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Math. Slovaca 31,1981, No. 4, 369-395 

THE ROLE OF SEMIGROUPS 
IN THE ELEMENTARY THEORY OF NUMBERS 

STEFAN SCHWARZ 

One of the motives to write this paper has been the observation that from time to 
time various generalizations of the classical Euler—Fermat theorem are published. 

The aim of this paper is to show that one of the methods how to really 
understand various results obtained in this connection is via the description of the 
multiplicative semigroup of residue classes (mod m) as it is done in section 2 
below. This description is visualized in Fig. 1. 

We emphasize that we are not seeking the shortest proofs of some special 
problems. We rather develop a general point of view from which many special 
results concerning congruences (mod m) often become almost obvious. 

In section 1 we recall some simple facts concerning finite commutative semig
roups. The goal is to introduce the necessary notations and to present some results 
for those who are not working directly in semigroups. In sections 2 and 3 we give 
a description of the multiplicative semigroup Sm of residue classes (mod m). [This 
has been done (in a partly different way) also in [2], [8], [9].] Section 4 has to 
a certain extent an auxiliary character. It contains information concerning the 
orders of the elements in the so-called maximal subgroups of Sm. In section 5 we 
give various generalizations of the Euler—Fermat theorem. In section 6 some 
further simple questions are solved. Here the choice has been made taking into 
account problems which appeared (mainly in the Amer. Math. Monthly) in the past 
few years. In section 7 an (internal) direct product decomposition of Sm is given. 
Several consequences are deduced. In section 8 formulas for the product of all 
elements contained in the maximal subgroups and maximal one idempotent 
subsemigroups of Sm are given. 

Though the material discussed here has been treated in hundreds of papers and 
monographs, the point of view taken in the present paper leads in a natural way to 
some observations which as far as I am able to decide have never been explicitly 
stated in the vast amount of literature. (See in particular Theorems 5,2 and 5,3, 
Theorems 7,1 and 7,3 and Theorems 8,1 and 8,2.) 

From the methodical point of view it should be underlined that we are primarily 
interested in the multiplicative structure of the ring of residue classes (mod m). 
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But, of course, we freely use also the additive properties of this ring, which give 
a special feature to the semigroup Sm. 

1. Preliminaries 

In all of this section S is a finite commutative semigroup. If jceS, then the 
sequence 

( 1 , 1 ) jc,jc3 ,jc 3 ,... 

contains only a finite number of different elements. Denote by JC\ fc = fc(x), the 
least power of JC which appears in (1,1) more than once. Denote further by fc + d, 
d = d(jc) 1= 1, the least exponent for which xk = xk+d holds. Then (1,1) is of the form 

(1,2) x.дc2,...,**-!**,....;- X , 

It is well known and easy to prove that {JC ,...,JC
 + " }isa cyclic group of order d. 

Hence (1,1) contains a (unique) idempotent e = jcr and the least number r=r(x) 
having this property is uniquely determined by the inequalities fc.= r^fc + d - l 
and the fact that dlr. It is easy to see that jcr+1 is one of the generators of the group 
(JC\ ..., jcfc+d_1}. Hence {JC\ ..., jck+d_1} = {xe, x2e, ...,xde = e}. 

If e is the idempotent contained in the sequence (1,1), we shall say that JC belongs 
to e. Denote by E the set of all idempotents e S Denote further by P(e) the set of 

all elements e S belonging to the idempotent e. Then S = (J P(e) is a union of 
eeE. 

disjoint subsemigroups of S. We call P(e) the maximal subsemigroup of S 
belonging to the idempotent e. It is the largest subsemigroup of S containing e and 
no other idempotent. 

To every eeE there is a unique largest group G(e) (subgroup of S) containing e 
as its identity element. We call G(e) the maximal group belonging to the 
idempotent e. Clearly G(e)czP(e). 

The group G(e) can be characterized as the set of all JC e P(e) satisfying jce = JC. 
We have G(e) = P(e) • e. The mapping \pe: P(e)->G(e) defined by i^(jc) = jce is 
a homomorphism of the semigroup P(e) onto the group G(e) leaving all elements 
e G(e) invariant. 

Note explicitly: If S contains an identity element, say 1, then P(1) = G(1). 
With any x e S w e have associated three integers fc(jc), d(x), r(x), where fc(jc) = 

r(jc) .= fc(jc) + d(jc) - 1 and d(jc)/r(jc). Denote 

K = max {fc(jc)|jceS} and D = l.c.m {d(x)\x eS} 

and define R as the unique integer satisfying K^R<K + D and DIR. Clearly, K, 
D, R are characteristics of S. We have: 
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Proposition 1,1. For any xeS we have xK ^=X
K+D. The numbers K^K(S) 

and D = D(S) (as defined above) are the least positive integers having this 
property. 

Proposition 1,2. For any xeSthe element xR is an idempotent and R = R(S) is 
the least positive integer having this property. 

Proposition 1,1 may be called the Euler—Fermat theorem for the finite 
semigroup S. The numerical values for K and D in the case of the multiplicative 
semigroup of residue classes (mod m) go back to Lucas (1890) and Carmichael 
(1910). Incredible though it may sound the observation concerning the value of R 
seems to appear for the first time in the present paper. 

Remark. The majority of the results stated above is true also for non-comm
utative semigroups. But in this case P(e) need not be a semigroup. There is a rather 
limited number of classes of semigroups for which the exact values of K and D are 
known. In this paper we restrict our attention to the semigroup Sm to be introduced 
below. 

2. The description of Sm 

Let m = pV pi2 ... p?', a, i^ 1 be the factorization of a given integer m > 1 into 
the product of different primes. By Sm we denote the multiplicative semigroup of 
all residue classes (mod m). The class containing the number x will be denoted by 
[JC]. G(l) denotes the maximal group belonging to the idempotent [1], i.e. the set of 
all [JC] for which (x,m) = l. [G(l)is usually called the group of units of Sm.] 

Any element xeSm can be written in the form 

(2.1) x = [pk*pk
2> ...p>a], 

where [a]eG(l) and fc^O. 

Lemma 2,1. Toany element x ofthe form (2,1) there is a [b]eG(l) such that 

X -= |p7 i n ( k l ' a i ) • pmin(fc2.a2) min(fcr,ar) . £ j 

Proof. Since x = [p*1] ... [pk
r
r] [a], it is sufficient to prove it for one factor, say 

y = [pi',]» where we may suppose that fci>ai. We have y = [p?1] [pi1""1 + 
+ p?2 ... p"']. The second factor is in G(l) since it is not divisible by px, p2, ..., pr. 
Hence y = [p?!,fli], [fli]eG(l). Treating in the same way all factors in which 
fc >a,, we obtain Lemma 2,1. 

Remark: It should be noted that given x the element [b] e G(l) is not uniquely 
determined. 

Lemma 2,2. Let be 0^fc,^a„ O^/ .^a . (i = 1, 2, ..., r).If [pk* ... p>]G(l) n 
[pr ... p'/]G(l)^0, then ki = l (1 = 1, ..., r). 
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Proof. If [pi1 .. Pkra] = [pi1 .. Plrrb], [a], [b]eG(\) and, say kx>U, we may 
write [p\x] [pi1-'1 P*2 ... pkf * a - pli ... pjr • 6] = [0]. But this is impossible since the 
left-hand side is not divisible by p?1. 

Corollary 2.1. The semigroup Sm admits a decomposition into (ai + 1) (a2+ 1) 
... (ar + 1) mutually disjoint sets in the form S = (J*. krtpi1 ... p?r] G(l), where 
O^fcSa, (i = \, ..., r). 

We now proceed to the description of all idempotents e Sm. But first we make 
(for simplicity and typographical reasons) the following convention. In what 
follows we shall deal with products of the form (2,1). It will be often important that 
some of the p. do not appear and only s(<r) different prime powers have an 
exponent =£0. In such cases to avoid unnecessary subscripts we shall consider 
instead of expressions as [p*,'1 p£2 ... Pusa], k,bi=l the expression [pkl p\2 ... pksa], 
fc = l, having in mind that this is only a typical representative of products of 5 
different prime powers. 

Suppose that e = [p\x ... pk'a], [a]eG(l), l ^ f c ^ a , , l=\s^r, is anidempotent 
eSm. Denote v(m) = max(ai, ..., a-). Then e = e2= ... = ev implies e = [pifcl ... 
pv

s
ksav]. By Lemma 2,1 e = [p?1 ... pf'c] with a suitably chosen [c] e G(l). If s = r, 

we have e = [0], suppose therefore in the following s<r. If an element 
[pi*1 ... psa*c],[c]eG(l) is anidempotent, then [p?a« . . .p*V] = [pV ... p?*c],i.e. 

