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ON STONE-TYPE EXTENSIONS 

FOR GROUP-VALUED MEASURES 

ANTONIO B O C C U T O 

(Communicated by Miloslav Duchofi) 

ABSTRACT. Let X be any set, A C V(X) any algebra, and E the Stone space 
associated with A. 

Let G be a Dedekind complete Abelian lattice group and m: A —> G a finitely 
additive positive measure and set fi, = m o (p. We prove tha t fj, has a cr-additive 
G-valued extension v, defined on the cr-algebra of all Borelian sets of E. 

1. Introduct ion 

Let X be any set, and A C V(X) any algebra. It is well known (see [13]) 
that there exists a compact totally disconnected topological space E such that 
A is isomorphic to the field T of the clopen sets of E: we denote by tp: T —> A 
such an isomorphism. E will be called the Stone space associated with A. In 
particular, if X is endowed with the discrete topology and A = V(X), then 
E = f3X (i.e. the Stone-Cech compactification of X). 

Now, let G be any cr-Dedekind complete Abelian lattice group (in short, 
cr-complete 1-group) and assume that m is a finitely additive positive measure, 
m: A—> G, and put /i = mo(p. In this note, we will prove that /z has a cr-additive 
G-valued extension v, defined on the cr-algebra c r ^ ) generated by T'. 

To prove this, we will use the principle of transfinite induction. In general, 
it is impossible to obtain a result of this kind by a Caratheodory-type process; 
in fact, our assertion is not true if we assume that T is any algebra and /i is 
an arbitrary G-valued cr-additive positive measure. If G is a vector lattice, the 
result is true if and only if G is weakly cr-distributive (see [20]). We note that, 
if G = C(S) = {/ E M5 : / is continuous} and 5 is a compact extremally 
disconnected topological space, then C(S) is weakly cr-distributive if and only 
if every cr-meager subset of S is nowhere dense in S (a set is cr-meager if and 
only if it is a subset of the union of a countable family of closed nowhere dense 
Baire sets; see also [18] and [20]). 
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We also note that there exist spaces of type C(S) which do not have any 
Hausdorff vector topology for which each bounded monotone increasing sequence 
converges to its least upper bound (see [19]): such spaces cannot be topological 
groups with respect to the order topology, because the order topology is 7\ (see 
[12]), and a topological group which is Fi is F2 too (see [11]). This means that 
our results are not contained in similar extension theorems stated for topological 
groups (see [14]). 

In the literature, there are many studies about the problem of extending 
a cr-additive group-valued (or vector-valued) set function from an algebra 
A to a suitable cr-algebra containing A. Among the authors, together with 
J . D . M . W r i g h t ([20], [21]), we recall C e l a d a ([5]), F r e m 1 i n ([7]), 
K a t s ([9]), S i o n ([14]), S i p o s ([15], [16]), V o 1 a u f ([17]). 

Finally, we will prove that, if G is a Dedekind complete 1-group, then (i can 
be extended to a cr-additive measure v\ , defined on the whole O--algebra of Borel 
sets of E. We do not know if this extension can be obtained also when G is just 
cr-Dedekind complete. Furthermore, we will see that, if A = V(X) and m is 
invariant with respect to an amenable semigroup H C Xx of transformations, 
then v and v\ are invariant with respect to the semigroup H' "corresponding" 
to H. 

2. The extensions 

2 . 1 . Let (G, + , <) be a a-Dedekind complete Abelian group lattice (a-complete 
l-group). Then (see [2]) G is Archimedean, and hence (see [3]. [6]) there exists a 
compact Stonian topological space S, unique up to homeomorphisms, such that 
G is a subgroup of COQ(S) = {/ £ R 5 : / is continuous, and {s : | / ( s ) | = 
-f oo} is nowhere dense in 5} . 

In the sequel, we will often use the following result (see [3], [6]). 

2.2. THEOREM. Let G and S be as in 2.1. If {a\}\^\ is any net such that 
VA a\£G and a = supOA £ G (where the supremum is with respect to G), then 

A 

a = supOA with respect to COQ(S), and the set {s E S : (supa\)(s) ^ s u p a ^ s ) } 
A A A 

is meager in S. 

2.3. DEFINITION. Let E be any set, assume that G is a O--complete l-group, 
and let A C V(E) be such that Q,E G A. We say that a G-valued map P , 
defined on .4, is a a-additive measure if it is monotone, finitely additive (i.e. 
P(A UB) = P(A) + P(B), whenever A, B, A U B e A and A n B = 0) and if 
it satisfies the following properties: 

(2.3.1) If An T-4, An,AeA, then P(A) = s u p P ( A n ) . 

(2.3.2) If An I A, An,Ae A, then P(A) = inf P(An). 
n 
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(If A is an algebra, then (2.3.1) and (2.3.2) are equivalent.) 

Now, we note the following fact. 

