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REGULAR MEASURES AND ENTROPY 
ON PSEUDO-COMPACT SPACES 

MAGDA KOMORNIKOVA, JOZEF KOMORNIK 

The notion of pseudo-compact spaces was introduced in [2]. The main purpose 
of this paper is to study regular measures and entropy on Hausdorff normal 
pseudo-compact spaces. We prove the validity of Riesz Representation Theorem 
for regular measures and Goodwyn's Comparing Theorem for entropy on those 
spaces. 

1. Regular measures 

Definition 1. (i) Topological flow is a couple (X, T), where X is a topological 
space and T is a continuous endomorphism of X 

(ii) Let (Xi, T), i = 1, 2 be topological flows. A mapping cp: Xx—>X2 is called 
a morphism of flows, if it is continuous, surjective and satisfies the equalitiy 

<p • T- = T 2 • <p 
(iii) The system 58(X) of Borel subsets of a topological space X is the smallest 

o-algebra containing all open sets. 
(iv) A probability measure y defined on 25(X) is called regular if for any 

B e 3i(X) the following equality holds: 

Y(B) = inf {Y(U):BaB,U open}. 

The system of all regular probabilities on 2ft(X) is denoted by M(X). 
(v) Let (X, T) be a topological flow. A measure y e M(X) is called T-invariant 

jfy = y • T~\ The system of all regular T-invariant measures is denoted byMT(X). 
(vi) Let Y^M(X). We denote by S9Y(X) the system of all Borel subsets of 

X with the property: 

y(3B) = 0, where dB = Bn~Bc is the boundary of B. 
It is easy to show the following facts. 

Proposition 1. i) 28y(X) is a o-algebra. 
ii) The closure BofBe 9Ay(X) is an element of S9y(X). 
iii) If (X, T) is a topological flow and B e 93y(X) then T~\B) e S8Y(X). 
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Lemma 1. (cf. [5], [6]). LeX X be a normal topological space. 
i) For any closed subset A and y e M(X) there exists a closed G6 setB =) A such 

that 

Y(B-A) = 0. 

ii) Let Bbe a closed G6 subset ofX. Then there exists a real continuous function 
cp defined on X such that 

0^(D (x )^ l , B = (D"1(0). 

Corollary 1. Let X be a normal topological space, let y e M(X) and B e $ftr(X). 
Then there exists a closed G6 set A e 0iy(X) such that B cz A, Y(^ — B) = 0. 

Definition 2. A topological space is called 
i) pseudo-compact if every real continuous function on X is bounded. 
ii) countable-compact if every countable open cover of X has a finite subcover. 

Lemma 2. (cf. [2]). A Hausdorff normal topological space X is pseudo-com
pact if and only if it is countable — compact 

Corollary 2. i) A continuous image of a pseudo-compact space is 
pseudo-compact. 

ii) A pseudo-compact subspace of compact metric space is compact metrisable. 
iii) A closed subset of pseudo-compact space is pseudo-compact. 
Further we suppose that the considered topological spaces are Hausdorff, normal 

and pseudo-compact. 

Theorem 1. The expression 

E(/) = j/dy 
gives one-to-one correspondence between M(X) and the set of all linear nonnega-
tive (i. e. E(f)^0 for / > 0 ) functionals on <€(X) which the property E(lx) = 1, 
(where lx denote the function on X with only one real value 1). 

We first prove a lemma. 

Lemma 3. Let E satisfy the above conditions. Then the function defined on the 
open sets by 

y°(l/) = sup{E( / ) : /^ X u } 

has the following properties: 
i) For l/i, U2 open 

y°( Ux u U2) + y°( UxnU2) = y°( Ux) + y°( U2) 

ii) For Uicz U2 cz ... cz Un cz ..., all being open and U=\JUn 
n = \ 
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Y°(U) = UmY°(Un) 

iii) y°(/7) = l - inf {y°(V): UuV = X, Vopen}. 
Proof. For any closed subset A put 

y0(A) = l -y°(A c ) -

From the definition of y0 and from the properties of E we get 

Yo(A) = M{E(g):XA^ge(e(X)}. 

The condition iii) is then equivalent to the condition: 

for any U open 

y°(l/) = sup {y0(A): A closed, AczU}. 

Let (|p 6 ̂ (X), (p^Xu- F° r e > 0 we put 

Ae = {xeX:cp(x)^8}cz U. 