(2,2) p?1 ... p?*c = l (rnodp?*1 ... p». 

The congruence (2,2) determines c uniquely (mod p%V ... p°r). If c is a solution, 
then all solutions are c + t-phv ... p?r with an integer t. Since [p?1 ... pf'(c-\-
+ tp"3Ax ... p?r)] = [p?1 ... pt'c], the element e = [pV ... p?*c] is independent of the 
choice of the solution of (2.2). We have proved: If e is an idempotent, then e is 
necessarily of the form e = [pV... p"sc], where c is any solution of (2,2). 

Let conversely c0 be a fixed chosen solution of (2,2) and p?1 ... ps
t°c0 = 

= 1 + top^v ... parr. Clearly c0 is not divisible by p*+i, ..., pr. Choose now an 
integer u such that c0 + hp^V ... p?r is not divisible by pi,..., ps. Then [a0] = [c0 + 
+ fipsVi1 ... p? r]eG(l). 

The choice of U is always possible. If c0 is divisible by none of the pu ..., ps, put 
ti = 0. If Co is divisible by pi, ...,pv and not divisible by pv+\, ...,ps,putfi = pv+i... 
Ps. 

The element e = [p"x ... p"sa0] is an idempotent eSm since 

£2^[pV ...p*a0][pV ...p^c0] = 

= [p ?' ... p>a0] [1 + fop.Vi1 ... p?r] = [p?' ... p?*a0] = e. 

We have: 

Theorem 2,1. Let there be m = p"x ... p?r, a,- = l. The semigroup Sm contains 
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exactly 2r idempotents (including [0] and [1]). Any idempotent e Sm can be written 
in the form e = [p\x ... pl

r

ra], where h is either 0 or a, and [a] is a suitably chosen 
element eG(l). 

In the set E we introduce two operations: A and v. Let e', e"eE and 

e' = [pi! ... plrra'], where /, is either 0 or a,, 

e" = [pV ... p V ] , where jt is either 0 or a,. 
We define 

e'Ae" = e'e" = [ p r x ( / l / , ) . . . p r x ( / - p - c ] , 

e've" = [p m i n a ' ^ ) . . .p , n i n ( / -^ ) -d] , 

where [c], [d] are determined by the requirement that e'Ae", e've" are idempo
tents eSm. It is easy to see that E with respect to these operations becomes 
a Boolean algebra. 

Two kinds of idempotents play a special role: 
The primitive idempotents are the idempotents of the form 

/. = [5;*1 [*lєG(i) (i = l, ...,/•). 
-P« 

The maximal idempotents e E are the idempotents of the form 

fi = \p7-bi], [bi]eG(l) (i = l,.... r) . 

In this terminology: If m = pa, then /i = [l] is a primitive idempotent, while 
/. = [0] is a maximal idempotent. 

If e = [p?' ... pa*a]eE, s^l, then e = /i /2 ... /*. 

Lemma 2,3. Any idempotent eSm which is =£ 1 is a product of maximal 
idempotents. 

The following multiplicative properties of idempotents follow directly from the 
definition: 

m f f-[fi ioxi4zi> 
( 0 ^ " I I O ] for/ = / . 

(ii) fifi= [0]tori*j. 

The additive properties which we shall use are the following: 

i) /-+/- = [!]. 

ii) / , + ... + /, = [ l] . 

The first follows from the fact that / + / is an idempotent and in the above notation 

—at di + pT'bi is clearly contained in G(l). Analogously for the second property. 
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If e=l . . . /„ then c = ( l - / , ) ... ( l - / s ) = 1-(/, + . . .+/ s) = /s+1 + ... + /.. 
Hence, any idemptotent ef=0 can be written as a sum of primitive idempotents. 
(This is of course well known and holds for large classes of commutative rings.) 
Note explicitly that the product of any idempotents is an idempotent, while the sum 
of two (non-primitive) idempotents need not be an idempotent. This makes clear 
the advantage of the multiplicative representation of idempotents in general 
considerations. (In contradistinction to this, for numerical computations the 
additive representation is more advantageous.) 

We now identify the maximal subsemigroups belonging to a given idempotent e. 
Let there be 

(2.3) e = [p?«...p?fl], l S s ^ r , [<i]eG(l). 

An element x = [p\x ... p/y], foi^O, [y] e G(\) belongs to e if and only if we have 
[pf1 ... pry1] = [p?1 ... pa°a] for some integer f g l . 

By Lemma 2,1 we may write (with a suitably chosen [b]e G(l)) [pr , ( rk , , a , ) ... 
p7nUk'^'b] = [pV ...p,°-fl], whence by Lemma 2,2 fcs+i = ... = kr = 0. 

Conversely: Let jc = [pk' ... pksb], where l^h = ou and [b] any element eG( l ) . 
Denote a = max (a., ..., as). Then xa = [pak{ ... paksba] and by Lemma 2,1 there 
is a [c]eG(l) such that 

JC° = [p?' . . .p^c] = [p?'...p^a][ca-1] = e[ca-1]. 

If v is the order of [ca~l] in G(l), we have x~° = e. This implies: 

Theorem 2,2. Ife = [p?1 ... pa*a] e E, then the maximal semigroup belonging to 

e is the union of a. a2... as disjoint subsets P(e) = U [pkl ... pks]G(l), where 
ki,...,ks 

l ^ f c ^ a , (i = l, ..., s). 
To identify the maximal group belonging to e, recall that for any semigroup 

G(e) = P(e) • e. If e is of the form (2,3) we have by Theorem 2,2 

(2.4) G(e)= U [ p ^ . . p M [ p ? ' . . . p ^ ] G ( l ) . 

Now (for fixed fci,..., fcs) by Lemma 2,1 [p,1 ...ps°][pV ...pM = [p?1 ...p"jc] with 
[c] e G(l) and each of the summands in (2.4) is of the form [p?1 ... p?5 ca]G(l) = ' 
= [p?' . . .p? f l][c]G(l) = e-G(l ) . 

We have proved: 

Theorem 2,3. If eeE, the maximal group G(e) belonging to e is given by the 
formula G(e) = eG(l). 

Remark 1. The mapping <f>6: G(l)->G(e) defined by <Pe(x) = xe is 
a homomorphism of G(l) onto G(e). The kernel of this homomorphism will be 
described later (see Lemma 4,2). 
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Remark 2. Note explicitly: If an element xeSm is given in the (usual) form 
x = [p\x ... pkssa], [a] e G(l), fc ^ 1, we can immediately say that x e F(/i .../») and 
xeG(jx .../s) iff fc^a, for all i = l, 2, . . . ,s . 

The results obtained are schematically described (for r = 3) in Figure 1. Here the 
circles denote maximal groups, the rectangles denote maximal subsemigroups 
belonging to the corresponding idempotents. If e = [pV ... p"sa]eE, it will be 
shown that card G(e) = \G(e)\ = q>(m/pil ... p?) and |P(e)| = p?1"1 ... 
p"s~l\G(e)\. Hence if e'<e" (in the sense of the ordering in the Boolean 
algebra E), then \P(e')\ ^ \P(e")\ and \G(e')\ ^ \G(e")\. This has been 
incorporated in Figure 1. 

Fig.l 

Remark. If S is a commutative semigroup, the principal ideal generated by x is 
the set L = {JC, Sx}. By the H-class containing x we mean the set of all y generating 
the same ideal L of S, i.e. H(x) = {y | (x, Sx) = (y, Sy)}. The semigroup S is 
a union of disjoint H-classes. An H-class is a group iff it contains an idempotent. In 
the set of H-classes we may introduce a partial ordering by writing H(x)^H(z) if 
Lczlz. 

If S = Sm9 it is easy to see that each of the sets [pf1 ... p?r]G(l) mentioned in 
Corollary 2,2 is exactly one H-class. Hence there are exactly (ai + 1) ... (a- + 1) 
different H-classes. 

Let e = [p?1 ... pa
s
sa], [a] e G(l). Then it follows from Theorem 2,2 that P(e) is 

the union of exactly ai a2... a, H-classes of Sm. The H-classes contained in P(e) 
(in the ordering just mentioned) form a lattice with the least element G(e) = [p?1 
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... p"s]G(l) and the greatest element [p. ... p-]G(l). From this point of view it is 
more appropriate to describe "the position" of G(e) in P(e) in the way given in 
Figure 2 (i.e. to emphasize that G(e) is "at the bottom" of P(e)). 

To have the figure as simple as possible the ordering of the H-classes is not 
incorporated in Figure 1. 

b н ( P , . . . p.) 

