Mathematic Slovaca

Jaroslav Hančl; Pavel Rucki
A note to the transcendence of special infinite series

Mathematica Slovaca, Vol. 56 (2006), No. 4, 409--414

Persistent URL: http://dml.cz/dmlcz/128866

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 2006

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

A NOTE TO THE TRANSCENDENCE OF SPECIAL INFINITE SERIES

Jaroslav Hančl Pavel Rucki
(Communicated by Stanislav Jakubec)

Abstract

The main result of this paper is a criterion for the sums of infinite series to be transcendental. The terms of these series are positive rational numbers which converge rapidly to zero. The speed of the convergence oscillates.

1. Introduction

Many recent results of the theory of transcendence can be found in the book of Parshkin and Shafarevich in [9]. The book of Nishiok a [7] on Mahler theory is also interesting.

Some new recent results for the transcendence of infinite series which rapidly converge can also be found in Adhikari, Saradha, Shorey and Tijde$\operatorname{man}[1]$, Hančl [4] and Nyblom [8].

Duverney in [3] proved a theorem which gives a criterion for the sums of infinite series to be transcendental. The terms of these series consist of the rational numbers and converge regulary and very quickly to zero.

Recently Hančl [5] introduced the concept of transcendental sequences in the following way.

DEFINITION 1. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of positive real numbers. If for every sequence $\left\{c_{n}\right\}_{n=1}^{\infty}$ of positive integers the number $\sum_{n=1}^{\infty} 1 /\left(a_{n} c_{n}\right)$ is transcendental, then the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is called transcendental.

He also proved in this paper the criterium for sequences to be transcendental. Criteria for the sums of the series to be Liouville numbers, which are special kinds of the transcendental numbers, can be found in [6].

[^0]Keywords: transcendence, infinite series.
Supported by the grants no. 201/04/0381 and MSM6198898701.

JAROSLAV HANČL - PAVEL RUCKI

2. Main results

The main result of this paper is the theorem which shows that sums of certain infinite series are transcendental.

THEOREM 2.1. Let δ and ε be positive real numbers and $s \in \mathbb{N}$. Let $\left\{L_{i}(x)\right\}_{i=0}^{\infty}$ be the sequence of logarithmic functions defined in the following way:

$$
\begin{aligned}
L_{0}(x) & =x \\
\text { and } \quad L_{i}(x) & =\underbrace{\log \ldots \log x}_{i \text {-times }}, \quad 0<i \leq s .
\end{aligned}
$$

Assume that $\left\{a_{k}\right\}_{k=1}^{\infty}$ and $\left\{b_{k}\right\}_{k=1}^{\infty}$ are two sequences of positive integers such that

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} \frac{L_{s}^{\varepsilon}\left(\frac{a_{k+1}}{b_{k+1}\left(\prod_{i=1}^{s} L_{i}\left(\frac{a_{k+1}}{b_{k+1}}\right)\right) L_{s}^{\varepsilon}\left(\frac{a_{k+1}}{b_{k+1}}\right)}\right)}{\left(a_{1} a_{2} \cdots a_{k}\right)^{2+\delta}}=\infty \tag{1}
\end{equation*}
$$

and for every sufficiently large k

$$
\begin{equation*}
\frac{a_{k+1}}{b_{k+1}\left(\prod_{i=1}^{s} L_{i}\left(\frac{a_{k+1}}{b_{k+1}}\right)\right) L_{s}^{\varepsilon}\left(\frac{a_{k+1}}{b_{k+1}}\right)} \geq \frac{a_{k}}{b_{k}\left(\prod_{i=1}^{s} L_{i}\left(\frac{a_{k}}{b_{k}}\right)\right) L_{s}^{\varepsilon}\left(\frac{a_{k}}{b_{k}}\right)}+1 \tag{2}
\end{equation*}
$$

Then the number

$$
\xi=\sum_{k=1}^{\infty} \frac{b_{k}}{a_{k}}<\infty
$$

is transcendental.
Example 1. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of positive integers such that $a_{1}=7$ and for every $n=1,2, \ldots$

$$
a_{n+1}=\left\{\begin{array}{ll}
2^{n^{\left(a_{1} a_{2} \ldots a_{n}\right)^{3}}} & \text { if } n=3^{3^{3^{3^{m}}}} \\
a_{n}+\left[2 L_{1}\left(a_{n}\right) \cdot L_{2}^{2}\left(a_{n}\right)\right] & \text { otherwise }
\end{array} \text { where } m \in \mathbb{N}\right.
$$

Let us put $\delta=\varepsilon=1$ and $s=2$ in Theorem 2.1. Then we obtain that the number

$$
\sum_{n=1}^{\infty} \frac{1}{a_{n}}
$$

is transcendental.

