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ON THE ORDER AND THE NUMBER 
OF CLIQUES IN A RANDOM GRAPH 

DANIEL O L E J A R — E D U A R D T O M A N 

(Communicated by Martin Skoviera ) 

ABSTRACT. A clique of a graph G is a complete subgraph of G maximal under 
inclusion. We study the numbers of cliques of various orders in a random graph 
Gn and prove that almost all cliques of Gnp have the same order, which is 
approximately logn — log log log n, where log means the logarithm to the base 
1/p, and estimate the total number of cliques in Gn . 

1. Introduction 

The clique is a basic structure of a graph and has been investigated very 
intensively. We study cliques in a random graph in this paper and answer the 
following two questions: 

(1) how many cliques are there in a random graph, and 
(2) how large are the cliques which appear most frequently in a random 

graph? 

The first general results on the number of cliques Y(G) in a graph G were 
proved by M o o n and M o s e r [11]. They proved that Y(Gn) < 3 n / 3 , where 
Gn is a graph of order n . Since their result is the best possible, further research 
concentrated on classes of graphs with upper bound on Y(Gn) lower than 3 n / 3 

([4], [5]). The latest result is due to F a r b e r , H u j t e r , T u z a , who described 
a large class of graphs with the parameter Y(Gn) polynomially bounded ([3]). 

We have proved that the random graph <2n p is (with respect to the total 
number of cliques) closer to T u z a ' s graphs than to M o o n ' s graphs since a 
random graph of order n contains 

Y[n) = n£log 6n-log 6 log 6n+l-f log 6e x / j o g ^ n)logb log6 log6 n+O(l) 

AMS S u b j e c t C l a s s i f i c a t i o n (1991): Primary 05C80. 
Key words : random graph, order of cliques, number of cliques. 
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cliques, where b = 1/p. 

The investigation of cliques in random graphs concentrated mainly on the 
behaviour of the clique number n(n) (the order of the largest clique). M a t u 1 a 
[10] proved that the clique number of a random graph is highly concentrated 
(it attains one of at most two values) and established an upper bound on n(n). 
K a l b f l e i s c h [6] found a lower bound on the order of cliques in a random 
graph and B o 11 o b a s and E r d 6 s [2] determined the orders of cliques which 
appear in a random graph. 

We prove that not only is the clique number of a random graph highly con­
centrated, but that something very similar holds for the order of cliques in a 
random graph: almost all the cliques of a random graph G have the same 
order \r3\ °r |~T3] , where 

r 3 = log6 n - log6 log6 log6 n + log6 log6 e + log6(l - p) + 1. 

2. Preliminaries 

The standard terminology and notation of random graph theory will be used 
in this paper. In order to make this paper self contained, we now introduce the 
most important notions. The notions not mentioned here can be found in [1] 
or [12]. 

Throughout this paper, the graphs of order n are considered. Let G be a 
graph. The vertex set of G will be denoted by V(G), and the edge set by H(G). 
The set of all graphs of order n will be denoted by (S n . We shall consider 
the model (probability space) (J5(n,P(edge) = p). In this model, we have 0 < 
p < 1, p is a constant, and the model consists of all graphs with vertex set 
V = { 1 , . . . , n} in which edges are chosen independently and with probability 
p. In other words, if G0 is a graph of order n and size (the number of edges) 
m , then 

P{G0} = P(G = G0) =P
m(l- p)N~m , (2.1) 

where N = (n) . The parameter p can be considered as a function of n ; p = p(n). 
The cases p(n) —> 0 and p(n) —• 1 are of special interest and will be studied 
in another place. Another interesting case is (£>(n,P(edge = - ) ) . Note that 
(5(n, | ) = (Sn with any two graphs equiprobable. 