-G(e) = H(pï....pľ') 

Fig.2 

3. How to find fc(jc) and d(x)l 

In this section the element 

(3,1) x = [pV...p>al l = s = r, fciH, [a]eG(l) 

is given. 
We have to find a (possibly reasonable) method how to compute the numbers 

/C(JC) and d(x). 

If JC e G ( l ) , then k(x) = 1 and d(jc) is the least positive integer for which jcd = [1]. 
In the following suppose that JC £ G( l ) . 

Denote by p = p(x) the least integer such that p • fc-=a, for all i = 1,2, . . . , s. 
Call ,U(JC) the indicator of JC. Clearly 1 = /X(JC) = max (a., ..., a,). Whith respect to 
Lemma 2,1 the number JLX(JC) is independent of the form in which the class [JC] is 
presented. It follows (see Theorem 2,3) that JLX(JC) is the least integer such that x" is 
contained in a group, namely the group [pV ... p"s]G(l) containing the idempotent 
e=fi ...fs. Hence k(jc) = |u(jc). 

N«>w the group (JCM, x*+\ ..., jcM+d_1} is identical with the group {jce, jc2e, ..., 
jcd(x)e}. Hence d(x) is the least integer d 1= 1 such that xde = e.This can be written in 
the form (jcd - l)e = 0(mod m), which implies jcd - 1 = 0(mod mlpV ... p?°) if 
s<r. If 5 = r, then d(x)= 1. 

In view of the preceding considerations we may summarize as follows: 

Theorem 3,1- Let x be of the form (3,1). Then JC' = jc/+h holds if and only if 

i) /i=|u(jc), where JLI(JC) is the indicator of x; 
ii) h is a positive multiple of d(x), where d(x) is the least integer such that 

jcd = l(mod m/pV ... p?5) if s<r, and d(x)= 1 if s = r. 
This Theorem has been proved in [5]. It may be called the "individual" 

Euler—Fermat theorem for the given element x e Sm. (Compare with Theorem 5,1 
and Theorem 5,2 below.) 
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Remark. From the computational point of view it can be shown that the 
number d(x) for x given in (3,1) can be found as follows. For i = s + 1, ..., r find 
the least d, such that xd* = l(mod pf')- Then d(x) = l.c.m.[ds+i, ..., dr]. (This 
follows immediately from Lemma 4,3 to be proved below. We omit the explicit 
proof.) 

4. An internal direct decomposition of G (e) 

The aim of this section is to find the value of the highest order of an element 
6 G(e). [For G(l) this is well known. See, e.g., [12] or [14].] We need this only to 
show that some of our results proved below are the best possible. 

By the way we obtain an internal direct decomposition of G(l) and G(e) which 
does not seem to be generally known (and which will be used in section 7). 

Consider the maximal group belonging to a primitive idempotent / = — a e E 

(l^i^r). By Theorem 2,3 we have G(/) = G( l ) / . If [JC], [y]eG(l), we have 
[x]f ={y]fi (in Sm) if and only if JC = y(mod p?(). This implies 

G(fi) = {[h]fi\\^h<p^(Kpi)=\}. 

The fact that the structure of this group is known will not be used before the end of 
the section. 

Each of the groups G(/) is "at the bottom" in Figure 1 "far away from G(l)" . 
Consider now the set Gi = {fi + g\ge G(/)}. Each of the elements / + [h]f is in 

G(l) (since it is divisible by none of the primes pi, .. . ,p r). The set G, is 
a semigroup since (/ + [h\]f) (/.+ [h2]f) = f + [h\ h2]f. It is a group since 
a subsemigroup of a finite group is a group. G, is clearly isomorphic with G(/) . 

Lemma 4,1. The group G(l) is the direct product of its r subgroups: G(l) = 
= G\ • G2 ... Gr. 

Proof, i) Let there be x e G(l). Since xf e G( l ) / = G(/.), the element xt = / + 
+ xf is contained in G,. Now X\X2...xr = (/i + Jc/i) ... (fr + xfr) = x(f\ + 
+ ... + /r) = JC. Hence G(l) c Gi ... G- and since trivially Gi ... Gr c G(l), we 
have G(l) = G, G2 ... Gr. 

ii) To prove that the product is direct we have to show that dnGj = [1] for 
i±j. Letu=fi + g',v=fj + g", g' e G(/) , g"eG(f). liu = v, we have uf = vfi, i.e. 
( / + / ) / = (/ + </")/, G'fi=fi (since g"fieG(fi)fi =[0]). Hence g'=fi and 
u=f + gf = / + / = [ 1 ]. Analogously uf = vf implies v = [ 1 ]. This proves 
Lemma 4,1. 

Remark. The explicit description of the groups G, as subsets of G(l) is 
sometimes important in number-theoretical questions. It enables also to find the 
groups G(e) as subsets of Sm (and not merely their structural properties up to an 
isomorphism). 
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Lemma 4,2. Let there be e = fi ... f5eE and s <r. 

i) If l^i=\s, then Ge = e. 
ii) If s + 1 .= i -= r, then G,e is a subgroup ofG(t) which is isomoprhic with G. 

Proof, i) Since (/ + [ft]/.)/ = / for any h, we have in the first case G,e = G/i... 
/ ... /, = (G/)e = /e = e. 

ii) In the second case [since for i =;s + 1 we have /e = / ] (/ + [h]f)e = / e + 
+ [h]f and Ge = {/* + fllfll € G(/)}. 

The mapping F: G,—> Ge defined by / + [ft]/ H-» /e + [ft]/ is a 1 - 1 mapping 
from G, onto G,e since /e + [hi]/, = /e + [ft2]/ implies [fti]/ = [h2]f, hence 
/ + [fti]/ = / + [h2]f. It is a homomorphism since 

(f + [hi]f) (f + [h2]f) = 1 + [hMf ->/* + [hih2]fi = 
= (fie + [hi]fi)(fie + [h2]fi). 

Hence F is an isomorphism. This proves Lemma 4,2. 
Remark. Lemma 4,2 describes explicitly the kernel of the homomorphism 

<Pe: G(l)-» G(e) defined by <&e(x) = xe. If e = /i ... /s, then the kernel of <Pe is the 
subgroup Gi ... G. of G(l). Also since G, is the kernel of the homomorphism 
G (l)-> G(f) defined by x ̂ xf, we have G, = {x e G(l) | xf = / } . (This shows that 
it is possible to define G, multiplicatively as {xe G(l)|xfi=fi}. We prefer the 
definition given above in order to have an explicit description of G,.) 

Lemma 4,3. Let e =/i ... fseE, 1 ^s =ir. Then the maximal group G(e) is the 
direct product of its subgroups: 

(4,1) G(e) = (Gs+ie) (Gs+2e)... (G-e). 

Proof. By Theorem 2,3 G(e) = G(l)- e = Gi ... Gr • e and G,ecG(e). By 
Lemma 4,2 for i = 1,..., s we have G,e = e. Hence G(e) = Gs+i ... Gre = (Gs+ie) 
... (Gre) so that the product decomposition (4,1) holds. 

To prove that the product is direct it is sufficient to show that for i, j e {s + 1, 
..., r}, i£j we have Giec\Gje = e. This is done by the same argument as in 
Lemma4,1. Let u=fe + g', v=fje + g", g'eG(ft), g"eG(fj). If u = v, then 
ufi = vfi,(fie + g')fi = (jje + g'%, g'=fe. Hence u=fe + g' = /e + /e = e.This 
proves our statement. 

Since G, is isomorphic with G(ft), Gi is a group of order (p(p0i), the structure of 
which is known. If pt is odd or p?< = 2 or p?' = 4, then G, is cyclic of order qp(p?0- If 
pfl = 2a* and a* >2, G, is not cyclic, the order of each element e G, is a power of 
2 and G, contains an element of order 2a'~2. 

Define (the Carmichael function): 
if m = l, 

"2 if m = 2a, a>2, 
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f cp(m) if m = 2, 4, pa with p an odd prime, 
A ( m ) " " l l.c.m. [A(p?0,A(p?2),...,A(P?0] 

if m = pi* . . . p l \ 

Then we can state that each of the groups G, contains an element, say gt, of order 
A(p?«). The element g = gi g2 ... greG(l) is exactly of order A(m). Finally any 
element eG(l) has an order dividing A(ra). Hence for any j teG( l ) we have 
xk(m) = [l]. 