2.4. R e m a r k . Let X be any set, A C V(X) an algebra, and assume that 
E and T are as in the introduction. If m: A —> G is a finitely additive positive 
measure, then fi = mocp:T-^G is a-additive. Moreover, we note that there 
exists a nowhere dense set N C S such that, Vs G S\N and Wl G T, ms(A) = 
m(A)(s) is a finitely additive positive real-valued measure. Thus, by virtue of 
classical results, the map A H-> fis(A) = (ms o ip)(A) = [i(A)(s) is cr-additive, 
for each s G S\N] and so, it has a (unique) extension, vs, defined on the whole 
a-algebra B of Borelian sets of E, where E is as in the introduction (see [4]). 

To prove this, we have essentially used perfectness of T ([13]). In the sequel, 
these facts will play a fundamental role, in the construction of the required 
extension. 

Now, we state the main result. 

2.5. THEOREM. Let G be a a-complete l-group, and //, T be as in Theo­
rem 2.4. Then // has a a-additive extension v: cr(T) —> G. 

To prove this theorem, we proceed by transfinite induction (see [1], [10]) and 
use the fact that every countable union of meager sets is meager. 

Let To = T. If a is an ordinal of first kind, we put 

Ta-i,a = \ F : F = \jFn , Fn G Ta-\, Fn\\, 
^ n ' 

Fa.-i,<j6 = \ F : F = [\Fn , Fn G Ta-ii<T , Fn j >, 
^ n ' 

Ta = \F: F = l imsupF n = lim inf F n , Fn G Ta-X} C Ta-h(Ts . 
I n n J 

If a is an ordinal of second kind, we set: Ta = [j Tp. Then cr(T) = TQ, 
/3<a 

where fi is the first uncountable ordinal (see [10]). 
If a is an ordinal of first kind, let jla: Ta-i^ —• G be defined by setting 
p,a(A) = supfxa_i(_?n), whenever A = \jBn, Bn G Ta-±, Bn | , 

n n 

and define 
//* : Ta-i,a6 -> G by putting ii*a(A) = inf fla(Bn), 

n 
whenever A = f]Bn, Bn G Ta-i^, Bn | . 

n 
We will denote by fia the restriction of /i* to Ta. 
If a is an ordinal of second kind, let fia : Ta —> G be defined in the following 

way: na(F) = np(F), whenever F G Tp, with f3 < a. 
To prove Theorem 2.5, it will be enough to prove the following two assertions: 
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2.6. THEOREM. Let G be a a-complete l-group, and \x, T be as in 2.4. Then 
the map jia : Ta —> G is a-additive, for all a < ft. 

2.7. LEMMA. Let S, N, fi, /J,S, vs be as above. Then for each fixed set B G 
Ta, there exists a meager set LB such that vs(B) = fia(B)(s), Vs G S \ LB , 
for each ordinal a such that a <fl. 

To prove Lemma 2.7 and Theorem 2.6, we apply the principle of transfinite 
induction. 

Firstly, suppose that a is an ordinal of first kind. By hypothesis of transfinite 
induction, assume that the assertions hold for a — 1 . It will be enough to prove 
Lemma 2.7 and Theorem 2.6 in the case in which one has Ta-ij(7 and jla instead 
of Ta and \xa respectively. 

First of all, we prove that fla is well-defined. 
Let BnyCn G Ta-\, Bn | i , C n | A. Then there exists a meager set M 

depending on {Bn} and {Cn} such that Vs G S \ M: 

s u p / i a _ i ( £ n ) (s) = sup[/j,a-i(Bn)(s)] = vs(A) 
n - n 

= sup[/xa_i(Cn)(s)] = sup/x a_i(C n ) ( s ) . 
n - n -

As the complement of a meager set is a dense set in S, we have: sup ^a-i(Bn) 
n 

= sup /x a _i (C n ) . So, our definition makes sense. 
n 

Now, let A G Ta-ha, An f A, An G Ta-i. We have: p,a(A)(s) = 

sup / i a _ i (A n ) | ( s ) = sup[L t a_i(^n)(s)] = supvs(An) = vs(A) up to the com-
- n - n n 

plement of a meager set: thus, Lemma 2.7. is proved. 
Moreover, if 4 n | 4 , 4 n , jl G Ta-\^, we have: sup/xa(-4n) (s) = 

- n -
sup[fla(An)(s)] = supvs(An) = vs(A) = jla(A)(s) up to the complement of 

n n 
a meager set, and hence sup fia(An) = £ia(A). Analogously, one can check the 

n 

other required properties. So, 2.6 is proved at least in the case in which a is an 
ordinal of first kind. 

Now, let a be an ordinal of second kind. 
Fix B G Ta. Then B G Tp for some f3 < a , and thus, by the hypothesis 

of transfinite induction, there exists a meager set LB such that Vs G S \ LB , 
vs(B) = fip(B)(s) = fia(B)(s) by the definition of fia. So, Lemma 2.7 is proved. 

