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ENTROPY OF COMPLETE FUZZY PARTITIONS 

DAGMAR MARKECHOVA 

(Communicated by Anátolij Dvurečenskij) 

A B S T R A C T . This paper deals with a fuzzy generalization of no t ion of a proba
bility space. An entropy and a conditiona l entropy of comp lete fuzzy part itions 
are defined. T h e main properties of such quantities are proved. 

0. Introduction 

In the classical probability theory [1] probability spaces (X, 5 , P) are stud
ied. A cr-algebra S of subsets of a set X is the main notion of the Kolmogorov 
classical model of probability theory. The Kolmogorov probability model may be 
uniquely represented by a system of characteristic functions of subsets of a set 
X from the given a-algebra S, which have values in the closed interval (0,1). 
When an event / , say, is described vaguely, then by a fuzzy set / (fuzzy event 
/ ) we shall understand a real-valued function / : X —* (0,1), which describes 
the fuzziness of the event / . This is a basic idea of Z a d e h 's fuzzy sets theory 
[2]. 

In this paper we shall use a fuzzy generalization of notion of a probability 
space. A.fuzzy generalization of a notion of measurable partition from the clas
sical probability theory is a notion of complete fuzzy partition [3]. In this paper 
an entropy and a conditional entropy of complete fuzzy partitions are defined. 
The main properties of such quantities are stated. 

1. Basic definitions and facts 

Here we follow mainly [3]. Let X y- 0. By a soft fuzzy a -algebra M we 
mean the set M C (0, l)x satisfying the following conditions: 

(1.1) if l(x) = 1 for any x G X, then 1 G M; 
(1.2) if / G M, then / ' := 1 - f G M; 
(1.3) if l/2(x) = 1/2 for any x G X, then 1/2 g M ; 
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oo 

(1.4) V /n := s u p / „ € M for any {/„}~= 1 C M. 
n = l n 

In the set M we define the partial ordering relation in the following way: / < g 
if and only if f(x) < g(x) for each x G X. Using the complementation '': / —> / ' 
for any fuzzy subset / G M , we see that the complementation ' satisfies two 
conditions: 

(1.5) ( / ' ) ' = / for every / G M ; 
(1.6) if f<g, then g' < / ' . 

So that M is a distributive a -lattice with the complementation ' , for which 
the de Morgan laws hold: 

( OO \ / OO 

V/») = A/A; 
n = l ' n = l 

( OO \ / oo 

A fn) = V f'n for any sequence {/n}n°=i C M . 
n = l ' n = l 

Of course, here f\fn — inf / n • In the fuzzy sets theory the fuzzy subset 1 is 
n n 

called universum, the fuzzy subset 0 = 1' is called empty set and all fuzzy 
subsets f,g G M such that f Ag = 0 are called separated fuzzy sets. Analogous 
weak notions (VV-nottans) are defined in [4] as follows: Each fuzzy subset f £ M 
such that / > 1 — / is called a W-universum. Each fuzzy subset f E M such 
that / < 1 — / is called a W-empty setx All fuzzy subsets f,g G M such that 
/ < 1 — g are called W-separated fuzzy sets. 
LEMMA 1.1. A fuzzy subset f G M zs a W-universum if and only if there 
exists a fuzzy subset g G M sitc/i 2Aa£ / = g V (1 — g) [4]. 
LEMMA 1.2. Le£ a /im'te or infinite sequence {fn} of fuzzy subsets from M 
be given. Then the fuzzy subsets gn defined by 

/ i i if n = l, 

9n={ £ A / V / , V -, . - (L9) /«лfv /.)', */ n>l 
v í = l 7 

are pairwise W-separated. Furthermore, if \ / / n i5 a W-universum, then V gn 
n n 

is a VV-wmverst/m [3], 

A fuzzy P-measure on M is a mapping m: M —> (0,oo) fulfilling the fol
lowing conditions: 

(1.10) m(f V (1 - / ) ) = 1 for every f e M; 

(1.11) if {/nln'Li is a finite or infinite sequence of pairwise VV-separated fuzzy 

( OO v o o 

V fn) = J2 m(fn) • 
n = l ' n = l 
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Each above described triplet (X, M, m) is called in the fuzzy theory a soft fuzzy 
probability space. 

E x a m p l e 1.1. Let (J£,S, P ) be a probability space in the sense of the 
classical probability theory. Put M = {xA ; A G S} ( xA is the characteristic 
function of the set A G 5 ) . If we define the mapping m: M —> (0,1) by the 
equality m(xA) = -P(-4), then the triplet (X,M,m) is a soft fuzzy probability 
space. 

