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{Communicated by Stanislav Jakubec) 

ABSTRACT. The ma in result of this paper is a criterion for the sums of infinite 
series to be transcendenta l . The terms of these series are positive rational numbers 
which converge rapidly to zero. The speed of the convergence oscillates. 

1. Introduc t ion 

Many recent results of the theory of transcendence can be found in the book 
of Parshkin and Shafarevich in [9]. The book of N i s h i o k a [7] on Mahler theory 
is also interesting. 

Some new recent results for the transcendence of infinite series which rapidly 
converge can also be found in A d h i k a r i , S a r a d h a , S h o r e y and T i j d e -
m a n [1], H a n c l [4] and N y b l o m [8]. 

D u v e r n e y in [3] proved a theorem which gives a criterion for the sums 
of infinite series to be transcendental. The terms of these series consist of the 
rational numbers and converge regulary and very quickly to zero. 

Recently H a n c l [5] introduced the concept of transcendental sequences in 
the following way. 

DEFINITION 1. Let { a n } ^ = 1 be a sequence of positive real numbers. If for 
oo 

every sequence {cn}n=zl of positive integers the number ^ l/(a
n

cn) ls tran-
n=l 

scendental, then the sequence {an}n=zl is called transcendental. 

He also proved in this paper the criterium for sequences to be transcendental. 
Criteria for the sums of the series to be Liouville numbers, which are special kinds 
of the transcendental numbers, can be found in [6]. 
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2. Main results 

The main result of this paper is the theorem which shows that sums of certain 
infinite series are transcendental. 

THEOREM 2 . 1 . Let S and e be positive real numbers and s G N. Let {Li(x)}.=Q 

be the sequence of logarithmic functions defined in the following way: 

L0(x) =x 

L • (x) = l og . . . log x , 0 < i < s . 

Assume that {^k}^Li and {bk}™=1 are two sequences of positive integers such 
that 

L Î '^(пЦ в І))- irø 
h" Г ( V 2 -%r = °°' (1) 

and for every sufficiently large k 

>-—s ^ - + 1- (2) 
ь * + i ( П J . r ø ) J 5 r ø ьk(ү\Lг(%))ą(%) 

i=l ' ч i=l ' 

Then the number 

£ = E ^ 
is transcendental. 

< 00 
a, 

k=i 

E X A M P L E 1. Let {an}n
<Ll be a sequence of positive integers such that ax = 7 

and for every n = 1, 2 , . . . 

= f 2™ ( a i a 2- a n ) 3 if n = 33 3 3 m where m G N, 

I an + [2Lx(an) • Ll(an)] otherwise. 

Let us put S = e = 1 and s = 2 in Theorem 2.1. Then we obtain that the 
number 

CO 

E -
is transcendental. 
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E X A M P L E 2. Let {an}n
<

=1 be a sequence of positive integers such that a1 = 14 
and for every n = 1, 2 , . . . 

_ J n ( a i a 2 - " a - ) 3 if n = 23m where m G N, 
71+1 I an + [2 log2 an] otherwise. 

Let us put 5 = 1 and 5 = e = 1 in Theorem 2.L Then we obtain that the 
number 

is transcendental. n~ 

OPEN PROBLEM 1. Let lcm(l, 2, 3 , . . . , n) be the least common multiply of the 
numbers 1 ,2 ,3 , . . . , n . Is there any sequence {cn}n

<L1 of positive integers such 
oo 

that the number £ l / (2 l c m ( 1 ' 2" 3 ' - ' n ) c n ) is algebraic? 
7 1 = 1 

3. Proofs 

P r o o f of T h e o r e m 2.1 . Let x = F(y) be the inverse function of the 
function 

y = M = —s——, • (3) 

n £.(*))->>) 
v z = l 7 

It follows that y < x for every sufficiently large x . From this we obtain the fact 
that 

x x F(y) 
y = s : < -( n L^LKx) ( n Hy))L*a{y) ( RL^y))^) 

Multiplying both sides of this inequality by f \\ Li(y)jL£
s(y) we get for every 

large y l=1 

s 

F(y)>[l[Li(y))Ll(y). (4) 
2 = 0 

Assumption (2) can be rewritten in the form 

fm)>f(at)+i-
From this and by using mathematical induction we obtain for every sufficiently 
large k and every positive integer t 

/ ( £ £ ) > / ( £ ) + * • (5) 
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It follows that lim f(ak/bk) = oo. Recall that the function f(x) is increasing 
k—>-oo 

on (a, oo) for any sufficiently large a. This implies that the function F(y) is 
increasing on (b, oo) for any sufficiently large number b. This fact together 
with the fact that lim f(ak/bk) = oo and inequality (5) imply that for every 

k—>-oo 

sufficiently large k and every positive integer t 
lk+t 
bk+t = *'(/rø)-^(/(ft)+*)-

From this together with (4) we obtain 

lk+t 
>F(f(^)+t)^[llLi(f(^)+t))L£s(f(at)+t)-

Uk + t \ i = 0 

We have for every sufficiently large real number z 

oo 

i r dx E / Õ ( fl Li(~ + r)W(~ + r) Л ( П ЧxүjЩx) єL^z 1 } 

4 ѓ=0 ' Ч ѓ=0 J 

(6) 

(7) 

Let M be a positive real number. Then (1) implies that there exist infinitely 
many k such that 

< 
i 

\2+<5 (8) 
Ls(f(l^)) M{alth...ak 

Now, we use (6) to get that for infinitely many k and for every positive integer t 

Í - E 
6. £>• E - < £ 

ѓ = l = fc+l г 

< E 

ґoF(fm)+i) 
i 

Ҷпчлет+t^з í /o+t) 
v г=0 7 

This and (7) imply that 

«-E 
i=xai 

< 

< 

E 
»(nnM/(S+t)+*)>-(/(» + *) 

\ -> — n / ѓ=0 

1 
< 

^.(/rø-o cЧfm)) 
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where the positive real constant c depends on e and s only. From this, (8) and 
choosing M > c/e we get for infinitely many positive integers k 

k 

ż = l г 

C C 1 1 

" *£-(/rø) " ш " K<v%)2+á * K ^ < ^ ' ( j 

Also if we write 

k
 Һ 

e k 
ß f e Є N , 

then from this together with (9) and R o t h ' s theorem we obtain that the number 
£ is transcendental. • 
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