Mathematic Slovaca

Ján Jakubík

Strong subdirect products of MV-algebras

Mathematica Slovaca, Vol. 51 (2001), No. 5, 507--520

Persistent URL: http://dml.cz/dmlcz/128782

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 2001

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

STRONG SUBDIRECT PRODUCTS OF $M V$-ALGEBRAS

Ján Jakubík
(Communicated by Anatolij Dvurečenskij)

Abstract

In this paper we investigate the Dedekind completion of a strong subdirect product of $M V$-algebras.

1. Introduction

Strong subdirect products of lattices and of pseudo $M V$-algebras have been investigated in [8].

In the present paper we apply this notion for dealing with Dedekind completions of $M V$-algebras.

We recall that the Dedekind completion $D(\mathcal{A})$ of an $M V$-algebra \mathcal{A} is an $M V$-algebra if and only if \mathcal{A} is archimedean (cf. [5], or [3; p. 436]; instead of "Dedekind completion" the term "MacNeille completion" has also been used).

Let \mathcal{A} be an archimedean $M V$-algebra. We prove the following result:
(A) Suppose that \mathcal{A} is a strong subdirect product of $M V$-algebras \mathcal{A}_{i} ($i \in I$). Then its Dedekind completion $D(\mathcal{A})$ is isomorphic to the direct product of $M V$-algebras $D\left(\mathcal{A}_{i}\right)$.
In [8], b-atomic $M V$-algebras have been dealt with; for the definition, cf. Section 2 below. We apply (A) and [8; Theorem 4.2]; we obtain:
(B) The following conditions for \mathcal{A} are equivalent:
(i) \mathcal{A} is b-atomic.
(ii) $D(\mathcal{A})$ is a direct product of linearly ordered $M V$-algebras.

A particular case of a b-atomic $M V$-algebra is the atomic $M V$-algebra. In this connection, cf. [3; Theorem 6.4.20], where the Dedekind completion of an archimedean atomic $M V$-algebra has bcen considered.

[^0]Supported by Grant GA SAV 2/6087/99.

JÁN JAKUBÍK

2. Preliminaries

For the definition of an $M V$-algebra, several equivalent systems of axioms have been applied (cf., e.g., [1], [2], [4]).

We will use the definition from [2]; thus an $M V$-algebra is an algebraic structure $\mathcal{A}=(A ;, \oplus, \neg, 0)$ of type $(2,1,0)$ satisfying the axioms MV1-MV6 from [2]. We put $\neg 0=1$.

We also apply the well-known results on the relations between $M V$-algebras and abelian lattice ordered groups (cf. [2]). Hence there is an abelian lattice ordered group G with a strong unit u such that A is the interval $[0, u]$ of G, $1=u$ and for each $x, y \in A$ we have $x \oplus y=(x+y) \wedge u, \neg x=u-x$; we put $\mathcal{A}=\Gamma(G, u)$.

We denote by $\ell(\mathcal{A})$ the lattice $(A ; \vee, \wedge)$, where the operations \vee and \wedge are defined as in G. The lattice $\ell(\mathcal{A})$ is distributive.

An element $0<b \in A$ is called basic if the interval $[0, b]$ of the lattice $\ell(\mathcal{A})$ is a chain. The set of all basic elements of A is denoted by $B(\mathcal{A})$. An $M V$-algebra is said to be b-atomic if for each $0<a \in A$ there exists $b \in B(\mathcal{A})$ such that $b \leqq a$.

If $b \in A$ and the interval $[0, b]$ is a two-element set, then b is an atom of \mathcal{A}. The $M V$-algebra \mathcal{A} is atomic if for each $0<a \in A$ there exists an atom b with $b \leqq a$. If \mathcal{A} is atomic, then it is b-atomic, but not conversely, in general.

The direct product of $M V$-algebras is defined in the usual way; we apply the symbols

$$
\mathcal{A} \times \mathcal{B}, \quad \prod_{i \in I} \mathcal{A}_{i}
$$

Consider a homomorphism

$$
\varphi: \mathcal{A} \rightarrow \prod_{i \in I} \mathcal{A}_{i}=\mathcal{A}^{0}
$$

of the $M V$-algebra \mathcal{A} into the $M V$-algebra \mathcal{A}^{0}. For $x \in A$ and $i \in I$ we denote

$$
x_{i}=\varphi(x)_{i}
$$

x_{i} is said to be the component of x in \mathcal{A}_{i} (under the mapping φ). We write also $x_{i}=x\left(\mathcal{A}_{i}\right)$.

