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REGULAR MEASURES AND ENTROPY
ON PSEUDO-COMPACT SPACES

MAGDA KOMORNIKOVA, JOZEF KOMORNIK

The notion of pseudo-compact spaces was introduced in [2]. The main purpose
of this paper is to study regular measures and entropy on Hausdorff normal
pseudo-compact spaces. We prove the validity of Riesz Representation Theorem
for regular measures and Goodwyn’s Comparing Theorem for entropy on those
spaces.

1. Regular measures

Definition 1. (i) Topological flow is a couple (X, T), where X is a topological
space and T is a continuous endomorphism of X

(if) Let (Xi, T:), i=1, 2 be topological flows. A mapping ¢: X,— X, is called
a morphism of flows, if it is continuous, surjective and satisfies the equalitiy

¢ Ti=T: ¢
(iii) The system 9B(X) of Borel subsets of a topological space X is the smallest
o-algebra containing all open sets.
(iv) A probability measure y defined on B(X) is called regular if for any
B € B(X) the following equality holds :

y(B)=inf {y(U): B = B, U open}.

The system of all regular probabilities on B(X) is denoted by M(X).
(v) Let (X, T) be a topological flow. A measure y € M(X) is called T-invariant
ify=y - T™'. The system of all regular T-invariant measures is denoted by M (X).

(vi) Let ye M(X). We denote by %B,(X) the system of all Borel subsets of
X with the property:

y(3B)=0, where 9B =Bn B° is the boundary of B.
It is easy to show the following facts.

Proposition 1. i) B,(X) is a o-algebra.
i) The closure B of B € %,(X) is an element of A,(X).
iii) If (X, T) is a topological flow and B € B,(X) then T'(B)e B,(X).
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Lemma 1. (cf. [5], [6]). Let X be a normal topological space.
i) For any closed subset A and y € #M(X) there exists a closed G, set B o A such
that

y(B—A)=0.
ii) Let B be a closed G; subset of X. Then there exists a real continuous function
@ defined on X such that
0<se@(x)<1, B=¢'(0).

Corollary 1. Let X be a normal topological space, let y € M(X) and B € B,(X).
Then there exists a closed Gs set A € B,(X) such that B< A, y(A—B)=0.

Definition 2. A topological space is called
i) pseudo-compact if every real continuous function on X is bounded.
i) countable-compact if every countable open cover of X has a finite subcover.

Lemma 2. (cf. [2]). A Hausdorff normal topological space X is pseudo-com-
pact if and only if it is countable — compact.

Corollary 2. i) A continuous image of a pseudo-compact space is
pseudo-compact.

i) A pseudo-compact subspace of compact metric space is compact metrisable.

ili) A closed subset of pseudo-compact space is pseudo-compact.

Further we suppose that the considered topological spaces are Hausdorff, normal
and pseudo-compact.

Theorem 1. The expression

E()=[1dv

gives one-to-one correspondence between M(X) and the set of all linear nonnega-
tive (i. e. E(f)=0 for f=0) functionals on 6(X) which the property E(1,)=1,
(where 1, denote the function on X with only one real value 1).

We first prove a lemma.

Lemma 3. Let E satisfy the above conditions. Then the function defined on the
open sets by

Y’ (U)=sup {E(f): f<xuv)

has the following properties:
i) For U,, U, open

Y (U0 Us) +y(Uy n U2) = y%(Uy) + y°(Us)

ii) For Uyc Uyc ...c U, c ..., all being open and U= ) U,
n=1
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Y(U)=lim y*(U,)

iii) y°(U)=1—inf {y*(V): Uu V=X, V open}.
Proof. For any closed subset A put
Yo(A)=1-(A°).
From the definition of y, and from the properties of E we get
Yo(A)=inf {E(g): xa <g € €(X)}.
The condition iii) is then equivalent to the condition:
for any U open
Y°(U)=sup {yo(A): A closed, A = U}.
Let ¢ € 6(X), ¢ <yxu. For £>0 we put
Ac={xeX: p(x)Z€e} < U.