An analogous result holds for the group G(e). If e=fi ... fseE, l=\s^r, 
consider the decomposition of G(e) given in Lemma 4,3. Each of the groups G,e 
(s + 1 ^ i ̂  r) is isomorphic with the corresponding group G, and it contains the 
element gte e G(e) of order A(p?0- The element ge = (gs+ie) ... (g-e) is exactly of 
order A(m/p?1 ... p"s) and the order of any element eG(e) is a divisor of this 
number. 

Summarily (including the case s = r, i.e. e = [0]): 

Theorem 4,1. For any* e G(l) wehavex*(m) = [l]. If e=f, ... fs,l^s^r,then 
for atiy xeG(e) we have xA(m/p?1 p?J) = e. Hereby the exponents cannot be 
replaced by a smaller number. 

From Lemma 4,3 we also obtain: 

Corollary 4,1. I / e = / i .../*, then \G(e)\ = cp(m/pa> ...pa-). 
Remark 1. Suppose that m = 2p°2 ... p°r. Then it can be immediately verified 

that /i = [p22 ... p°r] is a primitive idempotent eSm. Hence /i = [l - p " 2 . . . p°r] is 
a maximal idempotent e Sm. The maximal group G(/i) is the one point group {/i} 
and Gi = {[l]}. In this (but in no other case) the product decomposition in 
Lemma 4,1 contains only r - 1 non-trivial factors. This implies for Lemma 4,3: If e 
as a product of maximal idempotents does not contain the factor [l — pp ... pa

r
r], 

then one of the groups Gs+ie, ..., Gre reduces to {e}. 
Other pecularities which take place in this (but no other) case are: G(/i) is 

isomorphic to G(l) and P(/i) is isomorphic to P(0). 
Remark 2. Motivated by further purposes and emphasizing the multiplicative 

structure of Sm we described G(e) as a direct product. From the point of view of 
numerical computations there is a simpler additive description which is a consequ
ence of the ring structure of Sm and follows also from Lemma 4,3. If e =/i ... /,, 
then G(e) consists of all elements of the form 

(/s + l + [/ls + l ] / S + l) ... (/r + [M/r)/l ...fS = [/l- + l ] / S + l + . . . + [M/r, 

where 

l^h<pa\ (fe,pi) = l ( i = s + l , . . . , r ) . 

Hence we may write symbolically G(e) = G(/,+i) © ... © G(fr). We say 
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"symbolically" since G(f) is a multiplicative (but not an additive) subgroup of S* 
The sign © means that every JC e G(e) can be written uniquely as JC = JC,+I + .. 
+ jcr, JC, e G(f) and (in order to get G(e)) none of the summands can be omitted. 

5. Generalizations of the Euler—Fermat theorem 

We suppose again m = p?1 ... p"r and consider the semigroup Sm. 

Lemma 5,1. Denote v(m) = max (ai, ..., ar). Then for any xeSm the element 
jcv(m) is contained in a maximal group of Sm. 

Proof. If jceG(l) = P(l), the statement is trivially true. Suppose therefore 
jceP(e) and e = [pV ... p"sa]eE, l ^ s lS r . By Theorem 2,2 we may write 
jc = [pi' ...pk°b], [b]eG(l) , l ^ f c ^ a . We have jcv(m) = [pvfc> ... pyk>b2]. Here 
vfci^a.. By Lemma 2,1 there is a [c]eG(l) such that Jcv = [p?' ... pa'c]. By 
Theorem 2,3 JCV e G(e). This proves our statement 

Corollary 5,1. For any xeSm we have fc(jc)Sv(m). 
As a matter of fact we have proved more: 

Corollary 5,1a. IfxeP(e)ande=fi ... fs eE , thenk(x) ._§ max(ai, a2, ...,a-). 
The estimation is sharp. Denote-for a while — a = max (ai, ..., a ) . Then for 

jc = [pi ... ps]eP(e) we have x°eG(e), while xa'liG(e). 

Lemma 5,2. For any xeSm the number d(x) is a divisor of k(m). 
Proof. If JceG(l), this is true by Theorem 4,1. Suppose that jceP(e), e = 

U ...fs. The group {JC*(X), ..., x
k(x)+d(x)~x} = {jce,jc2e, ..., xde} is a subgroup of 

G(e) and d(x) is the least integer for which (xe)d = e. Now the order of any 
element eG(e) is a divisor of k(m/pV ... p?5), hence d(x)lk(mlpa\x ... p?s), and 
therefore d(jc)/A(m) for any JceP(e). 

Note that k(m) cannot be replaced by a smaller number since G(l) contains an 
element of order k(m). 

Again we have proved somewhat more: 
Corollary 5,2. If e = fi ... fs and x e P(e), then d(x)lk(mlp^ ... pa°). 

Theorem 5,1. (The global Euler—Fermat theorem.) For any x e Sm we have xv(m) 

__ v(m)+A.(rn) 

Proof. Since JCV is contained in a subgroup of Sm, the set {xk(x\ ..., x^*"^1} is 
identical with (JC\ JCV+1, ..., xv+d(x)_1}. Hence JCV = xv+d(x\ which implies JCV = 

= x
y+d = xv+2d=... and since d(x)/k(m), we have JCV = jcv+Mm). 

A slightly stronger form of Theorem 5,1 will be given in Proposition 7,1. 
Remark. If we insist on the natural requirement to make the exponents 

independent of the special choice of the element JC, neither v nor v + A can be 
replaced by a smaller number. It is the best possible generalization of the classical 
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Euler—Fermat theorem (which deals only with x e G(\)). The observation con
cerning v(m) seems to go back to Lucas (1890). A historical survey, including the 
history of various confusions, is contained in paper [10]. 

A few words should be added to the term "best possible generalization". 
Theorem 5,1 is a statement concerning polynomials of the form JCM-JCL 

(M>L ^ 1) which vanish identically in Sm. If we consider monic polynomials f(x) 
of any form which are identically zero in Sm, the degree of f(x) may be essentially 
smaller than v(m) + A(m). Let there be, e.g., m = pa,p >2, a =\l. Then xp-x is 
divisible by p (for any x e Sm), hence (xp - x)a is a polynomial of degree ap which 
vanishes for all xeSm. Hereby pa<v(m) + A(m) = a + p a - 1 ( p - l ) if a 1^2. 
(Even pa is "in general" not the lowest possible degree. This question is treated in 
detail in [15].) 

If we specify "the position" of x in Sm, we may obtain a result analogous to 
Theorem 5,1. The following result is simply the Euler—Fermat theorem for the 
semigroup P(e) in the sense of Section 1. 

Theorem 5,2. (The local Euler—Fermat theorem.) Let e=fi . . . / , e E , l § s . § r . 
For any x e P(e) we have 

/? | \ rmax ( a i '"' a»* = r m a x * a - ' ' " a s ) + A ( m / P i a l •• P*"5) 

and none of the exponents can be replaced by a smaller number. 
Proof. Denote — for a while — a = max (ai, ..., as). By Corollary 5,1a 

xa e G(e) and o cannot be replaced by a smaller number. Next the group {xk(x\ ..., 
x*(,)+d(,)-ij = j ^ ^ xd^e} i s a s u b g r o U p of G(e) and d(x) is the least integer 
for which (xe)d = e. By Corollary 5,2 d(x) divides A(m/pai ... p» and this number 
cannot be replaced by a smaller one since G(e) contains an element of order 
A(m/p?> ... pa>). Finally the group {xk(x\ ..., xk(x)+d(x)_1} is identical with the group 
{jca, xa+\ ..., xa+d(^}, hence xa = xa+d(x). This implies xa = xa+d = xa+2d = ... 
and since A(m/pa> ... p?) is a positive multiple of d(x), we have (5,1). This proves 
Theorem 5,2. 

In the following we shall need 

Lemma 5,3. If m±8 and m^24, then v(m)^A(m). 
Proof. Let m = pa* ... p> and suppose p i<p 2 <. . .<Pr . If p is odd, a< 

<A(pa) = p a _ 1 ( p - l ) . Further v(2) = 1 = A(2), v(22) = 2 = A(22) and for 
a g 4 we have v(2a) = a ^ 2 a " 2 = A(2a). Hence, if m is not of the form 
m = 23pa2 ... pa\ we have v(m)=iA(m). 

i) Let m = 23. Then v(23) = 3>A(23) = 2. This is the first exceptional case. 
ii) Suppose m = 23p%2 ... pa' and r ^ 2 . If max (a2, ..., ar) = a, = 3, we have a, 

= v(m) < A(p,a0 =̂  A(m). Suppose therefore moreover a, ^ 2 for all i = 2, . . . , r. If 
r g 3 (hence P3^5), we have 

A(m) = l.c.m[2, . . . ,p a 3- 1 (p 3 - l ) , . . . ]>4>v(m) = 3. 
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iii) There remains the case of m = 2 3 p? 2 and a2_=2. If a2 = 2, A(m) = [2, 
p2(p2-l)] = p2(p2-l) > v(m) = 3. If a 2 =landp 2 ^5 ,A(m) = [ 2 , p 2 - l ] ^ 
4>v(m) = 3. If a 2 = l a n d p 2 = 3,i.e. m = 24, we have A(24) = 2<v(24) = 3, the 
second exceptional case. This proves Lemma 5,3. 