If φ is a bijection, then it is said to be a direct product decomposition of \mathcal{A}.
If for each $i \in I$ and each element x^{i} of A_{i} ($=$ the underlying set of \mathcal{A}_{i}) there exists $x \in A$ with $x_{i}=x^{i}$, then φ is called a subdirect product decomposition of \mathcal{A}.

An analogous terminology and notation will be applied for lattices.

3. Strong subdirect products of lattices

Let L be a lattice. It is well-known that the Dedekind completion $D(L)$ of L is defined uniquely up to isomorphism and that there exists a canonical embedding of L into $D(L)$.

A lattice L is said to be a regular sublattice of a lattice L^{\prime} if L is embedded into L^{\prime} such that the embedding preserves all existing joins and meets in L.
3.1. Lemma. ([10]) Let L and L^{\prime} be lattices such that L^{\prime} is complete and
(i) L is a regular sublattice of L^{\prime};
(ii) for each $a \in L^{\prime}$ there exist subsets X and Y of L such that the relation

$$
\sup X=a=\inf Y
$$

are valid in L^{\prime}.
Then L^{\prime} is a Dedekind completion of L.
3.1.1. Corollary. Let L and L^{\prime} be as in 3.1. Let $p, q \in L, p \leqq q$. We denote

$$
\begin{aligned}
& P_{1}=\{x \in L: p \leqq x \leqq q\} \\
& P_{2}=\left\{x \in L^{\prime}: p \leqq x \leqq q\right\}
\end{aligned}
$$

Then P_{2} is a Dedekind completion of P_{1}.
We recall a definition from [8].
Assume that L^{0} is a direct product of lattices $L_{i}(i \in I)$. For each $i \in L_{i}$ let 0^{i} be the least element of L_{i}. The elements of L^{0} are denoted as $\left(x_{i}\right)_{i \in I}$.

For any fixed $i \in I$ we put

$$
\bar{L}_{i}=\left\{x \in L^{0}: x_{j}=0^{j} \text { for each } j \in I \backslash\{i\}\right\} .
$$

Let L^{1} be a sublattice of L^{0}. For $i \in I$ we denote

$$
\bar{L}_{i}^{\prime}=\left\{x \in L^{1}: x_{i}=0^{i}\right\}
$$

The lattice L^{1} is said to be a strong subdirect product of the lattices $L_{i}(i \in I)$ if the relation

$$
\begin{equation*}
L^{1}=\bar{L}_{i} \times \bar{L}_{i}^{\prime} \tag{1}
\end{equation*}
$$

is valid for each $i \in I$.
In more details, the relation (1) is understood in the sense that the following conditions are valid:
(a) $\bar{L}_{i} \subseteq L^{1}$;
(b) the morphism $\varphi_{i}(x)=\left(x_{i 1}, x_{i 2}\right)$ is an isomorphism of L^{1} onto $\bar{L}_{i} \times \bar{L}_{i}^{\prime}$, where
$x_{i 1} \in \bar{L}_{i},\left(x_{i 1}\right)_{i}=x_{i}$,
$x_{i 2} \in \bar{L}_{i}^{\prime},\left(x_{i 2}\right)_{j}=x_{j}$ for each $j \in I \backslash\{i\}$.

Assume that L^{1} is a strong subdirect product of lattices $L_{i}(i \in I)$. Further, suppose that for each $i \in I, L_{i}$ has the greatest element 1^{i}. Then there exist elements $e^{i}, e^{* i}$ in L^{0} such that

$$
\begin{aligned}
\left(e^{i}\right)_{i} & =1^{i}, \\
\left(e^{* i}\right)_{i} & =0^{i},
\end{aligned} \quad\left(e^{i}\right)_{j}=0^{j} \quad \text { for } j \in I \backslash\{i\}, ~ 子, ~ f o r ~ j \in I \backslash\{i\} .
$$

For each $x \in L^{0}$ and $i \in I$ we denote by \bar{x}_{i} the element of \bar{L}_{i} such that

$$
\left(\bar{x}_{i}\right)_{i}=x_{i}
$$

It is obvious that the mapping

$$
x_{i} \rightarrow \bar{x}_{i}
$$

is an isomorphism of the lattice L_{i} onto the lattice \bar{L}_{i}.
3.2. Lemma. For each $x \in L^{0}$, the relation

$$
\begin{equation*}
x=\bigvee_{i \in I} \bar{x}_{i} \tag{2}
\end{equation*}
$$

us valid in L^{0}.
Proof. For each $i, j \in I$ we have $\left(\bar{x}_{i}\right)_{j} \leqq x_{j}$. Hence x is an upper bound of the set $\left\{\bar{x}_{i}\right\}_{i \in I}$. Let $y \in L^{0}, y \geqq \bar{x}_{i}$ for each $i \in I$. Thus $y_{j} \geqq\left(\bar{x}_{i}\right)_{j}$ for each $i, j \in I$, whence $y_{i} \geqq x_{i}$ for each $i \in I$. Thercfore (2) holds.