Let # e ^(X), XA, ^ <1- Then / - g ^ £ • lx and E(qp) - JE(#) ̂  e. Taking supremum 
over / and infimum over g we get 

y°(l/)<yo(A) + £ 

thus 
y° ( l0^sup{yo(A) :Ac- l / } . 

Let A a U. There exists a real continuous function cp such that 0^qp^l,(D |A = l5 

cp\v< = 0. Hence % A ^ ( p ^ ^ and y0(A)^E(qp)^y°([/). Now we prove ii). Let I/, 

a ... <=[/„<= ..., [/= Q U-- Let e>0 . Take A closed such that A c U and 

y0(A)> y°(U) - 8. The system {t/„}:=1 

is a countable open cover of the pseudo-compact set A. Hence there exists n0eN 
such that A ciUno and 

y°( LU) ^y«( A) >y°( U ) - e . 

Finally we prove i). 

Let Uu U2 be open. Let e>0 . Take / i , / 2 e^ (X) , 

/ ^ , and E(fi)^y\Ui)-el2 for / = 1,2. 

We have 

y°(L71) + r°(lI2)^E(/1) + E(/2) + £ = E(/1v/2) + E(/1A/2) + £ ^ 
^ y°( U, u U2) + y°( [/, n U2) + e. 
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Similarly we get that for Au A2 closed 

y0(Ai u A2) + y0(Ai n A2) ̂  yo(A!) + y0( A2) . 

Now we are ready to prove the inequality 

y°(Ux u U2) + y°(Ux n U2)^ y°(I/,) + y°(U2). 

Take A, B closed, 

A c [/- u [/2, y0(A) > y°([/- u I/2) - ell 
B cz (J! n [/2, y0(B) > y°( Ux n I/2) - ell 

The closed sets 

* A, = A - l / 2 A2 = A - l / i 

are disjoint. Hence there exist disjoint open sets Wi z> Ai, A2 cz W2. Put 

Ai = A - W 2 A2 = A - W 1 . 

We have 

A i d / , A 2 cz l / 2 , A i u A 2 = A - ( W i n W 2 ) = A . 

Further we put 

B, = A i u B B2 = A 2 u B . 

Then 

BicUu ' = 1,2, hence y°(Ui)^y(B,-) 
B i u B 2 = A u B , hence y 0 (B iuB 2 ) ^y 0 (A)^y° (L / iU U2)- ell 
BxnB2=>B, hence y 0 ( B 1 n B 2 ) ^ y 0 ( B ) ^ y 0 ( l / 1 n U2)- ell. 

Combining the above inequalities we have 

y°( Uy) + y°( U2) ̂  y0(Bi) + y0(B2) ^ 

:> y0(ß, u B2) + yo(B, n B2) > y°( L7, u IД) + y°( t/, n l/2) - є. 

Now we are able to prove Theorem 1. 
We define the outer measure y* on the system of all subsets of X by 

y*(M) = inf {y°( [/): M c [/,[/ open}. 

Arguing in the similar way as in [1] we can prove that the restriction of y* to the 
system 

.7 = { B : B c = X , y*(B) + y * ( B c ) = l } 
containing 5#(X), is a probability measure. Let us denote by y the restriction of y* 
on 3#(X). The regularity of y can be obtained from (iii) by obvious arguments. We 
show that the equation 
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/ / d y = E(/) 

is fulfilled for any/e<£(X). 

Suppose that 

o=s/sa. 
We can write 

f/dy = liml/2"-2y(I/я.ł) 
J П-^co k==l 

where 

Un,k={x:f(x)>k/2n}. 

For any given e>0 and n eN we can take functions gnjke
c€(X) such that 

Qn,k^Xun,k and £:(#,,, * ) > Y ( ^ . * ) " £ -

We have 

l/2--2flf-.^l/2"-f^^/ 
k=\ k=l ' 

hence 

E(f)^E(l/2n • f «-.*) = 1/2" • 2 ^(^.0^1/2" • 2 Y(Un,k)-e 
\ it=i / *=i * *=i 

for any e and n. 
Similarly 

l - E ( / ) = E ( l - / ) ^ / ( l - / ) d y = l - / / d y 

thus 

. E ( / ) « / / d y ^ E ( / ) . 

Definition 3. The topology induced on M(X) by the correspondence y <H> 
Ee^fX)]* and the weak topology on [<g(X)]* will be called weak topology on 
M(X). 