E x a m p l e 1.2. Let X = (0,1), M = { / , / ' , / V / ' , / A / ' , 0, 1 } , where 
/ : X —> (0,1) , f(x) = x for each x G X. If we define the mapping 
m : M -* (0,1) by the equalities m(f) = m ( / ' ) = 1/2, m ( l ) = m ( / V / ' ) = 1, 
m(0) = m ( / A / ' ) = 0, then the triplet (-X",M,m) is a soft fuzzy probability 
space. 

It is easy to see that any fuzzy P-measure m has the following properties: 

(1.12) m ( / ' ) = 1 - m(f) for every f eM. 
(1.13) m is a nondecreasing function, i.e. if f,g G M , / < g, then 

m(f) <m(g). 
(1.14) Let g G M be given. Then m(f A #) = m ( / ) for all / G M if and 

only if m(g) = 1. 
(1.15) If f,g G M are TV-separated, then m ( / A </) = 0 . 

The mapping m(-/g): M -» (0,oo) defined for each g G M , m(#) > 0 , by the 

equality m(f/g) = — , , , is a P-measure on M (see [3]). 

The monotonicity of fuzzy P-measure implies that this measure transforms 
M into the interval (0,1). 

2. En tropy of complete fuzzy partit ions 

Let any soft fuzzy probability space (X, M, m) be given. K a b a 1 a and 
W r o c i n s k i [5] mean by a complete partition each finite or infinite sequence 
of pairwise separated fuzzy subsets {/n} such that \J fn is a universum. If 

n 

{fn} C M is a complete partition, then for every x E X there exists in such 
that fi0(x) = 1 and for every j 7-- io , fj(x) = 0 holds. This means that {/n} 
contains only crisp subsets of the set X and hence the mentioned definition is 
not useful for considerations on fuzzy subsets. Therefore in this contribution we 
shall work with the following notion: 

DEFINITION 2 . 1 . [3] Each finite or infinite sequence of pairwise W-separated 
fuzzy subsets {fn} C M such that V fn is a W-universum is called a complete 
fuzzy partition. n 
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It is easy to see that a partition described in Definition 2.1 contains uncrisp 
subsets, in general. Namely, if we have any sequence {fn} such that \J fn is 

n 

a TV-universum, then we can find the complete fuzzy partition {gn} defined 
by (1.9). The sequence {/n} described above always exists. So, if it does not 
contain crisp subsets only, then the generated partition {gn} contains uncrisp 
subsets. 

LEMMA 2 . 1 . Let A = {fi} and B = {gj} be two complete fuzzy partitions. 
Then the set AV B := {fi A gj ; fi E A, gj G B} is a complete fuzzy partition, 
too. 

P r o o f . It is easy to see that A\/B is a set of pairwise TV-separated elements 

(see [6]). Moreover, V V(/ i *9j) = (V fi) A (V9j) > 1/2, so that V V(/* A gj) 
i j ^ i ' ^ j ' i j 

is a W-universum. 

In the set T of all complete fuzzy partitions we can define the relation < in 
the following way: for every A, B G T, A < B if and only if for every g G B 
there exists / G A such that g < f. In this case we say that B is the refinement 
of A. Since A < AvB, B < A\/B, we shall read the symbol A\/B a common 
refinement of A and B. Each A = {/i , /2----} £ P represents in the sense 
of classical probability theory the random experiment with finite or countable 
number of outcomes with the probability distribution pi = m(fi), fi G A, since 

Pi > 0 and YlPi = z C m ( / 0 = m ( V / i ) = 1 ( s e e Lemma 1.1 and (1.10)). 
i i ^ i ' 

We define an entropy of any experiment A = {/i, /2? • • • } G T by Shannon's 
formula: 

Hm(A) = -Y/F(m(fi)), where F:{0,oo)^R, (2.1) 
i 

f x l o g x , if x > 0, 
FW = 1 n •* n 

1^0, if x = 0 , 
Hm(A) is not necessarily finite. 