We have clearly

$$
\bar{x}_{i}=x \wedge e^{i} \quad \text { for each } \quad i \in I
$$

For $x \in L^{0}$ and $i \in I$ let \bar{x}_{i}^{*} be the element of L^{0} such that

$$
\begin{aligned}
& \left(\bar{x}_{i}^{*}\right)_{i}=x_{i} \\
& \left(x_{i}^{*}\right)_{j}=1^{j} \quad \text { for each } \quad j \in I \backslash\{i\} .
\end{aligned}
$$

Further, we denote

$$
\bar{L}_{i}^{*}=\left\{\bar{x}_{i}^{*}: x \in L^{1}\right\}
$$

Then \bar{L}_{i}^{*} is a sublattice of L^{1}.
By analogous method as in the proof of 3.2 we obtain:
3.2.1. Lemma. For each $x \in L^{0}$, the relation
is valid in L^{0}.

$$
x=\bigwedge_{i \in I} \bar{x}_{i}^{*}
$$

Also, we have

$$
\bar{x}_{i}^{*}=x \vee e^{i}=\bar{x}_{i} \vee e^{i}
$$

By a simple calculation we can verify
3.3. Lemma. The mapping defined by $\bar{x}_{i} \rightarrow \bar{x}_{i}^{*}$ is an isomorphism of the lattice \bar{L}_{i} onto the lattice \bar{L}_{i}^{*}.

Denote

$$
D\left(L_{i}\right)=D_{i}, \quad D=\prod_{i \in I} D_{i}
$$

Hence both L^{0} and L^{1} are sublattices of the lattice D, and D is a complete lattice.
3.4. Lemma. Let $\emptyset \neq X \subseteq L^{0}$ and suppose that the relation $y=\sup X$ is valid in L^{0}. Let $i \in I$. Then

$$
y_{i}=\sup \left\{x_{i}\right\}_{x \in X}
$$

holds in L_{i}.
Proof. For each $x \in X$ we have $x \leqq y$, whence $x_{i} \leqq y_{i}$. Let $z \in L_{i}$ be such that $z \geqq x_{i}$ for each $x \in X$. There exists $z_{0} \in L^{0}$ with $\left(z_{0}\right)_{i}=z$ and $\left(z_{0}\right)_{j}=y_{j}$ whenever $j \in I \backslash\{i\}$. Thus $\left(z_{0}\right)_{j} \geqq x_{j}$ for each $j \in I$ and each $x \in \mathrm{X}$. Hence $z_{0} \geqq x$ for each $x \in X$. Therefore $z_{0} \geqq y$ and $\left(z_{0}\right)_{i} \geqq y_{i}$. This yields that $z \geqq y_{i}$, whence $y_{i}=\sup \left\{x_{i}\right\}_{x \in X}$.
3.5. Lemma. Let $\emptyset \neq X \subseteq L^{0}, y \in L^{0}$ and suppose that for each $i \in I$ the relation $\sup \left\{x_{i}\right\}_{x \in X}=y_{i}$ is valid in L_{i}. Then $y=\sup X$ holds in L^{0}.

Proof. We have $y \geqq x$ for each $x \in X$. Let $v \in L^{0}, v \geqq x$ for each $x \in X$. Hence $v_{i} \geqq x_{i}$ for each $i \in I$ and each $x \in X$. Thus $v_{i} \geqq y_{i}$ for each $i \in I$ and therefore $v \geqq y$. Thus $y=\sup X$.

Analogously we can verify the assertions which are dual to 3.4 or to 3.5 , respectively.
3.6. Lemma. Let L^{1} and L^{0} be as above. Then L^{1} is a regular sublattice of L^{0}.

Proof. Let $\emptyset \neq X \subseteq L^{1}, y \in L^{1}$ and suppose that the relation

$$
\sup X=y
$$

holds in L^{1}. Let $z \in L^{0}, z \geqq x$ for each $x \in X$.
Take any fixed $i \in I$. Since L^{1} is a strong subdirect product of lattices L_{i}, the relation (1) above is valid.