Proposition 2. a) M(X) is a sequentially compact topological space, i. e. any 
sequence in M(X) has a cluster point. 

b) Let cp: X—> Ybe a continuous surjective mapping. Then a) for any veM(Y) 
there exists Y^M(X) such that v = y • cp~l eM(Y). 

ft) for any y eM(X) the measure v = y • cp~~l eM(Y). 
Y) Let T: X—>X be a continuous mapping. Then there exists Y^MT(X). 
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Proof , a) The set of all functional E which correspond to some measures from 
M(X) is sequentially compact in [^(X)]* (cf. [7]). 

b) The part ft can be obtained from the fact that the measure y • q~l corres
ponds to the functional (D*(E) defined on ^(Y) by 

cp*(E)(f) = E(gcp). 

Suppose that veM(Y). Let us define functional E^ on the closed subspace 

Q = { 0 - < p : 0 € « ( Y ) } c « ( X ) 
by 

£«>(g cp) = fgdv. 

The modification of Hahn—Banach theorem enables us to extend E into the 
continuous nonnegative linear functional E defined on ^ ( X ) . 

2. Entropy — general concept 

Definition 4. Base of entropy (BE) is defined as a triple (SP, T, H) where 

SP is a set quasi-ordered by a reflexive and transitive relation " < " such that for any 
two elements P, QeSP there exists a join PvQ with the properties 

i) P, 0 < P v O 
ii) P, Q<ReSP z> PvQ<R 

T: SP-^SP andH: SP-+R+ 

are mapping with following properties 

i) Q<P =̂> T ( Q ) < T ( P ) , H(Q)^H(P) 
ii) T ( O v P ) = T ( Q ) v T ( P ) , H(QvP)^H(Q) + H(P) 

mil) H(T(P))^H(P). 

Definition 5. Lef (SP, T, H) be a BE. We say that P,QeSP are equivalent 
(P-Q) ifP<QandQ<P. 

Proposition 3. Let (SP, T, H) is a BE. Then for P, Q, ReSP we have 
i) P~PvP 

ii) (PvQ)vR-Pv(QvR) 
iii) P~Q => H(P) = H(Q). 

Notation. Let Pu ..., Pn e SP. Then we can define their common join N/P, (up 
t - i 

totthe equivalence) independently of the ordering. 

The number H( V-D.) does not depend on the ordering of elements Pi, ..., P„. 
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Definition 6. Let (0\ T, H) be a BE. For any Pe& and neN we define 

Pn = \fT(P) and H(T, P) = lim sup (MnH(Pn). The entropy of the base 

((?, T, H) is defined by 

h(T) = supH(T,P). 

Definition 7. Let (9>„ Ti9 H,), / = 1, 2 be BE's. The mapping 

f: opl _> g>2 

is called a BE-morphism if for anyP, Qe0>x the following conditions are satisfied: 

i) P<Qd>f(P)<f(Q) 
i i ) / ( P v Q ) = / ( P ) v / ( 0 ) 
iii) /•T1(P) = T 2 / ( P ) 
iv) H2 f(P) = Hx(P) 

Definition 8. We say that BE's (SPl9 Tu Hx) and (&29 T2, H2) are 
a) weakly isomorphic if there exist BE-morphisms 

fx:9>x-+3>2andf2: 9>2^9>x 

b) isomorphic if there exists a bijective mapping f: £PX —> $P2 such that f and f~l 

are BE-morphisms. 

Proposition 4. Let (3>i9 Ti9 Ht)9 / = 1, 2 be BE's andf: 9>x -> <3>2 BE-morphism. 
Then we have 

a) P e 9,: f(P") = [f(P)X, H(TU P) = H(T2, f(P)) 
b) A(T,)^A(T2). 

Proof. The following equalities can be easily proved by induction 

/(P")=/(VT;(P)) = VT2(/(P))=[/(P)r-
\i' = l / i = l 

Thus we have 

Hx(Tl9 P) = lim sup \ln • Hx(P
n) = lim sup \/n • H2 • f(P

n) = H2(T2, f(P)). 
n n 

Hence 

A,(T,) = sup H^T , P) = sup H2(T2, f(P))^ sup H2(T2, Q) = h2(T2). 
Pe&i Pe&i Qe&2 

Corollary, i) Weakly isomorphic BE'a have the same entropy. 
ii) Isomorphic BE's have the same entropy. 
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Proposition 5. Let (3, T, H) beBEandP<Qe 3. ThenH(T, P)^H(T, Q). 
Proof. We can show by induction with respect to n that P"<Q" thus 

H(P")^H(Q") and H(T, P)^H(T, Q). 