Let g € 6(X), xa.<g. Then f—g=<e- 1, and E(¢)— E(g) <¢. Taking supremum
over f and infimum over g we get

Y(U)<v(A)+e
thus
Y(U)< sup {yo(A): A c U}.

Let A c U. There exists a real continuous function @ suchthat 0<g@ <1, p|. =1,
@|u-=0. Hence xa <@ <jyv and yo(A)<E(¢)<y°(U). Now we prove ii). Let U,

c..cU, c.., U=CJ U,. Let £€>0. Take A closed such that A < U and

n=1
Yo(A)>y°(U) — €. The system {U, } 7

is a countable open cover of the pseudo-compact set A. Hence there exists noe N
such that A < U,, and

Y (Uno) = 1o(A)>y(U) - €.
Finally we prove i).
Let U,, U, be open. Let £>0. Take fi, f.€ €(X),
fisyv, and E(f)=y°(U)—¢/2 for i=1,2.
We have

Y(U) +y°(U:)<E(fi) + E(f.) + e = E(f, Vf2)+E(f1 Af2)+e<
<Y(U,uU,)+y(UinUy) + €.
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Similarly we get that for A;, A, closed

Yo(A1U Az) + Yo(A1 N Az) < 70(Ar) + Yo(Ay).
Now we are ready to prove the inequality

Y (U0 ) +7°(Uin Uo) <y°(Un) +7°(Ua).
Take A, B closed,

A cUu U, yo(A)>y(Uiv Uy) — €/2
B c Ulﬁ Uz, 'YO(B)>‘Y0(U1m Uz)— 8/2

The closed sets i i
- Ai=A-U, A,=A-U,

are disjoint. Hence there exist disjoint open sets W; o A,, A, = W.. Put

A=A-W, A,=A-W,.
We have

AclU A,clU, A\IVA=A-(WinW,)=A.

Further we put

B,.=A,uB B,=A,UB.
Then

B, c U, i=1,2, hence y’(U)=y(B))

B,UB,=AUB, hence y(BiuUB;)=y(A)=y'(UiuU,)—¢/2
B,nB, > B, hence yo(ByN B2)=yo(B) =y (Ui N U,) —€/2.
Combining the above inequalities we have

Y(Ub) +v°(U2) = yo(Br) + yo(B:) =
=ZYo(B1U By) + yo(Bi N B) =y (U v Uy) + (Ui Uy) — €.

Now we are able to prove Theorem 1.
We define the outer measure y* on the system of all subsets of X by

y*(M)=inf {y°(U): M = U, U open}.

Arguing in the similar way as in [1] we can prove that the restriction of y* to the
system

Y ={B:Bc X, y¥B)+y*B)=1}
containing %B(X), is a probability measure. Let us denote by y the restriction of y*

on B(X). The regularity of y can be obtained from (iii) by obvious arguments. We
show that the equation
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[fdy=E(f)
is fulfilled for any fe €(X).
Suppose that

We can write
on
ff dy=1lim /2" 3 y(U...)
n—x k=1

where
Unw={x: f(x)>k/2"}.
For any given £¢>0 and n € N we can take functions g.,«€ €(X) such that

Gnx<Xu.. and E(gn.)>y(Uns)—¢€.
We have
1/2" - ank 1/2" - ZXU k\f

hence
2’!

| E.(f)BE(1/2" S gn k>_1/2" 2 E(g,.)>1/2"- 2 Y(U,.)—¢

for any ¢ and n.
Similarly

1-E()=E(1-N= [~ dy=1-J dy

thus
CE(f)<[fdy<E(f).

Definition 3. The topology induced on M(X) by the correspondence y <>
Ee| ‘6’(X)]* and the weak topology on [€(X)]* will be called weak topology on

M(X).

Proposition 2. a) #(X) is a sequentially compact topological space, i. e. any
sequence in M(X) has a cluster point.

b) Let @: X— Y be a continuous surjective mapping. Then ) for any v e #M(Y)
there exists y € M(X) such that v=y- ¢~ e #(Y).