We call a subset Q of (J5n a property of graphs of order n . We shall say that 
almost every (a.e.) graph in (5(n,p) has a certain property Q (or, G E (S(n,p) 
has the property Q almost surely) if P(Q) —• 1 as n —> oo. A real-valued 
random variable (r.v.) X is a measurable real-valued function on a probability 
space; X: (5(n,p) —> R. Since most of the r.v.'s we encounter are non-negative 
integer valued, unless otherwise indicated, we assume that the random variables 
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take only non-negative integer values. Let X be a r.v., the expectation, and the 
variance of the r.v. X will be denoted by E(X) and Var(X) respectively. The 
variance of a r.v. X can be expressed as follows: 

Var(X) = E(X2) - E(X)2 . (2.2) 

Let X be a nonnegative r.v. with expectation E(X) and let t > 0. Then we 
have (Markov's inequality) 

P(X>t-E(X))^\. (2.3) 

Now, let X be a real-valued r.v. If d > 0, we have (Chebyshev's inequality) 

P(\X-E(X)\^d)^^l. (2.4) 

The big O, i? , O notation will be used in standard way. The symbols In x, 
lg x denote the natural and the binary logarithm of x respectively. The symbol 
log x will be used in big O terms and will denote the logarithm to an arbitrary 
base (greater than 1). The bases of other logarithms will be written explicitly. 
We shall often use the logarithm to the base ^ . To simplify the notations, we 
shall put b = i and write log6 x instead of logi x. Let x be a real number. The 

symbols [x\ , \x] , {x} denote the floor, the ceiling and the fractional part of x 
respectively. 

Finally, we shall need the following simple but useful asymptotic estimations: 

P R O P O S I T I O N 2 .1 . Let k = o(y/n), then 

n^ = n ( n - l ) . . . ( n - f c + l ) = n ^ l - Q i + 0 ^ ^ . (2.5) 

P r o o f . The fcth falling factorial power of n can be expressed in the fol­
lowing way 

n<n-o-n*n(i-i) 
i=0 t = l 

k-\ 1 ^ . . _J_ 
2 1 2 2 ** X 

i=l l ^ t i < i 2 < k 

^ . . . 1 - - 0 * - 1 

X 

l t $ t i < t 2 < t 3 < k " l ^ t i < t 2 < - - - < t f c - i < k 

k-1 

4 i=i i ^ t i < i 2 < k 

v - . . . ( - l ) f e - X V - • • • ^ 
2_j Һ V з " 1 f" n fc- l ___ гlг2---гk-l) 
"À-^Ă^sU Л<fi.s'i~s'...s'À. .^u ' 

2.-J nj 2—J 1 1 i' 
j=0 l^ii<i2"<ij<k 1=1 

(2.6) 
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Since k = o(y/n} , we can cut off the tail of (2.6) and obtain even a more precise 
estimate than (2.5). D 

PROPOSITION 2.2. Let 0 < p < 1 and k = \ log1/ n + wn, where ujn —> oo 
as n —> oo. T/ien 

(1 - pk)n = exp(-np*) (1 + 0(np2k)) . (2.7). 

P r o o f . 

( Ik 3k \ 

( l - p T = e x p { n . l n ( l - p f c ) } = e x p | n . ( V - ^ - - ^ - - . . . ) | 

= exp(-npk) • exp(0(np2A:)) = exp(-npfc) • (l + 0(np2k)) . 

• 

3. The number of cliques in a random graph 

We start our study of cliques in a random graph by investigating the number 
of cliques of a given order in a random graph. Let us introduce the principal 
notions first. 

A clique of a graph G is the maximal complete subgraph of G. The clique 
of order r will be denoted by Kr, and the number of Kr 's in a graph G will 
be denoted by k (G). In this section, we shall study the random variables 

Yr = Y(n.r) = fcr(GniP), 

the number of Kr 's in Gn . We shall compute the expectation and estimate 
the variance of Yr first. 