Example 2. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of positive integers such that $a_{1}=14$ and for every $n=1,2, \ldots$

$$
a_{n+1}= \begin{cases}n^{\left(a_{1} a_{2} \ldots a_{n}\right)^{3}} & \text { if } n=2^{3^{m}} \text { where } m \in \mathbb{N} \\ a_{n}+\left[2 \log ^{2} a_{n}\right] & \text { otherwise. }\end{cases}
$$

Let us put $s=1$ and $\delta=\varepsilon=1$ in Theorem 2.1. Then we obtain that the number
is transcendental.

$$
\sum_{n=1}^{\infty} \frac{1}{a_{n}}
$$

OPEN PROBLEM 1. Let $\operatorname{lcm}(1,2,3, \ldots, n)$ be the least common multiply of the numbers $1,2,3, \ldots, n$. Is there any sequence $\left\{c_{n}\right\}_{n=1}^{\infty}$ of positive integers such that the number $\sum_{n=1}^{\infty} 1 /\left(2^{\operatorname{lcm}(1,2,3, \ldots, n)} c_{n}\right)$ is algebraic?

3. Proofs

Proof of Theorem 2.1. Let $x=F(y)$ be the inverse function of the function

$$
\begin{equation*}
y=f(x)=\frac{x}{\left(\prod_{i=1}^{s} L_{i}(x)\right) L_{s}^{\varepsilon}(x)} \tag{3}
\end{equation*}
$$

It follows that $y \leq x$ for every sufficiently large x. From this we obtain the fact that

$$
y=\frac{x}{\left(\prod_{i=1}^{s} L_{i}(x)\right) L_{s}^{\varepsilon}(x)} \leq \frac{x}{\left(\prod_{i=1}^{s} L_{i}(y)\right) L_{s}^{\varepsilon}(y)}=\frac{F(y)}{\left(\prod_{i=1}^{s} L_{i}(y)\right) L_{s}^{\varepsilon}(y)} .
$$

Multiplying both sides of this inequality by $\left(\prod_{i=1}^{s} L_{i}(y)\right) L_{s}^{\varepsilon}(y)$ we get for every
large y large y

$$
\begin{equation*}
F(y) \geq\left(\prod_{i=0}^{s} L_{i}(y)\right) L_{s}^{\varepsilon}(y) \tag{4}
\end{equation*}
$$

Assumption (2) can be rewritten in the form

$$
f\left(\frac{a_{k+1}}{b_{k+1}}\right) \geq f\left(\frac{a_{k}}{b_{k}}\right)+1 .
$$

From this and by using mathematical induction we obtain for every sufficiently large k and every positive integer t

$$
\begin{equation*}
f\left(\frac{a_{k+t}}{b_{k+t}}\right) \geq f\left(\frac{a_{k}}{b_{k}}\right)+t \tag{5}
\end{equation*}
$$

It follows that $\lim _{k \rightarrow \infty} f\left(a_{k} / b_{k}\right)=\infty$. Recall that the function $f(x)$ is increasing on (a, ∞) for any sufficiently large a. This implies that the function $F(y)$ is increasing on (b, ∞) for any sufficiently large number b. This fact together with the fact that $\lim _{k \rightarrow \infty} f\left(a_{k} / b_{k}\right)=\infty$ and inequality (5) imply that for every sufficiently large k and every positive integer t

$$
\frac{a_{k+t}}{b_{k+t}}=F\left(f\left(\frac{a_{k+t}}{b_{k+t}}\right)\right) \geq F\left(f\left(\frac{a_{k}}{b_{k}}\right)+t\right)
$$

From this together with (4) we obtain

$$
\begin{equation*}
\frac{a_{k+t}}{b_{k+t}} \geq F\left(f\left(\frac{a_{k}}{b_{k}}\right)+t\right) \geq\left(\prod_{i=0}^{s} L_{i}\left(f\left(\frac{a_{k}}{b_{k}}\right)+t\right)\right) L_{s}^{\varepsilon}\left(f\left(\frac{a_{k}}{b_{k}}\right)+t\right) . \tag{6}
\end{equation*}
$$

We have for every sufficiently large real number z

$$
\begin{equation*}
\sum_{r=0}^{\infty} \frac{1}{\left(\prod_{i=0}^{s} L_{i}(z+r)\right) L_{s}^{\varepsilon}(z+r)}<\int_{z-1}^{\infty} \frac{\mathrm{d} x}{\left(\prod_{i=0}^{s} L_{i}(x)\right) L_{s}^{\varepsilon}(x)}=\frac{1}{\varepsilon L_{s}^{\varepsilon}(z-1)} \tag{7}
\end{equation*}
$$

Let M be a positive real number. Then (1) implies that there exist infinitely many k such that

$$
\begin{equation*}
\frac{1}{L_{s}^{\varepsilon}\left(f\left(\frac{a_{k+1}}{b_{k+1}}\right)\right)}<\frac{1}{M\left(a_{1} a_{2} \ldots a_{k}\right)^{2+\delta}} \tag{8}
\end{equation*}
$$