) for any y € M(X) the measure v=y- @ 'e M(Y).

y) Let T: X— X be a continuous mapping. Then there exists y € Mr(X).
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Proof. a) The set of all functionals E which correspond to some measures from
M(X) is sequentially compact in [€(X)]* (cf. [7]).

b) The part f3 can be obtained from the fact that the measure y - ¢ ~' corres-
ponds to the functional ¢*(E) defined on 6(Y) by

»*(E)f)=E(g - ).
Suppose that ve #(Y). Let us define functional E, on the closed subspace

Co={g-9:9€b(Y)} c 6(X)
by
E.(9-¢)=[gdv.
The modification of Hahn—Banach theorem enables us to extend E into the

continuous nonnegative linear functional E defined on €(X).

2. Entropy — general concept

Definition 4. Base of entropy (BE) is defined as a triple (?, T, H) where

P is a set quasi-ordered by a reflexive and transitive relation *“ <" such that for any
two elements P, Q € P there exists a join P v Q with the properties

i) L, Q<PvQ
ii) P, Q<Re? > PvQ<R

T:?—>Pand H: > R"
are mapping with following properties

i) Q<P = T(Q)<T(P), H(Q)<H(P)
ii) T(Qv P)=T(Q)v T(P), H(Qv P)<H(Q)+ H(P)
iiiy H(T(P))<H(P).

Definition 5. Let (?, T, H) be a BE. We say that P, Qe P are equivalent
(P~Q) if P<Q and Q<P.

Proposition 3. Let (?, T, H) is a BE. Then for P, Q, R e % we have
iy P~PvP

ii) (PvQ)vR~Pv(QVR)

i) P~Q = H(P)=H(Q).

Notation. Let Py, ..., P, € ?. Then we can define their common join \7 P, (up
=1

totthe equivalence) independently of the ordering.
The number H(\7 R) does not depend on the ordering of elements P, ..., P,.
i=1
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Definition 6. Let (P, T, H) be a BE. For any Pe ? and n € N we define
P =\7T‘(P) and H(T, P)=lim sup (1/n- H(P"). The entropy of the base
1=1 n

(P, T, H) is defined by
h(T)=sup H(T, P).
Pe?

Definition 7. Let (%, T;, H;), i=1, 2 be BE’s. The mapping
f: g)l —> g’z
is called a BE-morphism if for any P, Q € P, the following conditions are satisfied :

iy P<Q > f(P)<f(Q)
i) f(PvQ)=f(P)v f(Q)
i) f-Ty(P)= T, f(P)

iV) Hzf(P)zHl(P)

Definition 8. We say that BE's (%,, T\, H\) and (P,, T», H,) are
a) weakly isomorphic if there exist BE-morphisms

fﬁ @1—-)@23ndf2: @2—99,1
b) isomorphic if there exists a bijective mapping f: P, — P, such that f and ™
are BE-morphisms.
Proposition 4. Let (P, T;, H)), i=1, 2 be BE's and f: ?,— P, BE-morphism.
Then we have

a) Pe®,: f(P")=[f(P)]", H(T:, P)=H(T:, f(P))
b) h(T\)<h(Ty).

Proof. The following equalities can be easily proved by induction

7Py =V Ti(P)) =V TSP = [P
Thus we have '
H\(T, P)=linm sup 1/n - HI(P")=li"m sup 1/n - H, - f(P") = Hy( T, f(P)).
Hence
h(T))= sup H\(T,, P)= sup Hy(T,, f(P))Sgug Hy(T,, Q)= h(T>).

Corollary. i) Weakly isomorphic BE'a have the same entropy.
it) Isomorphic BE's have the same entropy.
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Proposition 5. Let (P, T, H) be BE and P<Q € ?. Then H(T, P)< H(T. Q).
Proof. We can show by induction with respect to n that P"<Q" thus
H(P")<H(Q") and H(T, P)<H(T, Q).