LEMMA 3.1. We have 

Er = E(Yr) = E(n,r) = Q -pG)(l - p T " r • (3-1) 

P r o o f . The vertices of a clique Kr can be chosen in (™) ways. Since Kr is 
a complete subgraph, each of its r vertices is joined with the remaining (r — 1) 
vertices of Kr. And finally, since Kr is a clique, it cannot be contained in a 
complete subgraph of some greater order; i.e., we have to exclude the case when 
one of the (n — r) vertices of the vertex set V(G) — V(Kr) is joined by edges 
with all the r vertices of Kr. • 
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COROLLARY. Let p be fixed, 0 < p < 1, and let 

rx = 2 log6 n - 2 log6 log6 n + 2 log6 e + 1 - 2 log6 2 , (3.2) 

r 0 = log6 n - 2 log6 log6 n + log6 2 + log6 log6 e . (3.3) 

A random graph of order n almost surely contains no cliques or order greater 
than [rx] and less or equal than [rQ\ . 

P r o o f . The upper bound (3.2) was proved by M a t u l a [10] and can be 
found in [12]. The lower bound (3.3) was proved by K a l b f l e i s c h [6]. • 

R e m a r k . If r is close to rQ, the term (l—pr)n~r influences the value of E(n, r) 
substantially, but (1 -pr)n~r = 0(1) if r > log 6 n. 

Now we shall estimate the variance of Yr. 

LEMMA 3.2. Let p be fixed, 0 < p < 1, [r0J ^ r < f r x ] . Then 

Y*-) Var(Yr) = E(n,r)2O(^). (3.4) 

P r o o f . We estimate E(Yr), the expectation of the number of the ordered 
pairs of K^s in a random graph, and then we use (2.2) and (3.1) to obtain the 
estimate of the variance. We distinguish two cases with respect to the value of 
the parameter r : 

1. If r is close to rx, then most of complete subgraphs of order r are maximal, 
and we shall study the random variable Xr denoting the number of complete 
subgraphs of order r in Gn . Since E(Yr) ~ E(Xr)j it is sufficient to find a 
good upper bound on E(Xr). 

2. Otherwise, we need to construct an upper bound on E(Yr). 

The expectation can be expressed in the following way: 

E(Yr
2) = 
r2 

r 

= gQGXn) V(:H!)[(1 -"° +p,(1 -»T-J?r2r+i-P(K,V)• 
(3.5) 

The vertices of the first clique K$ can be chosen in (£) ways. The cliques K^, 
Kr can (but need not) have j common vertices. These vertices can be chosen 
in ( r) ways. The remaining (r — j) vertices of the second clique Kr have to be 
chosen from (n — r) vertices of V(G) — V(K^). Now we shall choose the edges: 
both cliques are complete graphs of order r , and therefore they contain 2(2). 
edges. But K^, Kr can have a nonempty intersection, a complete subgraph of 
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order j . Therefore (^) edges were counted twice. Both subgraphs Kr , K2 are 
cliques, and so none of the remaining (n — 2r + j) vertices of the set V(G) — 
(V(Kr) U V(K2)) may be joined with all the r vertices of the cliques Kr , 
K2. Consequently, for an arbitrary vertex v ^ (V(Kr) U V(K2)) either one of 
the common vertices of (V(Kr) f) V(K2)) is not joined with v, or all common 
vertices are joined with t>, but there are at least two vertices w, w\ u G (V(Kr) — 
V(K2)) and w G (V(K2) — V(Kr)) , such that neither u nor w is joined with v. 
The term P(Kr,K

2) in (3.5) denotes the probability that none of the vertices 
of (V(Kl

r) - V(K2)) U (V(K2) - V(Kl
r)) is joined with all (r - j) vertices of 

the other clique and can be estimated in the following way 

: r \ K D = p(Kl
r) • p{Kl i K2

r) < (i -p r - i y - i 

We now estimate the expectation E(Y2). Let [r0\ <^. r ^ r2 = 21og6n — 
31ogfelogfen (the second case). Since we need to prove that Var(Y^) is negligible 
with respect to E(n, r ) 2 , we extract the expression E(n,r)2 from the sum on 
the right side of the equation (3.5): 

-o?x-(-.r>-z:C)(;:;)O",-'-<0'« (,„ 
x [i - 2P

r + p
2r-iy-2r+j[i - p*sy-i[i - pr\2r-2n. 