We now prove a theorem which is a kind of generalization of the Euler—Fermat 
theorem and has an algebraic (rather than number-theoretical) flavour. 

Theorem 5,3. Let m > 1, andm£8 and m=£ 24. Then for any x e Sm the element 
xk(m) is an idempotent e Sm. Hereby the number k(m) is the least integer having 
this property: 

Proof. By Theorem 5,1 we have JCV = JCV+A for all xeSm. If A(m)-v(m)>0, 
multiply the last relation by JC*"V. We obtain JC* = JC2\ i.e. xk is an idempotent. If 
A(m) = v(m), we have directly JCA = JC2\ 

Remark. If m = 8, or m = 24, we have v(m) = 3 and k(m) = 2. InS8and S24the 
element JC4 is an idempotent for all JCGSS and jceS24, respectively, and the 
exponent 4 cannot be replaced by a smaller number. 

Corollary 5,3. Let m > 1, and m^ 8 and m±24. Then for any xeSm we have 
x2k(m)-xk(m) = [0]. 

6. Some further applications. 

We now give some examples to show how useful the description of Sm may be as 
given in section 2. 

Example 6,1. Let m > l be given. We have to find all JceSm for which 

If JC satisfies (*), then {JC, JC2, ..., jc<p(m)} is cyclic group with xq>(m) = e as the 
identity element. Hence JC is contained in the maximal group G(e). Conversely, if 
an element is contained in a maximal group, say JC e G(ei), we have xd(x) = e, and 
since d(x)lk(m)lq)(m\ we have jc<p(m) = ei, whence x~(m)+1 = JC. 

We have proved: 

Proposition 6,1. The relation xq,(m)+l = x holds if and only if x is contained in 
a subgroup of Sm. 

This has been proved in [6]. 
Example 6,2. Under what conditions (concerning m) does there exist an 

integer L > 1 such that JCL = JC holds for all xeSm. 
If JC = JCL, L > 1 holds for all JC, we have necessarily v(m) = 1, i.e. m = px ... pr'\s 

squarefree. In this case Sm is a union of disjoint groups Sm = (J G(e). By 
eeE 

Theorem 5,1 we then have JC = xk(m)+1 for all JC e Sm. Hereby L = A(m) F 1 is the 
least integer for which JC = JCL for all xeSm. 

It is immediately seen that any L satisfying xL = x (for all JC e Sm) is of the form 
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L = / A ( m ) + 1 , where / > 0 is an integer. Note also that in this case A(m) = 
= l.c.m [p i - 1, p2- 1, ..., pr- 1]. 

We have proved: 
Proposition 6,2. The relation xL = x with some L > 1 holds for all xeSm if and 

only if m is squarefree. The least L having this property is L = A(m) + 1. 
This has been proved in [3]. 
Example 6,3. Let JTL: Sm-*Sm be the mapping defined by JC»-»XL. Under what 

conditions (concerning m and L) jtL is a permutation of the elements eSm. 
This has been solved in [1]. The problem is the same as to ask under what 

conditions any element xeSm is an L-th power (See [11].) An analogous some
what more general question has been solved in [13]. 

Proposition 6,3. The mapping jtL is a permutation of the elements e Sm if and 
only if the following two conditions hold: i) m is squarefree, ii) (L, A(m))= 1. 

Proof. If Sm contains a non-zero nilpotent element, jtL cannot be a per
mutation. For, if JTL is a permutation, so are jtl, JTI, ... But for any nilpotent 
element xeSm we have jtl(x) = xvL = [0]. Hence if JTL is a permutation, m = 
pi ... pr must be squarefree and Sm = (J G(e) is a union of disjoint groups. 

eeE 

1. Let JZL be a permutation. Then each of the groups G(e) as a whole is invariant 
under this mapping. [For, xeG(e) implies xL e G(e).] Now JTL restricted to G(/.) 
(a cyclic group of order p, - 1) is a permutation if and only if (L, p. - 1) = 1. Hence 
a necessary condition in order that JTL should be a permutation is also the fulfilment 
of the conditions (L, p, - 1) = 1 (/ = 1, ..., r), which is equivalent to (L, A(m)) = 1. 

2. Let m be squarefree and (L, k(m)) = 1. We first prove that x »-->xL restricted 
to G(l) is a permutation on G(l). To show this it is sufficient to show that for ai, 
a2 e G(l) the relation a\ = a\ implies ai = a2. Since (L, A(m)) = 1, there exist two 
integers u, v such that uL + vX(m) = 1. Then a\ = a\ implies auL = auL and (since 
aum) = anm) = [ 1 ] ) a ?L+ .A = QuL+^ h e n c e a i = a2 

To end the proof let x e Sm and x e G(e) for some e e E. By Theorem 2,3 x can 
be written in the form x = [a]e, [a] e G(l). Since [a] = [b]L with some [b] e G(l), 
we have x = [a]e = [bLe] = [be]L and [be] e G(e). Hence any element e G(e) is 
an L-th power and therefore jtL is' a permutation on Sm. This proves Prop
osition 6,3. 

The smallest L satisfying (L, A(m))= 1 is the smallest prime which does not 
divide A(m). 

Example 6,4. The foregoing two examples lead to the following pertinent 
question. Consider the set Qm of all mappings JZL: Sm^>Sm defined by JC•—>xL (not 
necessarily a permutation of Sm). Under the usual composition JtijiM(x) = JCML the 
set Qm is a finite abelian semigroup. Denote by Qm the subgroup of all permuta
tions of the type considered. WTiat can be said about Qm and Qm ? 

We restrict ourselves to the case when m is squarefree. By means of 
Theorem 5,1 this can be easily extended to the general case. 
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Proposition 6,4. Suppose that m is squarefree. Then 

i) Qm is isomorphic with the semigroup Sx(m); 
ii) Qm is isomorphic with the group of units of S^m). 
Proof. Since for any xeSmx = xk(m)+\ we also have JTA+I = JTI and jrA+/ = K\ for 

any integer j > 0. The mappings {ni, JT2, ..., JTx} are all different one from the other. 
Indeed, jii = xh l=\i^j=\X would imply xl = x' (in particular) for all xeG(l). 
Hence JC = xj'i+l for all x e G( l ) . Now / = / - i + 1 ^ A and x = xl with / < A + 1 (for 
all x e G( l ) ) contradicts Theorem 4,1 (or Proposition 6,2). 

Note that Kx is the zero element e Qm. It sends each element of a maximal group 
into the corresponding idempotent. [I.e. jtx(Sm) = E.] 

The mapping F: Qm^S^™) defined by F(jrL) = [L] has the property that 
F(JZLJIM) = [L] [M] (mod A). It is onto. Hence Qm is isomorphic with Sx(m). 

By Proposition 6,3 7tL is a permutation of Sm if and only if ( L , A ) = 1 and 
1 ^ L < A. Hence Qm is a group consisting of all JTL e Qm for which (L, A) = 1. This 
proves Proposition 6,4. 

R e m a r k . Problems analogous to that treated in Example 6,4 for wider classes 
of semigroups are treated in [4]. 

7. An internal direct decomposition of Sm 

It is immediately clear that Sm is isomorphic to the (external) direct product 
SP1°i x SP2«- x ... x SPr°*. To see this it is sufficient to assign to any J teSm an 
r-tuple (JCI, x2,..., xr), where JC, = jc(mod p?1). This is a 1 - 1 correspondence which 
preserves the obvious multiplication. 

What is not obvious is the question how to embed isomorphically SPl«- into the 
semigroup Sm. 

Denote V. = {[0], /,, [2] fh ..., [p?«- 1]/,}. An element [h]f e Vi is equal to [0] 
(in Sm) iff h is divisible by p?', hence iff h = 0. Also any two elements [h']fif [h'% 
with h' £ h" are different since [h' - h"]f = [0] would imply that h' - h" is divisible 
by pf«, which is impossible since \h' -h"\<p?'. 