We apply 3.4 for the direct product decomposition (1) (i.e., we have now L^{1} instead of L^{0}). Thus the relation

$$
y_{i 1}=\sup \left\{x_{i 1}\right\}_{x \in X}
$$

JÁN JAKUBÍK

is valid in \bar{L}_{i}. In view of the above mentioned isomorphism between \bar{L}_{i} and L_{i} we obtain, that

$$
y_{i}=\sup \left\{x_{i}\right\}_{x \in X}
$$

holds in L_{i}.
In view of 3.2 we infer that the relations

$$
z=\bigvee_{i \in I} \bar{z}_{i}, \quad y=\bigvee_{i \in I} \bar{y}_{i}
$$

are valid in L^{0}. Further, $z_{i} \geqq x_{i}$ for each $i \in I$ and each $x \in X$. Hence $\bar{z}_{i} \geqq \bar{y}_{i}$ for each $i \in I$. Then $z \geqq y$. Thus $\sup X=y$ in L^{0}. Analogously we can verify the dual result. Therefore L^{1} is a regular sublattice of L^{0}.
3.7. LEMMA. L^{0} is a regular sublattice of the lattice $\prod_{i \in I} D\left(L_{i}\right)$.

Proof. It is obvious that L^{0} is a sublattice of the lattice $\prod_{i \in I} D\left(L_{i}\right)$; we
note this lattice by L^{d}. denote this lattice by L^{d}.

Let $\emptyset \neq X \subseteq L^{0}$ and suppose that $\sup X=y$ holds in L^{0}. We remark that for each $t \in L^{0}$ and each $i \in I$ we have

$$
t\left(L_{i}\right)=t\left(D\left(L_{i}\right)\right)
$$

According to 3.4, the relation

$$
y_{i}=\sup \left\{x_{i}\right\}_{i \in I}
$$

is valid in L_{i}. In view of 3.1 , this relation holds also in $D\left(L_{i}\right)$. Now we apply 3.5 with the distinction that instead of L^{0} we consider the lattice L^{d}. Hence the relation $y=\sup X$ holds in L^{d}. The corresponding dual result can be proved analogously. Hence L^{0} is a regular sublattice of L^{d}.
3.8. LEMMA. Let L^{1} and L^{d} be as above. Then L^{1} is a regular sublattice of L^{d}.

Proof. This is a consequence of 3.6 and 3.7.
Let $i \in I$. We denote by $\overline{D\left(L_{i}\right)}$ the set of all $x \in L^{d}$ such that $x_{j}=$ $x\left(D\left(L_{j}\right)\right)=0_{j}$ for each $j \in I \backslash\{i\}$.

In view of the isomorphism between L_{i} and \bar{L}_{i} we immediately obtain:
3.9. Lemma. $\overline{D\left(L_{i}\right)}$ is the Dedekind completion of the lattice \bar{L}_{i}.
3.10. Lemma. Let $t \in L^{d}$. Then there exists a subset $X \subseteq L^{1}$ such that the relation $\sup X=t$ is valid in L^{d}.

Proof. Let $i \in I$. The symbol \bar{t}_{i} is defined analogously as the symbol \bar{x}_{i} above (cf. 3.2) with the distinction that we now deal with L^{d} instead of L^{0}. In view of 3.2 we have
in L^{d}, where $\bar{t}_{i} \in \overline{D\left(L_{i}\right)}$.

$$
t=\bigvee_{i \in I} \bar{t}_{i}
$$

According to 3.9 and 3.1 , for each \bar{t}_{i} there exists a subset $\left\{a_{i j}\right\}\left(j \in J_{i}\right)$ of \bar{L}_{i} such that the relation

$$
\bar{t}_{i}=\bigvee_{j \in J_{i}} a_{i j}
$$

is valid in the lattice $\overline{D\left(L_{i}\right)}$; hence this relation holds in L^{d} as well. Put

$$
X=\left\{a_{i j}\right\}_{i \in I, j \in J_{i}}
$$

Then $t=\sup X$ holds in L^{d}.
Now let us suppose that the lattice L^{1} satisfies the condition

$$
\begin{equation*}
e^{* i} \in L^{1} \quad \text { for each } \quad i \in I \tag{*}
\end{equation*}
$$

Then for each $x \in L^{1}$ and each $i \in I$, the element

$$
\bar{x}_{i}^{*}=x \vee e^{* i}
$$

belongs to L^{1}.
By the method dual to that just applied above and by using 3.2.1 instead of 3.2 we conclude:
3.10.1. Lemma. Let $t \in L^{d}$. Then there is a subset $Y \subseteq L^{1}$ such that the relation $\inf Y=t$ is valid in L^{d}.

From 3.1, 3.6, 3.10 and 3.10 .1 we obtain:
3.11. Proposition. Let the lattice L^{0} be a direct product of lattices L_{i} ($i \in I$). Assume that L^{1} is a sublattice of L^{0} such that
(i) L^{1} is a strong subdirect product of lattices $L_{i}(i \in I)$;
(ii) L^{1} satisfies the condition $(*)$.