Now, we use (6) to get that for infinitely many k and for every positive integer t

$$
\begin{aligned}
\left|\xi-\sum_{i=1}^{k} \frac{b_{i}}{a_{i}}\right| & =\left|\sum_{i=k+1}^{\infty} \frac{b_{i}}{a_{i}}\right| \leq\left|\sum_{t=0}^{\infty} \frac{1}{F\left(f\left(\frac{a_{k+1}}{b_{k+1}}\right)+t\right)}\right| \\
& \leq\left|\sum_{t=0}^{\infty} \frac{1}{\left(\prod_{i=0}^{s} L_{i}\left(f\left(\frac{a_{k+1}}{b_{k+1}}\right)+t\right)\right) L_{s}^{\varepsilon}\left(f\left(\frac{a_{k+1}}{b_{k+1}}\right)+t\right)}\right|
\end{aligned}
$$

This and (7) imply that

$$
\begin{aligned}
\left|\xi-\sum_{i=1}^{k} \frac{b_{i}}{a_{i}}\right| & \leq\left|\sum_{t=0}^{\infty} \frac{1}{\left(\prod_{i=0}^{s} L_{i}\left(f\left(\frac{a_{k+1}}{b_{k+1}}\right)+t\right)\right) L_{s}^{\varepsilon}\left(f\left(\frac{a_{k+1}}{b_{k+1}}\right)+t\right)}\right| \\
& \leq \frac{1}{\varepsilon L_{s}^{\varepsilon}\left(f\left(\frac{a_{k+1}}{b_{k+1}}\right)-1\right)}<\frac{c}{\varepsilon L_{s}^{\varepsilon}\left(f\left(\frac{a_{k+1}}{b_{k+1}}\right)\right)}
\end{aligned}
$$

A NOTE TO THE TRANSCENDENCE OF SPECIAL INFINITE SERIES

where the positive real constant c depends on ε and s only. From this, (8) and choosing $M>c / \varepsilon$ we get for infinitely many positive integers k

$$
\begin{equation*}
\left|\xi-\sum_{i=1}^{k} \frac{b_{i}}{a_{i}}\right| \leq \frac{c}{\varepsilon L_{s}^{\varepsilon}\left(f\left(\frac{a_{k+1}}{b_{k+1}}\right)\right)} \leq \frac{c}{\varepsilon M} \cdot \frac{1}{\left(a_{1} a_{2} \cdots a_{k}\right)^{2+\delta}}<\frac{1}{\left(a_{1} a_{2} \cdots a_{k}\right)^{2+\delta}} . \tag{9}
\end{equation*}
$$

Also if we write

$$
\left|\xi-\sum_{i=1}^{k} \frac{b_{i}}{a_{i}}\right|=\left|\xi-\frac{B_{k}}{a_{1} a_{2} \cdots a_{k}}\right|, \quad B_{k} \in \mathbb{N}
$$

then from this together with (9) and R o t h's theorem we obtain that the number ξ is transcendental.

Acknowledgement

We thank Professor Radhakrishnan Nair of the Department of Mathematical Sciences. Liverpool University for his help with this article.

REFERENCES

[1] ADHIKARI, S. D.-SARADHA, N.-SHOREY, T. N.-TIJDEMAN, R.: Transcendental infinite sums, Indag. Math. (N.S.) 12 (2001), 1-14.
[2] DAVENPORT, H.-ROTH, K. F.: Rational approximations to algebraic numbers, Mathematika 2 (1955), 160-167.
[3] DUVERNEY, D.: Transcendence of a fast converging series of rational numbers, Math. Proc. Cambridge Philos. Soc. 130 (2001), 193207.
[4] HANČL, J.: Transcendental sequences, Math. Slovaca 46 (1996), 177-179.
[5] HANČL, J. : Two criteria for transcendental sequences, Matematiche (Catania) 56 (2002), 129140.
[6] HANČL, J.: Liouville sequences, Nagoya Math. J. 172 (2003), 173-187.
[7] NISHIOKA, K.: Mahler Functions and Transcendence. Lecture Notes in Math. 1631, Springer, New York, 1996.
[8] NYBLOM, M. A. : A theorem on transcendence of infinite series, Rocky Mountain J. Math. 30 (2000), 1111-1120.

JAROSLAV HANČL - PAVEL RUCKI

[9] Encyclopaedia of Mathematical Sciences, Vol. 44. Number Theory IV (A. N. Parshin, I. R. Shafarevich, eds.), Springer-Verlag, Berlin-Heidelberg, 1998.

Received September 23, 2004

Department of Mathematics and Institute for Research and Applications of Fuzzy Modeling
University of Ostrava
30. dubna 22
CZ-701 03 Ostrava 1
CZECH REPUBLIC
E-mail: hancl@osu.cz
Pavel.Rucki@seznam.cz

[^0]: 2000 Mathematics Subject Classification: Primary 11J82.