To prove that Vi is a semigroup consider the product of x = [h']fe Vi and 
y = [h"]fie V. We have xy = [h'h"]fi. Write h'h" in the form h'h" = h + up?>, 
where he{0, 1, 2, ..., p r « - l } and u=\0 is an integer. Then xy = [h + up?«]/. = 
= [&]/*, hence xy E V. Summarily: 

Lemma 7,1. The set Vi is a subsemigroup of Sm containing exactly pT« different 
elements e S m . 
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V, contains G(/,) and it can be written as a union of two disjoint sets in the form 
Vi = G(fi) u I(ft), where 1(f) = {[ft]/|(ft, p , )>l , O^hKpT1}. The set 1(f) is 
contained in P(0), hence it is a nilpotent subsemigroup of Sm.[As a matter of fact 
/(/,) is even a nilpotent ideal of Sm since it follows from the foregoing considera
tions that Vi = Smf.] 

Consider now the sets 

Ti={fi + v\veVi}, i = l , 2 r. 

T is a subsemigroup of Sm since (/ + [h\]f) (/+ [h2]f) = /, + [ft,ft2]/, and 
[ft,ft2]/e V. Next TtnT, = [1] if i±j. For, suppose /, + [ft,]/, = /. + [ft2]/, 
0_ f̂t, <p?', 0^ft2<p?'. Multiplying by /, and / we obtain [ft,]/, = / and / = [ft2]/, 
whence (by Lemma 7,1) [ft,] = [ft2] = [1]. But then / + [ft,]/, = / + [ft2]/ = [1]. 

The semigroup T contains [1] as its unit element and /, as its zero element. T. 
contains G, and it can be written in the form T = G,u/,, where I, = {/, + 
+ [ft]/, |(ft, p , )> l , 0--ift<pfi}. Clearly h is a semigroup and it is contained in 
P(fd ' m = p " ' r l . Moreover I, is a nilpotent ideal of the semigroup T (but not of 
the semigroup Sm if r > l ) . 

The situation is visualized in Figure 3. Note that the whole semigroup T, is 
"above" G(/). 

-Л^н 
101 

-IЮ 

Fig. 3 

We now easily prove: 
Theorem 7,1. The semigroup Sm admits the following decomposition into 

a direct product of its subsemigroups: 

Sm = TiT2... Tr. 

Hereby T = {/, +[ft]/, | ft = 0,1,. . . ,p? '-l} . 
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Proof. We have proved that TnTJ = [1]. The set Ti T2... T- contains formally 
pV ...pa

r
r products. To prove our statement it is sufficient to show that two 

products 

x = (/i + Vi) ... (/- + Vr), Vi e Vi, 

y = (fl + I l l ) . . . ( fr + Mr), ueVi, 

are different unless w, = t>, for all i = 1, 2, ..., r. Suppose that x = y. Multiply by / . 
Taking account of the fact that for / =/= i we have v,/ = [0] and / / = / , we obtain jc/i 
= Vif = Vi and y/ = Uif = u,, hence u. = t>, for all i e {1, 2, ..., r}. This proves 
Theorem 7,1. 

Remark. The set T can be defined multiplicatively as T = {xeSm\xfi=fi}. 
We prefer to define T by its explicit description. (See the Remark after Lemma 4,1 
concerning the definition of G,.) 

We are now able to give product decompositions of the maximal subsemigroups 
P(e). Consider the product 

Sm = Ti T2... Tr = (GiuIi) (G2ul2) . . . (G-uI r). 

Sm is a union of the product Gi G2... Gr and 2 r - l products of the form 
7i ...L G,+i ... G- ( I S f S r ) . 

Let U = L ... L G,+i ... Gr. Any element aeU belongs to the idempotent /1 ... 
ft- 1 ... 1. If U^h U' and a' e U', then a and a' belong to two different idempo tents. 
Hence if e =/i ... /$, then the set of all elements e Sm belonging to e is exactly the 
set h ... L G-+i ... Gr so that P(e) = h ... L G-+i ... G-. 

Note that for i£j Lnlj = 0 and GnGj = [l]. We have proved: 
Theorem7,2. If e = f\ .../- ( l ^ s ^ r ) , then P(e) is the direct product of r 

subsemigroups of Sm: 

P(e) = L...LGs+i...Gr. 

Corollary 7,1. If e =/i ... /-, then 

\P(e)\=p^-\..p?-i-(p(pto...pV = 

= p ^ - \ . . p - M G ( e ) | = - ^ ( p s + i - l ) . . . ( p r - l ) . 
p i ... pr 

Corollary 7,2. The set of all nilpotent elements P(0) is the direct product 
P(0) = L L ... L and \P(0)\ = p?1"1 ... p^'\ 

Note that if r > l , then P(O)nL = 0. 
For the following Corollary recall the ordering in the Boolean algebra E (see 

Section 2). 
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Corollary 7,3. Ife'>e", then \P(e')\ ^ \P(e")\ and \G(e')\ ^ \G(e")\. 

Proof. If e' = /, ...fs and e"<e', then e" = /, . . . /* / -+ . ... /,+„ l^t^r-s. It 
follows from Corollary 7,1 and Corollary 4,1 |P(e')| = (p ,+ i - l ) ... 
(p $ + , - l ) |P(e") | and |G(e')| = cp(p^ ... p^v) • \G(e")\. Hence |P(e')| ^ 
|P(e")| andtheequalityholdsiff f = l and p-+, = 2. Further |G(e')| ^ |G(e")| and 
the sign of equality holds iff r = 1 and p?.vY = 2. 

Returning to Theorem 7,2 it is worth to note that the product Ix ... h = 1(e) is 
contained in P(e) while for s > 1 none of the h itself is contained in P(e). Further 
1(e) is a subsemigroup of P(e) containing e. The set 1(e) can be characterized as 
the set {xe P(e) \xe = e}. The semigroup P(e) is a direct product of 1(e) and the 
group Gs+i ... G- which is outside P(e) (namely in G(l)). Of course since 
GJ+i ... Gr is isomorphic with G(e), the semigroup P(e) is isomorphic with the 
(external) direct product 1(e) x G(e). 

We are finally able to describe more precisely the homomorphism tye: P(e) -* 
G(e) defined by \pe(x) = x • e for jceP(e). 

Le te= / , .. ./-^[0]andjceP(e) = J, ... L Gs+, ... Gr. Thenjc = (/, + [ft.]/,)... 
(/* + [/isj/s) • a, where [hi], ..., [hs] and a are uniquely determined by JC. Next, 
since (for l^i^s) we have (/ + [fc«]/«)e = e, we obtain jce = aee(Gs+\ ... 
Gr)e = G(e). Hence the homomorphism \l>e sends the whole set h ... ha c P(e) 
into the element aeeG(e). In particular it sends the whole semigroup 1(e) 
= h ...h into e. Thus p?1"1 ... p?1"1 elements e P(e) are always mapped onto one 
element eG(e). (This will be used in Lemma 8,1.) 

Theorem 7,1 can be used to solve the following general question. Given two 
integers L, M, 1SL < M we have to find the number of solutions of JCL = JCM in 

Clearly the set of all solutions forms a subsemigroup Z = Z(L, M, m) of Sm 

containing [0] and [1]. We first prove a formula for \Z\ and next we show on 
a numerical example how to describe explicitly all the elements e Z. 

By Theorem 7,1 any xeSm can be written in the form JC = JCIJC2 ... xr, x< e Tiy and 
JCL = JCM holds iff xL = xM for every i = l, 2, ..., r. 

Write again Tl = GiUli. 
i) We first find the number of solutions of xL = xM supposing that JC, e h. 
If Xi e h, then xL = xM implies xL = xM = jcr (M-L) = ... = x?+/(M"L) for any 

integer 1^0. But if M + l(M-L)><Xi, then xM+t(M~L) = fi. Hence we have 
necessarily xL=f. If conversely x, satisfies xL=f, then for any M>L we have 
xM = f. 

Hence we have to find the number of solutions of xL = / . 
An element JC = [pl]gieh (y = 1, g* eG,) is a solution of jet = / iff yL = a,. If 

y = Yi is the least such integer, then the number of solutions contained in h is clearly 
p?,-Y'. Since y, is an integer, we have 
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j 1 if Lloii, 

(7,1) y. = -

[ f j + l « ^««-
In particular, y, = 1 iff L^CL{. 

ii) If JC, e G , then JCL = JCY is equivalent to'Jcff"L = [l]. If P« is odd, then G, is 
a cyclic group of order (p(p?1) and there are di = (M-L, (p(p"0) elements e G 
satisfying xL = JCY. If pr-2, then the number of solutions in G, is d, = 1. If p?« = 4, 
the number of solutions is d. = ( M - L , 2). If p?i = 2a, a § 3 , then the number of 
solutions of x^"L = [l] is ( M - L , 2) (M-L, 2a~2). 