Let L^{d} be the direct product of lattices $D\left(L_{i}\right)(i \in I)$. Then L^{d} is the Dedekind completion of L^{1}.
3.11.1. Corollary. Let L^{0} and L^{d} be as in 3.11. Then L^{d} is the Dedekind completion of L^{0}.

We conclude this section by remarking that the considerations contained here remain valid (with the obvious modifications) if instead of the assumption

$$
L^{0}=\prod_{i \in I} L_{i}
$$

we assume that we are given a direct product decomposition of the lattice L^{0}

$$
\varphi: L^{0} \rightarrow \prod_{i \in I} L_{i}
$$

4. Auxiliary results

For the sake of completeness, we recall the definition of a particular type of direct product decompositions of an $M V$-algebra which will be called internal (cf. [7]).

Assume that

$$
\begin{equation*}
\varphi: \mathcal{A} \rightarrow \prod_{i \in I} \mathcal{A}_{i} \tag{1}
\end{equation*}
$$

is a direct product decomposition of the $M V$-algebra \mathcal{A}. For each $i(1) \in I$ we denote

$$
A_{i(1)}^{0}=\left\{a \in A: a_{i}=0_{i} \text { for each } i \in I \backslash i(1)\right\}
$$

We have $A_{i(1)}^{0} \subseteq A$ and $0 \in A_{i(1)}^{0}$. We define the operation $\oplus_{i(1)}$ on $A_{i(1)}$ as follows. Let $a, b \in A_{i(1)}^{0}$. There exists $c \in A_{i(1)}^{0}$ such that $(a+b)_{i(1)}=c_{i}(i)$. We put $a \oplus_{i(1)} b=c$. Further, we set $\neg_{i(1)} a=(\neg a)_{i(1)}$. Then $\mathcal{A}_{i(1)}^{0}=$ $\left(A_{i(1)}^{0} ; \oplus_{i(1)}, \neg_{i(1)}, 0_{i(1)}\right)$ is an $M V$-algebra.

Let $i \in I$ and let x^{i} be an arbitrary element of A_{i}. We denote by $\varphi_{i}\left(x^{i}\right)$ the element of A_{i}^{0} such that

$$
\left(\varphi_{i}\left(x^{i}\right)\right)_{i}=x^{i} .
$$

Then φ_{i} is an isomorphism of \mathcal{A}_{i} onto \mathcal{A}_{i}^{0}.
Further, for each $x \in A$ we put

$$
\varphi^{0}(x)=\left(\ldots, \varphi_{i}\left(x_{i}\right), \ldots\right)_{i \in I}
$$

Then φ^{0} is an isomorphism of \mathcal{A} onto $\prod_{i \in I} \mathcal{A}_{i}^{0}$. We say that φ^{0} is an internal direct product decomposition of the $M V$-algebra \mathcal{A}.

Now let L be a lattice with the least element 0 ; consider a direct product decomposition of L having the form

$$
\varphi: L \rightarrow \prod_{i \in I} L_{i}
$$

Similarly as above, for each $i(1) \in I$ we put

$$
L_{i(1)}^{0}=\left\{x \in L: x_{i}=0_{i} \text { for each } i \in I \backslash\{i(1)\}\right\}
$$

Hence $L_{i(1)}^{0} \subseteq L$ and $0 \in L_{i(1)}^{0}$. The lattice operations in $L_{i(1)}^{0}$ are induced from those in L. For each $i \in I$, the mapping $\varphi_{i}: L_{i} \rightarrow L_{i}^{0}$ is defined analogously as in the case of $M V$-algebras. The definition of the relation

$$
\varphi^{0}: L \rightarrow \prod_{i \in I} L_{i}^{0}
$$

is also analogous to that applied for $M V$-algebras. Then φ^{0} is an internal direct product decomposition of L.

More generally, this notion can be used for connected partially ordered sets (cf. [9]) and for algebras having an one-element subalgebra (cf. [6]).

To each direct product decomposition φ of an $M V$-algebra (or of a lattice with the least element) there corresponds an internal direct product decomposition φ^{0}. When our considerations are made up to isomorphism, then we need not distinguish between a direct product decomposition and the corresponding internal direct product decomposition.

We apply the results of Section 3 for an internal direct product decomposition of the lattice $\ell(\mathcal{A})$.

