITION. Let A be an MV-algebra, L = £(A) and let 

/:I^IK 
i€l 

be an internal direct product decomposition of the lattice L. Then the mapping 
(f° yields also an internal direct product decomposition of A 

V°:.A->IИ 
iei 

such that for each i G I we have £{A®) = L°t . 

5. Proofs of (A) and (B) 

Assume that A is an archimedean A/V-algebra. We apply the notation as 
above. Let (A) and (B) be as in Section 1. 

P r o o f of (A) . 
Suppose that A is a strong subdirect product of MV-algebras A{ (i G L). 

Then the lattice L = £(A{) is a strong subdirect product of lattices L{ = £(A{). 
Thus in view of 3.11 and 4.1, there is a direct product decomposition 

ip:D(L)^l[Di9 

where Di=D(Li). 
Let us consider the internal direct product decomposition cp° corresponding 

to the direct product decomposition cp 

V°:D(L)->HDl 
iei 

Consider the Dedekind completion D(A) of the MV-algebra A. Then we have 
D(L) = e(D(A)). 
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We apply Proposition 4.4 for the AIV-algebra D(A) and for the lattice D(L). 
Hence the mapping ip° yields, at the same time, an internal direct product 
decomposition of D(A) 

V
0:Z?(>i)-+n*i 

tei 
such that for each i G I we have 

t(Xi) = D\. 

Let i(l) G I. Similarly as in Section 4 we denote by A®(1) the set of all a G A 
such that 

a. = IV for each i G I \ { '̂(1)} • 

Further, we define the operations © i (1j and -i i(1j on the set ,4?°(1) in the same 

way as in Section 4. Let A? be the corresponding A/V-algebra. 

We will investigate the relations between the MV-algebras Xi(1) and 

D(A°{1)). 

a) -0?(1x is the interval with the endpoints 0 and e^1^ od D(L). Also, the 
underlying set of A°i(1) is the interval with the endpoints 0 and e^x) of the 
lattice £(A) = L. Thus in view of 3.1.1 we obtain that the underlying lattices 
of X1 and of D(A^(l)) are equal. 

b) The algebra -4?(1\ is a subalgebra of -D(-4?(1\) • Further, since ^ . ( 1 ) is an 
internal direct factor of D(A), by applying 4.3 we conclude that if a, b G -4.(1), 
then the operation 0 used for a and b yields the same result in Xi,1) and in 
D(A°i(l)) (and, in fact, also in A). 

c) Next, if a' and 6' are any elements of D(A^(1)), then there exist subsets 

X and Y of -4?(1x such that the relations 

sup X = a', sup y = b' 

hold in *?(Z?(A?(10)). Hence in D(A?(1)) we have 

a* ®b' = sup{x 0 ?l : x e l , | / G Y } . 

In view of a) and b), this equation holds also in Xi(l). Thus the operation 0 in 

D(A^l)) coincides with the operation 0 in Xi(1). 

d) In view of a), c) and 4.1 we get 

*.<!>= - > K i > ) -
Hence we have a direct product decomposition 

V°:D(A)-*l[D(A0). 
iei 
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Since A°{ is isomorphic to A{ we conclude that (A) is valid. • 

P r o o f of (B) . 
a) Assume that A is b-atomic. Then in view of [8; Proposition 4.3], A is a 

strong subdirect product of linearly ordered AIV-algebras. It is obvious that the 
Dedekind completion of a linearly ordered set is again linearly ordered. Hence 
in view of 3.11 and 4.1 we infer that the lattice D(£(A)) is a direct product 
of linearly ordered sets. Since to each direct product decomposition of a lattice 
there corresponds an internal direct product decomposition, according to 4.4 
the jr/V-algebra D(A) be expressed as a direct product of linearly ordered 
Tl/V-algebras. 

b) Conversely, suppose that D(A) is a direct product of linearly ordered 
M\ '-algebras. Without loss of generality we can assume that the direct product 
under consideration is internal, i.e., we have (under the notation as above) 

ip°:D(A)-+l[Bl 
iei 

where all B® are linearly ordered. Let 0 < b G B (we denote by B the underlying 
set of D(A)). Then there exists z(l) G / such that 0 < b(/3°(1)) G B?. Thus the 
interval [0, b(#°(1))] of the lattice £(D(A)) is a chain. 

There exists a subset X of A such that the relation 

s u p X = 6(/3°(1)) 

is valid in the lattice £(D(A)). Then there is x G X with 0 < x. Moreover, 
the set Xx = {y G A : y ^ x} is a subset of the above mentioned interval 
[0, b(B®{l))] ; thus Xx is a chain. Therefore x is a basic element of A. We 
conclude that the MF-algebra A is b-atomic. • 
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