The foregoing considerations imply: 

Theorem 7.3. Let m = pV ... p°r and 1 = T <M. TTien the number of solutions 
of xL =xM in Sm is given by the formula 

\Z(L,M,m)\ = f\(pr^ + di). 
i = l 

Here y is defined by (7,1) and 

f ( M - L , <p(pf')) if if p« is odd, orp?> = 2orp?> = 4; 
1 l ( M - L , 2 ) - ( M - L , 2 a - 2 ) if pf' = 2 a , a ^ 3 . 

As a numerical ilustration consider the equation JC2 = JC6 in Sm, where 
m = 3 2 5 3 =H25. 

Here p?' = 32, Yi = | = l , rfi = (4, cp(l)) = 2 and p°2 = 53, y2 = [ | ] + 1 = 2, 

d2 = (4, (p(125)) = 4.Hence|Z| = (32-1 + 2) (53"2 + 4) = 45. There are exactly 45 
solutions of JC2 = JC6 in Sm. 

We next describe Z. A simple calculation shows that in Sm we have fx = 
= [53 • 8] = [1000], hence /, = [126] = [32 • 14]. Further (since here primitive and 
maximal idempotents coincide) /2 = [32 • 14] and f2 = [53 • 8]. Therefore 

Ti = {/i + [/i]/i|0;=ri<9}, T2={f2 + [h]f2\0^h<125}. 

The solutions of JC? = JC , in L are {/- + [h]fi \h = 0, 3, 6}. The solutions of x\ = [1] in 
Gi are (as it can be easily verified) {/i + [h]fi \ h = 1,8}. Hence all solutions of 
JC2 = JCI in Ti constitute the following subsemigroup of Ti. 

Z, = {U + [h']U\h'eH'}, where H'= {0, 3, 6, 1, 8}. 

The solutions of JC2 = JC2 in L are {fi + [h]f2\h = 0,25, 50, 75, 100}. The four 
solutions of JC2 = [1] in G2 are {f2 + [h]f2\h = 1, 57, 68, 124}. 

[Note that to find JC2G G2 it is necessary in essential to solve JC4= 1 (mod 125). In 
numerical calculations we cannot avoid to find first a primitive root g (mod 5), next 
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a primitive root (mod 52), which is either g or g + 5, and to use then the known fact 
that a primitive root (mod p2) is a primitive root (mod pa) for any a>2. ] 

All solutions of JC1 = JC1 in T2 form the semigroup Z 2 = {/2 + [h"]f2\h"eH"}, 
where H" = {0, 25, 50, 75, 100, 1, 57, 68, 124}. 

All 45 solutions in Sm are exactly the elements of the (direct) product of two 
subsemigroups Z = Zi • Z 2. 

For numerical calculations (see Remark 2 in Section 4) it is of course more 
convenient to use (/i + [ft']/,) (f2 + [h"]f2) = [ft']/i + [h"]f2. Hence all 45 
solutions are [ft' • 1000] + [h" • 126], where ft', ft" run indenpendently over the 
sets H' and H", respectively. 

Remark. An interesting simple result is obtained for the solutions of JC = JC3. 
By Theorem 7,3 we get 

r3 r for m odd, or m = 4p?2... pa\ 
|Z(1, 3, m)\ = \ 2 • 3 r _ 1 for m = 2 • p? 2 . . . p° Jг-з'-1 

' г > 

L 5 - 3 r _ 1 form = 2 a p a 2 . . . p ^ , a ^ 3 . 

Suppose that m is odd. Put Z, = {/, / - / , [1]}. Then the set of all solutions is 
given by Z = Zi • Z 2 . . . Zr. In the additive form these are the 3 r elements 

[fc.l/l + [falfa+... + [fcrl/r. 

where ft, run independently through the set {0,1, -1}. The modifications neces
sary in the case of m being even are evident. 

By the same method as we have proved Theorem 7,3 we may solve the question 
concerning the number of solutions of xL = xM in a given maximal subsemigroup 
P(e). 

By considering the decomposition P(e) = h ... LG,+i ... G- we obtain: 
Theorem 7,4. Let e=/ i .../,; then the number of solutions of xL = xM 

( 1 ^ L < M ) in P(e) is given by the formula 

\Z(L, M, m, e)\ =p?-"Y ' ... p a ^ d s + i ... d r, 

where y, and d, have the same meaning as in Theorem 7,3. 
Theorem 7,3 enables us to prove again some of the results of sections 5 and 6 in 

a somewhat stronger formulation. 
Example 7,1. Let us ask under what conditions xL = xM holds identically in Sm 

(i.e. for all x e Sm). 
This is the case iff 

(7,2) | Z ( L , M , m ) | = p ? > . . . p ; \ 

If p, is odd, or p?'= 2 or pf'^ 4, we have pr*-y' + d, = p ^ Y ' + ( M - L , cp(pa')) -§ 
pf' - (p?rl - pa'"Y'). H Y> ^ 2 , this term is < paMfpa< = 2 \ a S 3 , p r r « + d -= 
2a'"Y' + ( M - L , 2)2a'"2 ^ 20'".1 + 2a'"Y' and this is less than 2a« if y.g2. 

389 



If for at least one i the number y. were § 2 , then the product r i (p a ' Yi + d.) 
i = l 

would be less than m. Therefore we necessarily have y, = 1 for all i = 1, 2,..., r, i.e. 
Li^a. for all i = 1, ..., r, hence/^max (ai, ..., ar) = v(m). 

Write now (7,2) with y, = 1 in the form 

1 = 1 p i 

Since each factor to the right is ^ 1 , we have necessarily p?' * + d, = p*\ d, = 
= p?> - p r 1 = <p(p?0. Hence ( M - L , cp(pa«)) = (p(pf')), i.e. A(pf«)|M-L, 
except the case pa< = 2a, a^3. In this last case we have qp(2a) = 2a_1 = 
= (M-L, 2) (M-L, 2a"2), hence 2 a _ 2 | M - L , i.e. again A(2 a ) |M-L . We have 
obtained: For i = 1, ..., r we have necessarily A(p a , ) |M-L. Hence l.c.m [A(pa'), 
..., A(pa0] divides M-L. 

If conversely y, = 1 for all i (i.e. L ^ v(m)) and M - L is divisible by A(m), it is 
immediately obvious that |Z(L, M, m)| = m. We have 

Proposition7,1. 77ie relation xL = xM holds in Sm identically iff L^v(m) and 
X(m)\M-L. 

This is a stronger edition of Theorem 5,1. 
In particular we may ask under what conditions xL is an idempotent e Sm, i.e. the 

relation xL = x2L holds identically in Sm. Proposition 7,1 implies that this is the case 
iff L^v(m) and A(m)|L. Taking account of Lemma 5,3 we have: 

Proposition 7,2. If m± 8, m^ 24, then xL is an idempotent for any xeSm iff 
A(m) | L. If m = 8 or m = 24, thenxL is an idempotent (forany x) iffL^A andL is 
even. 

Example 7,2. Let us ask under what conditions JCL = JCM holds identically in 
P(e). 

This is the case iff \Z (L, M, N, e)\ = \P(e)\, i.e. 

(7,3) p?'"Y' ... pa'-y*d-+I ... dr = pTx ... pa'"1(p(psVi1 ... p?0. 

This implies yi = ... = ys = l, hence Li^max(ai, ..., a-) and (for i = s + l, ..., r) 
di = <p(pa0- The relation d, = qp(pa') implies analogously as above A(pa')1M - L for 
i = 5 + l, ..., r, and since l.c.m [A(pa4-Y), ..., A(pa/)] = A(m/p?* ... ps

a*), we have 
necessarily k(mlp"x ... p"')/M-L. 

Conversely if yi = ... = y$ = 1 and A(m/pa' ... p°>)/M-L, then (7,3) holds. We 
have: 

Proposition7,3. Let be e = fi ...fs. Then xL = xM ( 1 ^ L < M ) holds for all 
xeP(e) iff Li^max (ai, ..., a5) and A(m/p?! ... p°s) divides M-L. 

Theorem 5,2 is a relation of this form with the smallest possible exponents. 
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8. New extensions of a classical result 

There is an old result of Gauss stating that 

П и - Í 
uєG(l) 

[-1] if m = 4, or m=pa, or m = 2p a, 
(podd, a.= l) 

[1] in all other cases. 

We extend this result by considering the products TIe = \\ u and IK = II u 
ueG(e) ueP(e) 

for a given idempotent eeSm. We may exclude the case e = [0], since then 
ne = Ue = [0] and the case e = [1] given by Gauss (though this last one will follow 
from our considerations). 

