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ON TWO COMBINATORIAL IDENTITIES

L. CARLITZ, J. KAUCKY, J. VOSMANSKY

When investigating Bessel functions, the third author discovered a combinatori-
cal identity which, after a small modification, can be written in the following form

20 )= ()(). o

where r and k are arbitrary non-negative integers. Special cases of (1) can be found

in an implicit form in the last part of [3].
The proof presented in part II is due to L. Carlitz. In the last part J. Kaucky

uses Vosmansky’s identity (1) to give a new simple proof of the well-known

Dixon’s combinatorial identity
3r)!
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The different proofs of (2) can be found, e.g., in [2] § 6.3 or in [1] § 5.4.

18

sk =5 () (1) (7).

2 R(n, k, r)x"y*=

n, k=0

=I_Z’o(—1)’ (]’) xA=x)""y (1 -y) =
=(1-x)""'1-y)"" ,’Z’o(—l)l (]’) x"ly!

Put

Then
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so that

£

2 R(n, kb, nxy =(x—y)y(1-x) " '(1-y) "' 3)
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Clearly it follows from (3) that

F(X, Yy, Z)EZZ' E R(n’ k’ r)xnykz
r 0 nk O

=(1-x) '(1—-y) 1 iﬂzr(l__(x,;yy_’z
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so that
F(x,y,2)={(1-x)(1-y)—(x—y)z} " 4)

In the right-hand side of (4) replace y by x 'y and we get
{1-01-x "y)—(x—x 'y)z} '=
={1+y)-(1+2)x-(1-2)x 'y} '=

_ 1 (1+z)x d-2)x 'N*
=(1+y) {1_ 1+y 1+y ] -

e 5,01 Uiy

We retain only those terms that are independent on x, that is, those in which
s =t. This gives

a5 ()82

§ +y)2’
2
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Thus we have proved that

S,Oz' IS:UR(k, k, r)y"=§:0(—1) ( ")(1 .

298



Hence
R(k, k,2r+1)=0

(which of course is clear from the definition) and

= () ()= (25

Hence finally
Rek k.20 =C1 (5) (5,) =0 () (°77)

in agreement with the asserted result.

IIL.

In well-known formula (see e.g. [2] chapter 6)
P
P) (q) ap—i j—
%) () e
=S (O) () @-br 8. p=q
i=o\J J
we replace p, g, a, B by p=qg=2r, a=A, f=—1. We obtain

S )7

where E=a—f=A+1. Now E and A will be considered as operators. Then for
the function

2r+n
fo=(*50")
we have
2r+n+1 2r+n 2r+n
Af(n)—( 2r )_( 2r )—(Zr—l)
so that

A% jf(n)=(2r;. n)
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and because

£ f(")_(4r 2/r+ n)

2w () C7)-
v (G-

Finally for n 0 and using Vosmansky’s identity (1) with & —2r, we have

S ()R-

the stated Dixon formula.

we have
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