If A, B G T, A = {fi}, B = {gj} , we define a conditional entropy 

Hm(B/A) = -J2J2m^F(^j/fi)), (2.2) 
i 3 

where 

m ( g j / / ѓ ) 
ґ m 

= l o, 
•m{gj/fi), if m(fi)>0, 

if m ( / i ) = 0 . 
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The following example shows that the notion of entropy of complete fuzzy 
partition is a generalization of S h a n n o n ' s entropy of a measurable partition 

[7]-

E x a m p l e 2.1. Let (X,S,P) be a probability space in the sense of the 
classical probability theory. Let us consider the soft fuzzy probability space 
(X, M, ra) from Example 1.1. Then the system T contains all partitions of the 
type {xAl,~-,XAk}> w h e r e A eS (i = l,...,fc), AiDAj = 0 (i ^ j) and 

k 

(J Ai = X. The entropy of a complete fuzzy partition A = {xA > • • • > XA } -s 

i=l 
k k 

the number Hm(A) = - £ F(m(xA )) = - E F(p(Ai)) > w h i c h i s t h e S h a n ~ 
i = l * 2 = 1 

non entropy of measurable partition {Ai,..., Ak} of a space (X, <S, P). 

E x a m p l e 2.2. Let (X ,M, ra ) be a soft fuzzy probability space from 
Example 1.2. Then the set A = {/, / ' } is a complete fuzzy partition with the 
non-zero entropy Hm(A) = log2. 

THEOREM 2 . 1 . The entropy Hm has the following properties: 

(2.3) Hm(A) > 0 for each AeJ7; 
(2.4) if A,BeT, A<B, then Hm(A) < Hm(B); 
(2.5) Hm(A)<Hm(A\/B), for every A,BeT. 

P r o o f . The property (2.3) is evident. Let A, B G T, A = {fi} , B = {gj} , 
A< B. Then for every gj G B there exists fi0 G A such that #j < fi0 . Since */4 
is a system of pairwise JV-separated elements we have gj = gjAfi0 < fi0 <l — fi 
for every i ^ z'o. Therefore by (1.15) we obtain F(m(gj)) = Yl/F(m{9j A fi)) • 

i 

Put a = {(i,j); rn(fi A gj) > 0} , /3 = {i; ra(/i) > 0} . Then we have 

Hm{B) = -Y,F{m{9j)) = - ^ F ^ A / , ) ) 
.7 3 i 

= - X^ m ( ^ A gj) ' loS m ( / - A 9j) 
(ij)€<* 

= ~ Yl m(^ A gj) ' lo&m(9j/fi) - XI m(^A #) * loSm(/i) 
(ij)€ot (i,j)€<x 

> -X^ losm(/oX^m(^A*) 
*G/3 3 

=-J2m(Ml°zm<<M = - X ^ M / o ) = ff-(^)-
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Since A < A V B, the inequality (2.5) is a simple consequence of (2.4). 

THEOREM 2.2. Hm(BVC/A) = Hm(C/AyB) + Hm(B/A) for every 
A, B,CeF'. 

P r o o f . Let A = { / , } , B = {gj}, C = {hk}. If m(fti A gj) > 0, then we 
have 

( v m(gjAhkAfj) m(gj A hk A /,-) m(/ t A gj) 
m{gj A nk Ji) = — = r—-—r j-r\— 

m(fi) rn(fiAgj) m( / f ) 

= m(hk/fi A gj) • m(gj/fi). 

Moreover, it is easy to see that the function F satisfies the condition 

F(x • y) = x • F(y) + y • F(x) for each x , y E ( 0 , c o ) . (2.6) 

Therefore we obtain 

Hm (B v c /A) = - E E E m(/») • F( °(»>A w/o) 
«• > * 

= - E E E m(/>) • - ^ w/. A gj) • Miiih)) 
i i k 

= - E E E "»(/••) (™(9>/fo • F( *( v / . - A 9i)) 
« i * 

+ Ä(W/ . Л #)•-?(£($>//.))) 

= - E E E "»(/••) • m(^//«) • -ҷ Ã(л*l/< л Jo) 
« j k 

- E E E "»(/••) • m ( л * / / ' л ^) • ғ ( Ătøl/.)) 
« > * 

= - E E Em(/<л ÍІ) • Ңn&ь/fiл ^i)) 
« > * 

-EE^/^E^/Lл^o-Eím^lL)) 
• І k 

= нm(c/ЛyB) + нm(в/л). 
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THEOREM 2.3. Let A,B e Ty A < B. Then Hm(A/c) < Hm(B/c) for 
each C G T. 