Again, suppose that (1) is valid. Let \mathcal{A}^{1} be a subalgebra of \mathcal{A} such that for each $i(1) \in I$ we have

$$
A_{i(1)}^{0} \subseteq A^{1}
$$

where A^{1} is the underlying set of the $M V$-algebra \mathcal{A}^{1}. Consider the partial mapping

$$
\varphi^{1}=\left.\varphi\right|_{A^{1}}
$$

Then we say that

$$
\begin{equation*}
\varphi^{1}: \mathcal{A}^{1} \rightarrow \prod_{i \in I} \mathcal{A}_{i} \tag{2}
\end{equation*}
$$

is a strong subdirect product decomposition of the $M V$-algebra \mathcal{A}^{1}.
This definition is a slight modification of that used in [8] (the difference disappears when we are working 'up to isomorphism'). The results of [8] remain valid also under the present definition.

Assume that (2) is a strong subdirect product decomposition of the $M \Gamma^{\circ}$-algebra \mathcal{A}^{1}. Let $\ell\left(\mathcal{A}^{1}\right)$ and $\ell\left(\mathcal{A}_{i}\right)(i \in I)$ be the corresponding underlying lattices. Then the mapping φ^{1} gives, at the same time, a strong subdirect decomposition

$$
\varphi^{1}: \ell\left(\mathcal{A}^{1}\right) \rightarrow \prod_{i \in I} \ell\left(\mathcal{A}_{i}\right)
$$

of the lattice $\ell\left(\mathcal{A}^{1}\right)$.
Let $i \in I$. In accordance with the notation from Section 3 we denote by e^{i} the greatest element of the lattice $\ell\left(\mathcal{A}_{i}^{0}\right)$. Further, let $e^{i *}$ be the element of A such that

$$
\left(e^{i *}\right)_{i}=0_{i} \quad \text { and } \quad\left(e^{i *}\right)_{j}=1_{j} \quad \text { for each } j \in I \backslash\{i\}
$$

Then we have

$$
e^{i} \wedge e^{i *}=0, \quad e^{i} \vee e^{i *}=1
$$

From these relations we easily obtain

$$
\begin{equation*}
e^{i *}=\neg e^{i} . \tag{3}
\end{equation*}
$$

From (2') we get $e^{i} \in A^{1}$ and then (3) yields that $e^{i *}$ also belongs to A^{1}. Hence we obtain:
4.1. Lemma. Let \mathcal{A}^{1} be a strong subdirect product of $M V$-algebras $\mathcal{A}_{i}(i \in I)$. Then the lattice $\ell\left(\mathcal{A}^{1}\right)$ satisfies the condition $(*)$ from Section 3 , where $L_{i}=$ $\ell\left(\mathcal{A}_{i}\right)$.

Consider the relation $\mathcal{A}=\Gamma(G, u)$ mentioned in Section 2. This relation implies:
4.2. Lemma. Let $a \in A$. Then $\neg a$ is the least element of the set

$$
\{x \in A: a \oplus x=1\}
$$

4.2.1. Lemma. The operation \neg on A is uniquely determined by the operation \oplus and the partial order \leqq on A.
4.3. Lemma. Let $i(1) \in I$ and $a, b \in A_{i(1)}^{0}$. Then

$$
a \oplus_{i(1)} b=a \oplus b
$$

Proof. Consider the direct product decomposition φ^{0} of \mathcal{A}. For cach $x \in$ $A_{i(1)}^{0}$ we have

$$
x\left(\mathcal{A}_{i(1)}^{0}\right)=x
$$

STRONG SUBDIRECT PRODUCTS OF $M V$-ALGEBRAS

Further, in view of the definition of the operation $\oplus_{i(1)}$ on the set $A_{i(1)}^{0}$ we get

$$
a \oplus_{i(1)} b=(a \oplus b)\left(\mathcal{A}_{i(1)}^{0}\right)
$$

Hence

$$
a \oplus_{i(1)} b=a\left(\mathcal{A}_{i(1)}^{0}\right) \oplus b\left(\mathcal{A}_{i(1)}^{0}\right)=a \oplus b
$$

We slightly modify the formulation of [7; Theorem 3.5] (cf. also [7; Lemma 3.4]); we obtain:

4.4. Proposition. Let \mathcal{A} be an $M V$-algebra, $L=\ell(\mathcal{A})$ and let

$$
\varphi^{0}: L \rightarrow \prod_{i \in I} L_{i}^{0}
$$

be an internal direct product decomposition of the lattice L. Then the mapping φ^{0} yields also an internal direct product decomposition of \mathcal{A}

$$
\varphi^{0}: \mathcal{A} \rightarrow \prod_{i \in I} \mathcal{A}_{i}^{0}
$$

such that for each $i \in I$ we have $\ell\left(\mathcal{A}_{i}^{0}\right)=L_{i}^{0}$.