We suppose in the following again m = p°l ... pa\ 
The relation between TIe and IIe is given by the following. 

Lemma8,1. If e = fi ... fs = [pa*... pa>a], [a]eG(l), 0<s<r, then ITe = 
= (ne)

v, where v=pa

1*-1 ...pa>-\ 

Proof. Since e e P(e), we may write IK = ( n u)e = \\ (ue). We have seen 
ueP(e) ueP(e) 

(see Section 7) that the homomorphism tye: P(e)-»G(e) defined by u*->ue sends 

always p?1"1 ... p? s _ 1 different elements eP(e) into the same element ue e G(e). 

Hence HJ = (n«)Pl0-~,"-p

-V
1

> which proves Lemma 8,1. 
If e = /i . . . /,, then by Lemma 4,3 we have G(e) = G,+i... Gr • e and for xed 

(i = s +1,..., r) the mapping xi-»jte, is an isomorphism of G< onto G,e. Hence for 

s + 1S i^ r\[u = (Y\u) • e. Denote ft = i - ^ J = - 9 ? J ^ ^ ^ ) . W e then have 
ueGte ueGi <PlP.') ^(PiJ 

(8,1) n,= n «=[ n u] e-[ n «i'-...in«!''•«• 
ueG(e) u6G,+i,..Gr ueG,+ i ueGr 

It follows that the problem reduces (in essential) to find the values of I I "• 
ueG. 

Lemma 8,2. For i = i, 2, ..., r we have 

= ffi~fi if Pi>2, o.s-51, or p a ' = 4, 
«U, l[i] if př«2, or p f ' = 2 \ a , S 3 . 

Proof. By the definition 

G = {/«+ [fc]/i 10§ft <pf., (ft, P i ) = i}, 
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n«=n(/+[fc]/.)=/.+M/., 
ueGj h 

where e is the product of (p(p°0 positive integers less than and prime to pa>. Denote 
this set by l/(pa'). 

1. Suppose p ,>2 ; then l/(pa<) is a cyclic group of order v = (p(pa<) with 
a generating element, say g<, so that e = gig] ... gv = g?/2(v+l) ((mod p?*). Since 

glv/2 = - 1 (mod pa') and u + 1 is odd, we have e = - 1 (mod p?-). Hence I I " = 
u e G j 

= / « - / « • 

2. If p a = 2, G, is a one point group and I I M = [1]. 
ueGi 

3. If pf' = 4, then ! ! " = (/< + /<) (/< + [3]/.) = / .-/•• 
U€Gi 

4. If p?'=2a , a =3 , we use the known fact that {±5, ±52 , ... ±5V}, where 
v = 2 a - 2 constitutes the set of all odd residue classes (mod 2a). Hence 

£ = (- l)v(5 • 52 ... 5v)2 = (52a_1 • 5"1)2 = l(mod 2a). 

Therefore n " = / + / = [1]. This proves Lemma 8,2. 
ueGi 

Remark. If r = l , i.e. m-pa, G(l) = Gi, we may write /i = [l], /i = [0] and 
Lemma 8,2 implies 

T-T __ f [-1] if m is odd or m = 4, 
uMi)M~l[l] ifm = 2orm = 2a, a = 3. 

(This constitutes a part of the statement of Gauss.) 
Henceforth we may suppose r = 2. 
We prove: 
Theorem 8,1. Let m = p°l ... p?r and r = 2. Let e±[l] be an idempotent eSm 

and He = \\ u. We have: 
ueG(e) 

1. Tie = —e for any primitive idempotent, with the exception that m = 2ap?2 ... 

p?r, a ^ 2, a >0 and e is the (primitive) idempotent e = U r̂ a , [a] e G(l). In this 

exceptional case IIe = e. 
2. ne=e for any non-primitive idempotent e Sm, with the exception of the case 

when m = 2p°2... p°r and e is any of the r- 1 (non-primitive) idempotents of the 
form e = I -r—--r a, I, [a,]eG(l). In these exceptional cases we have 11*=-e. 

Proof. Let e = / i . . . / s , l . _ s < r , ri=2. We shall use Lemma 8,2 and the 
formula (8,1). We have to consider several cases. 

A. Suppose first that r - s _ ; 2 (i.e. e is a non-primitive idempotent eSm). 
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If all primes p,+i,..., pr are odd, or r - $ ^ 3 , then all j3,+i,..., 0r are even. Since 
(fi-fi)2 = [l], formula (8,1) implies IL=e. 

There remains the case of r — s = 2, i.e. e= / i ... /r-2, hence p$+i = pr-i, p*+2 
= pr, where one of the primes, say pr-i, is even and pr is odd. In this case G(e) 
= Gr-, • Gre and by (8,1) 

n.=[ n uY-iUuf-e 
ueGr-i ueGr 

Here |3r-i = q)(p°r) is even, while |3r = g?(2arl) is equal to 1 for ar-i = 1 and even for 
a r - i ^ 2 . 

We shall now distinguish three cases, namely that p?--!1 • p°r is either 2p?r or 4p?r 

or 2ar-'-par, a r - i^3 . 
a) If pa---i, = 2, then (by Lemma 8,2) 

n e = [ i r - - ( / r - / r ) « e . 

We shall show that this product is - e . By definition of e and fr there are elements 
[a'], [a\]e G(l) such that e = [a' • m/2p°r], fr = [a| • p?r]. Hence 

(/r-/r)e = ([2]/r-[l])e = [2][p a r -a | ] [aW2p a1-e = - e . 

Thus JTe=-e. 
b) If paii1 = 4, we have 

JIe=[ II MlMll "I" ^ = (/-!- fr-rY<<fr-fr)2e = e. 

c) If paiY = 2ar- a r - iS3 , thenl l , = [ l l M / r - / ^ ' e = e. 

B. Suppose next that r-s = \, i.e. e = /i ... /r-i =s /r, where fT is a primitive 

idempotent eSm. In this case we have II* = [ II U]e = [ II w]/r. 
U 6 G r

 J tt e G r 

a) If pr>2, then (by Lemma 8,2) TIe = (fr-fr)*ff = -/r = - e . 
b) If p?r= 2, then n*= [l]/r = e. 
c) If p?r = 4, then n e = (/r-/r)/r = - e . 
d) If par=2°r, ar^3, then JTe = [l]/r = e. 

The proof of Theorem 8,1 is complete. 
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Remark. The formula (8,1) can be extended also to the case e = [1], r S 2 . It 
has then the form 

n «=[n<*...[\iup 
ueG(l) ueGi ueGr 

and the same calculations show that the product is [1] with the exception of the case 
m = 2pa, in which case it has the value [-1]. (This is the remaining part of the 
statement of Gauss.) 

To find the value of ITe we use Lemma 8,1. 
If Ue=e, then ne = e, so that we have to consider only the cases in which 

Ue=-e. 
A. Suppose that e is a primitive idempotent. 
a) If all pi (i = \, ..., r) are odd, then ne = (-e)v, where v=p°1'1 ... p?-"1, 

s = r- 1, hence 211 = - 6 . 

b) If m =4p? 2 . . . pa' and e is the primitive idempotent e = -j- a , [a] e G(l), 

then Ue = (-e)v, where v=p°2'1 ... pa~x, hence 211 = - e . 
B. If m = 2p°2... p°r and e is a (non-primitive) idempotent of the form, say, 

e = [a • m/2p°2], [a]eG(l), then IK = (-e) v , where v=pp~1 ... p a '~\ hence 

m=-e. 
Combining these results with Theorem 8,1 we obtain finally (including e = [l] 

and e = [0]): 

Theorem 8,2. For any idempotent eeSm we have f l u = Yl "- The com-
ueP(e) ueG(e) 

mon value of these products is specified in Theorem 8,1. 
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РОЛЬ ПОЛУГРУПП В ЭЛЕМЕНТАРНОЙ ТЕОРИИ ЧИСЕЛ 

Штефан Шварц 

Резюме 

Пусть 5т-мултипликативная полугруппа классов вычетов по составному модулю т. Изучается 
структура 5 т , в частности описиватся множество идемпотентов, строение максимальных групп 
и максималшных полугрупп, принадлежащих к данному идемпотенту. 

Цель этой работы показать, что многие различные теоремы, касающиеся сравнений по 
модулю т , легче понять, применяя методы известные из теории конечных коммутативных 
полугрупп (в том числе получаются и некоторые результаты, которые нельзя назвать общеиз
вестными). Эта точка зрения ведёт даже к результатам, которые (по всей вероятности) никогда 
небылы опубликованы. (См., например, Теоремы 5,2 и 5,3 или 8,1 и 8,2.) 
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