3. Topological and measure theoretic entropy
Definition 9. Let (X, T) be a to;;ological flow. a) Let P be the system of all
finite open covers of X quasiordered by the relation
P<Q <« VVeQ3aUeP: Vc U.
For P, Q e P we put

PvQ={UnV:UeP, VeQ},
T(P)={T"(U): UeP)
N(P)=min {card (Q): Q= P, Qe ?}
H(P)=log N(P).

b) Let ¢: (X', T")— (X, T) be a morphism of flows. Put
¢:P—->P. @P)={@p '(U): UeP}.
Notation. Using the standard methods we can prove that (?, T, H) is a BE and

that ¢ is a BE-morphism. The entropy h(T) is called the topological entropy of the
flow (X, T).

Proposition 6. Let 2, be the system of all those elements of 2 which consist of
open F, sets. Then

h(T)=sup H(T, P)

Pe®,

Proof. Let P={U, -, U,} c®?. We can assume thatfork=1, ..., n | J,..U:# X.
Put V()=0= Un+l.

Suppose that for k € {1, ..., n} we have constructed open F, sets V,, ..., V,_, such
that V,c U, for i=0,1, ..., k—1, where V,=U,=0=0=U,,,.
Uvulu-
Put k=1 n+1
Ak =X- ‘/1 Ui
i=0 j=k+1

Then 0 # A, = U., A, and Us are disjoint closet sets. Let i be a continuous real
function defined on X such that

Ospes<1l, @la=0, q@lue=1.
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Put
V=0, 1/2)).
Then we have
Viisopen F, and A, c Vi = Uk

thus

(Gv)o( U u)-x.

i=0 j=k+1

Put Q={V,, ..., V.}. Then Q = ?, and P<Q thus
H(T. P)<H(T, Q).

Definition 10. Let (X, T) be a topological flow and y € M(X). a) The finite sct
P={B,, ..., B} is called a y-covering of X if Bie B(X) for i=1,...,n and
v(B,nB,))=0 for i#j. The system of all y-coverings will be denoted by ?,.

For P={A,, ..., A.}, Q={B,, ..., B..} put

inf{1(A~B)}}.

e j=1 .

Now we define the quasi-ordering on %,
P<Q < d(Q, P)=0.
For P, Qe P we put
PvQ={AnB: AeP,BeQ}.
Finally we put
H(P)= - 3 y(A)log v(A)

and
T(P)={T'(A): AeP}.

b) Let¢: (X', T')— (X, T) be a morphism of flows. Take g' € #(X") such that
y=y"- @ . Put ¢: P, > P,

@(P)={¢™'(A): AeP}.

Notation. We can show by obvious arguments that (%,, T, H) is a BE and ¢ is
a BE-morphism.

The entropy hy(T) is called measure-theoretic entropy.
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fiiion 12. Denote by P9 the subsystem of P, containing decompositions of

n o elements of B,(X). Denote by P, the subsystem of P, containing y-covers

fo med by closed elements of B,(X). Further we denote by %3 the subsystem of P,,

co ta'ni ig y-covers tormed by G, sets. The following proposition can be proved in
t .c st ndard way (cf [3]).

repositien 7. For any given ne N and ¢ >0 there exists 6>0 such that for
P Qe?,, cad(P), card (Q)<n and d(Q, P)< b we have

H(T, Q)< H(T. P)+¢.

opos’t'on 8. a) For any B € B(X) and £ >0 there exists A € B,(X) such that
y(B A)=0
b) For any P e ®, and ¢ >0 there exists Q € P} such that d(Q, P)<e.
roof. a) Take C closed and U open such that

CcBcU and Y(U-C)<e/2.