5. Proofs of (A) and (B)

Assume that \mathcal{A} is an archimedean $M V$-algebra. We apply the notation as above. Let (A) and (B) be as in Section 1.

Proofof (A).
Suppose that \mathcal{A} is a strong subdirect product of $M V$-algebras $\mathcal{A}_{i}(i \in I)$. Then the lattice $L=\ell\left(\mathcal{A}_{i}\right)$ is a strong subdirect product of lattices $L_{i}=\ell\left(\mathcal{A}_{i}\right)$.

Thus in view of 3.11 and 4.1, there is a direct product decomposition

$$
\varphi: D(L) \rightarrow \prod_{i \in I} D_{i}
$$

where $D_{i}=D\left(L_{i}\right)$.
Let us consider the internal direct product decomposition φ^{0} corresponding to the direct product decomposition φ

$$
\varphi^{0}: D(L) \rightarrow \prod_{i \in I} D_{i}^{0}
$$

Consider the Dedekind completion $D(\mathcal{A})$ of the $M V$-algebra \mathcal{A}. Then we have $D(L)=\ell(D(\mathcal{A}))$.

JÁN JAKUBÍK

We apply Proposition 4.4 for the $M V$-algebra $D(\mathcal{A})$ and for the lattice $D(L)$. Hence the mapping φ^{0} yields, at the same time, an internal direct product decomposition of $D(\mathcal{A})$

$$
\varphi^{0}: D(\mathcal{A}) \rightarrow \prod_{i \in I} \mathcal{X}_{i}
$$

such that for each $i \in I$ we have

$$
\ell\left(\mathcal{X}_{i}\right)=D_{i}^{0} .
$$

Let $i(1) \in I$. Similarly as in Section 4 we denote by $A_{i(1)}^{0}$ the set of all $a \in A$ such that

$$
a_{i}=0_{i} \quad \text { for each } \quad i \in I \backslash\{i(1)\} .
$$

Further, we define the operations $\oplus_{i(1)}$ and $\neg_{i(1)}$ on the set $A_{i(1)}^{0}$ in the same way as in Section 4 . Let \mathcal{A}_{i}^{0} be the corresponding $M V$-algebra.

We will investigate the relations between the $M V$-algebras $\mathcal{X}_{i(1)}$ and $D\left(\mathcal{A}_{i(1)}^{0}\right)$.
a) $D_{i(1)}^{0}$ is the interval with the endpoints 0 and $e^{i(1)}$ od $D(L)$. Also, the underlying set of $\mathcal{A}_{i(1)}^{0}$ is the interval with the endpoints 0 and $e^{i(1)}$ of the lattice $\ell(\mathcal{A})=L$. Thus in view of 3.1.1 we obtain that the underlying lattices of \mathcal{X}_{1} and of $D\left(\mathcal{A}_{i(1)}^{0}\right)$ are equal.
b) The algebra $\mathcal{A}_{i(1)}^{0}$ is a subalgebra of $D\left(\mathcal{A}_{i(1)}^{0}\right)$. Further, since $\mathcal{X}_{i(1)}$ is an internal direct factor of $D(\mathcal{A})$, by applying 4.3 we conclude that if $a, b \in A_{\imath(1)}$, then the operation \oplus used for a and b yields the same result in $\mathcal{X}_{i(1)}$ and in $D\left(\mathcal{A}_{i(1)}^{0}\right)$ (and, in fact, also in $\left.\mathcal{A}\right)$.
c) Next, if a^{\prime} and b^{\prime} are any elements of $D\left(A_{i(1)}^{0}\right)$, then there exist subsets X and Y of $A_{i(1)}^{0}$ such that the relations

$$
\sup X=a^{\prime}, \quad \sup Y=b^{\prime}
$$

hold in $\ell\left(D\left(A_{i(10}^{0}\right)\right)$. Hence in $D\left(A_{i(1)}^{0}\right)$ we have

$$
a^{\prime} \oplus b^{\prime}=\sup \{x \oplus y: x \in X, y \in Y\}
$$

In view of a) and b), this equation holds also in $\mathcal{X}_{i(1)}$. Thus the operation \oplus in $D\left(A_{i(1)}^{0}\right)$ coincides with the operation \oplus in $\mathcal{X}_{i(1)}$.
d) In view of a), c) and 4.1 we get

$$
\mathcal{X}_{i(1)}=D\left(\mathcal{A}_{i(1)}^{0}\right)
$$

Hence we have a direct product decomposition

$$
\varphi^{0}: D(\mathcal{A}) \rightarrow \prod_{i \in I} D\left(\mathcal{A}_{i}^{0}\right)
$$

