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Motti. Stovoca 32,19*2, No. 3,297—300 

ON TWO COMBINATORIAL IDENTITIES 

L. CARLJTZ, J. KAUCKV, J. VOSMANSKY 

I. 

When investigating Bessel functions, the third author discovered a combinatori-
cal identity which, after a small modification, can be written in the following form 

$-<MWnrhMkMT)- <') 
where r and k are arbitrary non-negative integers. Special cases of (1) can be found 
in an implicit form in the last part of [3]. 

The proof presented in part II is due to L. Carlitz. In the last part J. Kaucky 
uses Vosmansky's identity (1) to give a new simple proof of the well-known 
Dixon's combinatorial identity 

The different proofs of (2) can be found, e.g., in [2] § 6.3 or in [1] § 5.4. 

II. 

Put 

Then 
n^-tf-vQЄЖTY 

2 R(n, k, r)x"yk = 
n,k-0 

=2(-iУ (J) x-қi-xr-w -y)-1 = 

=(i -x)-'-қ\ -y)--* 2(-ІУ Q *-У 
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so that 

2 R(n,k,r)x"yk = (x-y)'(\-x) ' \\-y) ' ' (3) 
n k 0 

Clearly it follows from (3) that 

F(x,y,z) = _)z'_\ R(n, k, r)x"yk = 
r 0 n , fc 0 

= M-JC) v i - v ) ' 5 Y — ( x ~ y Y — = 

=<>-*>'<>-,)'{.-<r^r 
so that 

F( J r ,y ,z ) = { ( l - * ) ( l - y ) - ( * - y ) - } '• (4) 

In the right-hand side of (4) replace y by x 'y and we get 

{ ( l - * ) ( l - x 'y)-(x-x ly)z) ' = 

= { ( l + y ) - ( l + - ) * - ( l - z ) J C
 ly} ' = 

-a^)- i .c;o«^^ :^'-
We retain only those terms that are independent on x, that is, those in which 

s = t. This gives 

= (\ + y) '{i-ty-j^-} i2 = {(\-y)2 + 4yz2} ,2 = 

-<->>'{'--^r-

Thus we have proved that 

r 0 * 0 r 0 \ r / (̂ 1 — y) 
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Hence 
R(k,k,2r+1) = 0 

(which of course is clear from the definition) and 

£fi(*,*,2,),>=(-ir(2;)jIJiEII= 

=<-</R§ (">=<-<;) £ (VV-
Hence finally 

«(*.*. 2.)-(-.re,o(v,o-<-'>-o(*n 
in agreement with the asserted result. 

III. 

In well-known formula (see e.g. [2] chapter 6) 

we replace p, q, a, fi by p = q = 2r, a = A, / 3 = - l . We obtain 

, - . < - < / ) ' - ~ -

-&<-</) pro*--
where E=a— 0 = A + 1. Now E and A will be considered as operators. Then for 
the function 

we have 

so that 

m-(2T) 

^rrч-rк:-;) 
^"/w-(27") 
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and because 

we have 

B"/<">-(4'2r) 
,t<-»f/)T?r 

Finally for n 0 and using Vosmansky's identity (1) with k~2r, we have 

p '>'CT < oM-^ffi-
the stated Dixon formula. 
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