3. Topological and measure theoretic entropy 

Definition 9. Let (X, T) be a topological flow, a) Let 3> be the system of all 
finite open covers of X quasiordered by the relation 

p<Q <=> W e O a t / e P : Vc U. 

For P,Qe3 we put 

P v O = {L!nV: UeP, VeQ), 
T(P) = {T-'(U): UeP) 

N(P) = min {card (Q): Q c P, Q e 3} 
H(P) = log N(P). 

b) Let cp: (X', T')-» (X, T) be a morphism of flows. Put 

q>:3^3\ y(P) = {cp~l(U): UeP}. 

Notation. Using the standard methods we can prove that (3, T, H) is a BE and 
that Cp is a BE-morphism. The entropy h(T) is called the topological entropy of the 
flow (X, T). 

Proposition 6. Let 30 be the system of all those elements of 3 which consist of 
open F0 sets. Then 

/.(T) = supH(T,P) 
Pe3»o 

Proof. Let P={U\ •, Un} c2r\ We can assume that fork = 1, ..., n U i ^ L ^ X 
Put Vo = 0=l/„+ 1 . 

Suppose that for k e {1, ..., n} we have constructed open Fa sets V0, ..., Vk.x such 
that Vc= I/., for i = 0, 1, ..., k-1, where V0= [IO = O = 0= I/n+1. 

k-\ n + \ 

\jv^\ju=x. 
/=0 j=k 

P"t 
A, = X - U V . - U u> = x 

j=0 j=k+l 

Then 0 ^ Ak aUk, Ak and Uc
k are disjoint closet sets. Let yk be a continuous real 

function defined on X such that 

O ^ ^ ^ l , (p*|Afc = 0, q>k\Uk*=l. 
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Put 

Then we have 

thus 

V = <(>->(((), 1/2)). 

Vk is open F„ and Ak c Vk c Vk 

(Uv)u(U u) = x. 

\ / ^ o / \y = /k-t-l / 

Put 0 = {V,, ..., V„}. Then Q c <?0 and P<Q thus 

H ( T , P ) ^ H f T , Q ) . 
Definition 10. Let (X, T) be a topological flow and y e M(X). a) The /7n/fe stf 

P={B,, ..., B„} /s ca//ed a y-coven'ng of X /f B, e $(X) for /" = 1, ..., « ind 
Y(B, nB,) = 0 for /'=£/. The system of a// y-cover/ngs will be denoted by @r. 

ForP = {Aly...,An}, Q = {Bu...,Bm) put 
d(P,Q)= sup { inf {y(A,-Д)}]. 

i = l, .... n 1>=1, .., m J 

Now we define the quasi-ordering on (3>

Y 

P<Q <=> d(Q, P) = 0. 

For P,Qe& we put 

PvQ = {AnB:AeP,BeQ}. 

Finally we put 

H ( P ) = - 2 y(A)-log y(A) 

A e P 

and 

f(P) = {T"1(A): AeP}. 
b) Let <p: (X', T') -> (X, T) be a morphism of flows. Take cj' e M(X') such that 

y = y'.<p-1. Put (p: 0>y->0V 
(p(P) = {cp- 1(A):AeP}. 

Notation. Wie can s/iow by obv/ous arguments that (£Py,T, H) is a BE and (p is 
a BE-morphism. 

The entropy hy(T) is called measure-theoretic entropy. 
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if 11 ion 12. Denote by &°y the subsystem of 2Py containing decompositions of 
, n o elements of JL,(X). Denote by SP\ the subsystem of $>

y containing y-covers 
fo med by closed elements of %(X). Further we denote by SPy the subsystem of $P\ 
co ta ni ig Y-covers formed by G0 sets. The following proposition can be proved in 
t *e st ndard way (cf [3]). 

reposition 7. For any given neN and r > 0 there exists d>0 such that for 
P Q e ^ y , ca d (P), card (Q)^n and d(Q, P)<6 we have 

H(TyQ)<H(T<P) + t. 

opokYon 8. a) For any B e S8(X) and e>0 there exists A e %(X) such that 
Y(B A) = 0 

b) For any P e * y and c>0 there exists Qe3Py such that d(Q, P ) ^ * \ 
roof, a) Take C closed and U open such that 

C c B c [ ] and y ( U - C ) < e / 2 . 