Since \mathcal{A}_{i}^{0} is isomorphic to \mathcal{A}_{i} we conclude that (A) is valid.
Proof of (B).
a) Assume that \mathcal{A} is b-atomic. Then in view of $[8 ; \operatorname{Proposition~4.3],\mathcal {A}}$ is a strong subdirect product of linearly ordered $M V$-algebras. It is obvious that the Dedekind completion of a linearly ordered set is again linearly ordered. Hence in view of 3.11 and 4.1 we infer that the lattice $D(\ell(\mathcal{A}))$ is a direct product of linearly ordered sets. Since to each direct product decomposition of a lattice there corresponds an internal direct product decomposition, according to 4.4 the $M \Gamma^{\circ}$-algebra $D(\mathcal{A})$ be expressed as a direct product of linearly ordered $N T$-algebras.
b) Conversely, suppose that $D(\mathcal{A})$ is a direct product of linearly ordered M / I°-algebras. Without loss of gencrality we can assume that the direct product under consideration is internal, i.e., we have (under the notation as above)

$$
\varphi^{0}: D(\mathcal{A}) \rightarrow \prod_{i \in I} \mathcal{B}_{i}^{0}
$$

where all \mathcal{B}_{i}^{0} are linearly ordered. Let $0<b \in B$ (we denote by B the underlying set of $D(\mathcal{A}))$. Then there exists $i(1) \in I$ such that $0<b\left(\mathcal{B}_{i(1)}^{0}\right) \in B_{i}^{0}$. Thus the interval $\left[0, b\left(\mathcal{B}_{i(1)}^{0}\right)\right]$ of the lattice $\ell(D(\mathcal{A}))$ is a chain.

There exists a subset X of A such that the relation

$$
\sup X=b\left(\mathcal{B}_{i(1)}^{0}\right)
$$

is valid in the lattice $\ell(D(\mathcal{A}))$. Then there is $x \in X$ with $0<x$. Moreover, the set $X_{1}=\{y \in A: y \leqq x\}$ is a subset of the above mentioned interval $\left[0, b\left(\mathcal{B}_{i(1)}^{0}\right)\right]$; thus X_{1} is a chain. Therefore x is a basic element of \mathcal{A}. We conclude that the $M V$-algebra \mathcal{A} is b-atomic.

REFERENCES

[1] CATTANEO, G.-LOMBARDO, F.: Independent axiomatization of MV-algebras, Tatra Mt. Math. Publ. 15 (1998), 227232.
[2] CIGNOLI, R. D`OTTAVIANO, M. I. MUNDICI, D.: Algebraic Foundations of Many-Valued Reasoning. Trends in Logic, Studia Logica Library Vol. 7, Kluwer Academic Publishers, Dordrecht, 2000.
[3] D\UREČENSKIJ, A.-PULMANNOVÁ, S.: New Trends in Quantum Structures, Kluwer Academic Publishers, Dordrecht, 2000.
[4] GLUSCHANKOV, D.: Cyclic ordered groups and MV-algebras, Czechoslovak Math. J. 43 (1993), 249-263.
[5] U. Höhle: Commutative residuated ℓ-monoids. In: Non-classical Logic and their Representation to Fuzzy Subsets Vol. 32 (U. Höhle, E. P. Klement, eds.), Kluwer Academic Publ., Dordrecht, pp. 53-106.

JÁN JAKUBÍK

[6] ISKANDER, A. A.: Strict refinement for direct sums and graphs, Acta Math. Univ. Comenian. 68 (1999), 91-110.
[7] JAKUBÍK, J.: Direct product decompositions of MV-algebras, Czechoslovak Math. J. 44 (1994), 725-739.
[8] JAKUBÍK, J.: Basic elements in a pseudo MV-algebra, Soft Computing 5 (2001), 372-375.
[9] JAKUBÍK, J.—CSONTÓOVÁ, M. : Cancellation rule for internal direct product decompositions of a connected partially ordered set, Math. Bohemica 125 (2000), 115-122.
[10] SCHMIDT, J.: Zur Kennzeichnung der Dedekind-MacNeilleschnen Hülle einer geordneten Menge, Arch. Math. (Basel) 7 (1956), 241-249.

Received October 26, 2000
Matematicky ústav SAV
Gres̆ákova 6
SK-040 01 Košice
SLOVAKIA
E-mail: musavke@saske.sk

[^0]: 2000 Mathematics Subject Classification: Primary 06D35.
 Keywords: $M V$-algebra, Dedekind completion, strong subdirect product.