P r o o f . Put A = {fi} , B = {gj} , C = {hk} . Since A<B we háve 

F(m(gj/hk)) = Y2F(m(dj A fi/hk)) • This fact along with (2.6) implies 
i 

= -EEm(fc*)EF(^iA/«/fc*)) 

j k i 

j k i 

~ EE m ( / l f c ) E™(ft//i A **) * F(™{fi/hk)) 
j k i 

>-YlYlm(h^T/^9J/fi^hk)-F(m(fi/hk))=Hm{A/c). 
i k j 

LEMMA 2.2. Let A,BeT, A= {fi}, B = { ^ } , .A < # . Tften /or every 

h e M it holds that m(h A ( \J gA) = m(h A fi), where 8i = {j; gj < fi], 

i = l ,2 

P r o o f . Since V gj < fi, the monotonicity of fuzzy P-measure implies 

the inequality 

mih A ( \J gjj) <m(hAfi) (i = 1 ,2 , . . . ) . 

Let us suppose that the assertion of the proved lemma is not true. This means 

that there exists ÍQ such that mlh A ( V 9j)) < rn(h A fi0). Then we get 

E m ( / l A ( V 9jjj <Y,m(hAfi). 
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This conclusion is contradictory, because by (1.14) we have 

_[™(h A ( V to)) =m(hA (V9i)) = ™W 

and 

^m(h Л /,) = m(h A (\f fЛ) =-m(Ä). 

THEOREM 2.4. Let A, B be two complete fuzzy partitions, A < B. Then 
Hm(C/A) > Hm(C/B) for each CeT. 

P r o o f . The function F is convex and therefore for any convex combination 
J^ oijXj (i.e. such that otj > 0, j = 1,2,. . . , £ ] aj = 1) of elements Xj £ (0,1) 
j j 

there holds 

^(E<w)^Ea 'F(*>)- C2-7) 
^ j ' J 

Let A = {/,} , B = {gj} , C = {hk} . Denote by 

<*={*'; m ( / « ) > 0} , /? = { j ; m(9j) > 0} , 7 = {fc ; m(hk) > 0} , 

<*i = { i ; #j < / , } , i = 1,2,. . . . Put aj = m(gj/fi), Xj = m(hk/gj), 
i, A: - fixed, j = 1,2,. . . . Let i G <*. Then 

5ľaJ 
ІЄ/3 

í = 5^m(w//i) = ]Cnr 

jЄ/Э j 

>te//i> = E m ( î j Л / i ) 
m(/,) 

m((V^)лL) 
1 1 

m(fi) 

By the preceding lemma ч Ne get 

ječ J€P jEp w ' w y 

( ^ /J, A A m ( f t * A ( V </>)) 
m(gj)m(hk A gj) _ v v j€6t

 / y 

^ m(/ , ) m t ø ) m(/ i ) 

m(hkЛfj) o . 
— — = m(hk fi). 

Mfi) 
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Evidently ^ ctjXj = m(hk/fi) also for i £ a . By (2.7) we obtain F(m(hk/fi)) 
jeP 

< Y^m(9jlfi) ' F(m(hk/gj)) • If we multiply this inequality with —m(fi), we 
3 

get 

-m(fi)'F(m(hk/fi))>-m(fi)Y,^93lfi)'F i,fc = l , 2 , . . . . 
3 

Hence 

M<7.A) = " E E m ( / « ) -HMhk/fi)) 
i k 

* - E E Em(/») • ™to//*) • F(™(Wsi)) 

= - E E m f e ) • Hnfa/ss)) = Hm(C/B). 
3 k 

T H E O R E M 2.5. Hm(A/B) < Hm(A) for each A,B eJ7. 

P r o o f . Put £ = {1} , A = {fi} . Then 

ffm(^ ) = " E m « ' ^M/*/1)) = " E F(m^)) = ^-(^) • 
i i 

Since any complete fuzzy partition B is a refinement of the partition £ = {1}, 
by means of Theorem 2.4 we obtain Hm(A) = Hm(A/g ) > Hm(A/B ) . 

THEOREM 2.6. For each A, B,C eF, we have: 

Hm(BvC/A)<Hm(B/A)+Hm(C/A). 

P r o o f . Since A < A V B for each A, B E T, according to Theorem 2.4 
we have the inequality 

Hm(C/AyB)<Hm(C/A). 

This along with Theorem 2.2 implies 

Hm(BvC/A)=Hm(C/AyB)+Hm(B/A)<Hm(C/A)+Hm(B/A). 

We have seen that the conditional entropy of complete fuzzy partitions de
fined here fulfils all properties analogous to the properties of entropy of measur
able partitions in the crisp case. 
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