Th re exists a continuous real function qp: O^cD^ l and (jp|c = 0, (jp|uc=V The 
system of disjoint sets {D,},€(0, i> where Dt = {q)~l(t)} is uncountable hence there 

x U 1e(0, 1) such that y(D,) = 0. Put A = (p_1((0, t)). Then 3A c Dt hence 
A e Jly(X). 

b) Thi part follows from the fact that 95y(X) is a cr-algebra. 

Proposi"on9. Let Pe&y. Then there exist P'eSP\ and P"e$P2
y such that 

P~F~F. 
Proof. Take Pe&y. Put P={B: BeP}. 

Ac ordng to Lemma 1 (i) every element B of P is contained in a closed G& set C 
ith the same measure. The collection of those sets C forms the y-covering P". 
Corollary. 

hr(T)=SupH(T,P). 
PePy2 

4. Goodwyn's theorem on pseudo-compact spaces 

Th orem. Let (X, T) be topological flow (X is Hausdorff normal and 
pseudo-compact). For topological entropy we have 

h(T) = sup{hy(T):YeMT(X)}. 

Proof. We shall make use of the fact that the theorem holds on compact 
metrizable spaces (cf. [8]). 

Let a<h(T) There exists Pe0>o such that H(T, P)>a. Suppose P = 
{U ., Um) where Uly / = 1, ..., m are open Fa sets. For i = l, ..., m there exist 
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real continuous functions <p, on X such that 0s£<jpj5£l, Ut = (p '((0,1)). For 
« = 0, 1,... put Y, = <0, 1>". 

The product space Y= n Y„ is compact metrizable. Now we define the 

continuous mapping <J>: X-» Y 

[*WUi=tft-T-(x) 

for n =0, 1, ..., i = l, ..., m. 

PutK=0(X) . 
K is a pseudo-compact subspace of the compact metrisable space Y thus K is 

a compact metrisable. 
We have 

[0(T(x))]^(p, • r(T(»)=<p. • r » = [ 0 W U , = [ f <*>0)W. 
for AZ =0, 1, ..., i = l, ..., m 

where T is the shift on K defined by 

[T(y)]i..i = [y]«+i.i. 

Hence 

0 : ( X , T ) ^ ( K , T ) 

is the morphism of flows. For i = l, ..., m we put 

Vt = {yeK:[y]o.i±0}. 

For « = 1,..., m we have 

a = 0-!(v;). 
Put 

0 = {V1,..., Vm}. 

Then we have P=<J>(Q). According to Proposition 4a) 

H(T, P ) = H(T, Q)^rz(T) = sup { ^ ( T ) : v e ^ ( K ) } . 

There exists veJU(K) such that 

/ZV(T)^H(T , P) - 1 / 2 [H(T, P ) - a ] > a . 

According to Proposition 2b), there exists yeMT(X) such that v = y<£>_1. 
According to Proposition 4b) and Notation 2 we have hy(T)^hv(x)>a, 

Hence 
rz(T)^sup{^(T):yG^T(X)}. 
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To prove the conv r s 1 inequality we use a similar construction Take yeAl T (X) 
and aKh,^). There exists P t r r 2

y such that H(T, P)>a. Suppose P = 
{A,, ..., A p}, where A, i — 1, .. , p aie closed Gb sets. 

There exist contimous r t J furctions (jp,, i — ly...,p such that O^cp.^ l and 

A^cOr'CO). 
For n = 0 , l , . . . ,put V..-<0 l ) p . 
Define the continuous fun tion 

<i X -> Y = fl Y„ 

[ (*)]„ =<fl-V(x) 

Put 

K = <D(A), B , - { y e / C : [ v ] o . - 0 } , i = l, , p, 0 = {B„ .., B p } . 

Then 

A, = <2> \B), / = 1 , . /w, thus P - 0 ( O ) . 

According to Propo ition 4b), Hr( l,P) = Hy <*> >(T, Q), where T is the shift on K. 
0 : (X, T)-+(K T) is a homomorphism of flows, thus 

h(T)^h(x)^Y & l(r)^HY + »(T, Q) = H y ( T , P ) > a 
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РЕГУЛЯРНЫЕ МЕРЫ И ЭНТРОПИЯ НА ПСЕВДОКОМПАКТНЫХ 
ПРОСТРАНСТВАХ 

Магда Коморникова, Йозсф Коморник 

Резюме 

В работе доказывается, что теорема Рисса о представлении регулярных вероятностных мер 
и теорема Гуд вина о сравнении вероятностной и топологической энтропии верны и для нормалш-
ных псевдокомпактных пространств Гаусдорфа. 
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