Now, pick .An, A G Ta. By virtue of 2.2, 2,4 and 2.7, we have 

sup fia(An)\(s) = sup[fia(An)(s)] =sup[vs(An)] = vs(A) = fia(A)(s) 
- n - I n n 
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up to the complement of a meager set. Thus, sup fia(An) = fia(A). 
n 

Moreover, it is easy to check the other required properties. So, Theorem 2.6, 
and hence Theorem 2.5, are completely proved. • 

By the same technique, we will prove the following: 

2.8. THEOREM. Let G be a Dedekind complete l-group, and let \x and B be 
the same as in 2.4. Then /i has a a-additive extension v\: B —• G, where B is 
the a-algebra of the Borel sets of E, and E is as in the introduction. 

Let C be the family of all open sets of E. For every A G C put: 

(2.8.1) ii0(A)= sup fi(A), 
FeJ\ FCA 

(2.8.2) \S(A)= sup \»(A)(s)}, 
FG.F, F C A 

Vs G S \ jV, where N is the same as in 2.4. 
We begin with a lemma. 

2.9. LEMMA. For each fixed A E C there exists a meager set MA such that 
Ho(A)(s) = \s(A),Vs€S\MA. 

P r o o f . We have: 

fi0(A)(s) = sup fi(A) (s) = sup f/x(A)(s)] = \S(A) 
-FG.77, F C A J FGJ\ FCA 

up to the complement of a meager set. From this, the assertion follows. • 

As a consequence of Lemma 2.9, we prove the following: 

2.10. PROPOSITION. The map fi0: C-+ G defined in (2.8.1) is a-additive. 

P r o o f . Firstly, we prove the finite additivity of fi0. Pick A,B E C with 
A D B = 0, and let \ s be as in (2.8.2). By Lemma 2.9, there exists a mea­
ger set LA,B such that \S(A) = fi0(A)(s), \S(B) = fi0(B)(s), \s(AuB) = 
/i0(A U B)(s), \/s e S \ LAjB • So we have: /x0(A)(s) + /i0(B)(s) = /i0(A UB)(s), 
Vs G S \ LA^B - and thus fi0 is finitely additive. 

Now, let An t -4, An, Ae £ , Vn G N . One has: 

supfi0(An) (s) = sup[fi0(An)](s) = sup\s(An) = \S(A) = /.L0(A)(S) 
- n -1 n n 

up to the complement of a meager set, and hence supl^0(An) = fi0(A). 
n 

The proof of (2.3.2) is analogous. • 

Now, let V = {D = A \ B : A,B G £ , A D B}, G == {F : F is a finite 
disjoint union of elements of 7)}. For all D G T>, set 
(2.10.1) fi(D) = fi0(A) - fi0(B), whenever D = A\B, with AD B. 
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For every F E G put 

(2.10.2) fi(F) = £ /KFi), whenever F = (J P*, F{ n P^ = 0 if i 7̂  J . 
i = l i = l 

We note that G is the algebra generated by C (see [8]). 
Now, we claim the following: 

2.11. PROPOSITION. The map ft defined in (2.10.1) is well-defined. 

P r o o f . Let Xs be as in (2.8.2), N and vs as in 2.4. It D = A1\B1 = 
A2 \ H2 with Aj, Bj E C (j = 1, 2), we have, up to the complement of a meager 
set P, depending on Aj and B3 : 

»o(Ai)(s) - /x0(-Bi)(s) = As(Ai) - As(Hi) = vs(Ax) - va{B{) = vs(D) 

= va(A2) - vs(B2) = XS(A2) - \a(B2) 

= »o(A2)(s) - fjL0(B2)(s). 

So, /io(-4i) — /xo(Hi) = /io(-42) — ju0(H2), and hence /i is well-defined. D 

Analogously as in Lemma 2.9 and Proposition 2.10, we can prove the follow­
ing: 

2.12. LEMMA. Let vs be as in the proof of Proposition 2.11. Then for every 
D E V, there exists a meager set Fry such that vs(D) = jl(D)(s). Vs E S\ Fo . 

2.13. PROPOSITION. The map ft defined in (2.10.1) and (2.10.2) is 
a-additive. 

Similarly as above, we can check that ft is well-defined and cr-additive. 
Though G is not perfect (in general), we can proceed as in 2.5, 2.6 and 2.7 

(thanks to 2.9) and extend ft to a cr-additive G-valued measure v\ denned on 
o~(G) = B (starting with TQ = <?). 

2.14. R e m a r k . I f i = V(X), G is a vector lattice, and m: V(X) -> G 
is invariant with respect to an amenable semigroup H C Xx, then /i : T —> G 
is H'-invariant (where H' C j3X(3x is the semigroup "corresponding" to H: 
see [4]); moreover, jis: T —> R is H'-invariant too, for all 5 E 5 \ N. As i/s 

is H'-invariant (Vs E S \N), it is easy to prove by using Lemma 2.7 (when 
a = fi), that z/ and 1/1 are H'-invariant. 
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