Th re exists a continuous real function ¢: 0<¢<1 and ¢|c=0, ¢|v-=1. The
system of disjoint sets {D,},c(. 1, where D, ={@~'(t)} is uncountable hence there
x ts te(0, 1) such that y(D,)=0. Put A=¢ ({0, t)). Then A < D, hence
A € A,(X).
b) Thi part follows from the fact that %,(X) is a o-algebra.
Proposi ‘'on9. Let Pe®,. Then there exist P'e P, and P"e P} such that
P~P' ~P.
Proof. Take Pe®,. Put P'={B: BeP).
Ac ord'ng to Lemma 1 (i) every element B of P is contained in a closed G; set C
1ith the same measure. The collection of those sets C forms the y-covering P”.
Ceoroliary.

h,(T)=PsugP2 H(T, P).

4. Goodwyn’s theorem on pseudo-compact spaces

Tk orem. Let (X, T) be topological flow (X is Hausdorff normal and
pseudo-compact). For topological entropy we have

h(T)=sup {h(T): v € Mx(X)}.

Proof. We shall make use of the fact that the theorem holds on compact
metrizable spaces (cf. [8]).

Let a<h(T) There exists PeP, such that H(T, P)>a. Suppose P=
{U ., U,}where U, i=1, ..., m are open F, sets. For i=1, ..., m there exist
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real continuous functions ¢, on X such that 0s@ <1, Ui=¢ '((0,1)). For
n=0,1,... put Y,=(0,1)".
The product space Y= 1 Y. is compact metrizable. Now we define the
continuous mapping ¢: X —n:oY
[@(X)]..i= @i T"(x)
for n=0,1,...,i=1, ..., m.

Put K= @(X).

K is a pseudo-compact subspace of the compact metrisable space Y thus K is
a compact metrisable.

We have

[D(TCN)ni=q: - TY(T(x)) = - T (x) =[@(X)]asr.i=[7 - P(x)]..s
forn=0,1,...,i=1,..,m

where 7 is the shift on K defined by |

[t i= [yl
Hence

P: (X, T)-> (K, 1)
is the morphism of flows. For i=1, ..., m we put |

| Vi={yeK: [yl #0}.
For i=1, ..., m we have
U=o'(V).

Put

Q={Vy ..., Va}.
Then we have P= ®(Q). According to Proposition 4a)

H(T, P)=H(t, Q)<h(t)=sup {h.(1): ve M (K)}.
There exists v € M.(K) such that
h.(r)=H(T, P)-1/2-[H(T, P)—a]>a.

According to Proposition 2b), there exists ye#r(X) such that v=y- @7
According to Proposition 4b) and Notation 2 we have hy(T)=h,(t)>a.

Hence :
h(T)<sup {h(T): y € Mx(X)}.
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To prove the conv rs> incquahty we use a similar construction Take y e 4, (X)
and a<h(T). There exists Pe®] such that H(T, P)>a. Suppose P=
{Ai, ..., A}, where A, i—1,.., p ate closed G, sets.

There exist contintous redl furctions ¢, i—1, ..., p such that 0<¢, <1 and
Ai =@ '(0).

For n=0,1,...,put Y.—(0 1)p.

Define the continuous fun tion

4.X >Y=11Y,

[ O = T"()
Put

K=d(X), B—{yeK:[vl.—-0}, i=1, ,p, OQ={B\, .,B,}.
Then
A =® (B), i=1, . m, thus P—®(Q).

According to Propo ition 4b), H,(1, P)=H, » (7, Q), where T s the shift on K.
&: (X, T) > (K 7) is a homomorphism of flows, thus

h(T)=h(t)=y @ '(1)=H, s (1, Q)=H,(T, P)>a
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PETYJIAPHBIE MEPBI 1 DHTPOTTNA HA MCEBJIOKOMITAKTHBIX
MPOCTPAHCTBAX

Marga Komopuukosa, Mosed KomopHuk
Pestome
B pa6ote pokassiBaetcsi, yTo Teopema Pucca 0 npepcTaBIcHUM perynsipHbIX BEPOSITHOCTHBIX MCp

u Tcopema I'yaBHHA O CPaBHEHHU BEPOSTHOCTHON U TOMONOTHYECKOU IHTPONHUH BEPHBI U T HOPMAJLI-
HbIX NCEBROKOMNAKTHBIX npocTtpaHcTs [Naycaopda.
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