To simplify the notation, let F(r,j) denote the jth term of (3.6), namely 

nr,fl-*(-,r)'(;)(-:;)Q".p-(Ox 
x [1 - 2pr +p2r-3]n~2r+'[l -pr~i]r-i[l -pr]2r-2n . 

The first term (F ( r , 0)) brings the largest contribution to the sum in (3.6). To 
make estimating the tail of the sum (3.6) easier, we estimate separately the 
contribution of the first two terms (F ( r , 0), F( r , 1)) to the expectation E(Y2). 
Using (2.5) and (2.7) and the fact r = ©(logn), we obtain 

E(r,0) + E(r,l) = E(n,r)2(l + O ( ^ ) ) . (3.7) 

Now we prove that the tail of the sum (3.6) is negligible with respect to the 
value (3.7). At first we simplify our sum by estimating the last three terms of 
its seven-termed summand, namely the product 

[1 ~ 2p r + p 2r- j jn-2r+j . ^ _ p r - j j r - j . ^ _ prj2r-2n ^ ^ g j 

where 2 ^ j ^ r , |r0J ^ r < \rx] . 
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If r ^ log6n, then (3.8) can be bounded by a suitable constant. To simplify 
the notation, we shall denote by /(r , j) the product 

/<r,i)-("-i)C)(")" ,- , ,"e)l **'**' (39> 

and by the symbol S(n, m, r) the sum 
r 

S ( n , m , r ) = £*; / (r . j ) . (3.10) 

As can be easily seen, for [roJ ^ r ^ l"ril 

max/(r , j) = O ( ^ ) , (3.11) 

and therefore 

S(n,2,r) = O ( ^ ) . (3.12) 

Let us return to the case [r0J ^ r < log6n. Then the product (3.8) can attain 
the value of order 0(log2 n), but the situation is controlled by the term /(r , 2). 
Since 

/M) = o(!^), 
in the case [rQ\ ^ r < r2 , we have 

S(„, 2, r) = 0 ( - - £ - - ) . (3.13) 

Taking into account (3.10), (3.12) and (3.13), we have 

E(Yr
2) = E{n,rf ( l + 0 ( ^ ) ) • (3-14) 

Let r2 ^r ^ [rx] . We will study the expectation E(X^) now. 

-w-tOOC:;)-^0-
Since 

^ ) = ( ; ) p « . 

the expectation E(X^) can be expressed as follows: 

eu®-BvcTr.±£)"'(;)(;:;) •*-«• <3-i6> 
J'=0 
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Now we can proceed in the same way as in the previous case: the first two terms 
(with j = 0,1) of (3.15) yield the value 

G(r, 0) + G(r, 1) = E(Xr)
2 (l + O ( ^ ) ) . (3.16) 

Let the symbols S(n, ra, r) and /(r , j) have the same meaning as in the previous 
case. The tail of the sum in (3.16) can be expressed as follows 

5(n, 2, r) < 5(n, 2, r 2 ) + S(n, r 2 , r ) . 

The first sum, 5 ( n , 2 , r 2 ) can be estimated quite easily. Since (3.11) holds, 

S(n,2,r2) = o(^-) . (3.17) 

To estimate the second sum S(n,r2,r), we change the summation range, then 

we extract the value E(Xr)~1 = (™) • p~U) out of the last sum and change 
the order of summation by putting k = r — j : 

s ( w ) , ( : ) % V | f (;;)(Y).p-e>-v 
Since 

(i)(v ) . p - ( - ) + ' - * - f c < ( r n p r - ( * + 1 ) / 2 ) ' 

and r — (k + l )/2 > 2 log6 n — 4log 6 log6 n + O(l), we have 

r n p r Ч * + i ) / 2 = 0 ( І £ | j Л 

Taking into account these estimates, the last sum does not exceed 

"-)• 
i + o ' ь в 5 

n 

and therefore 

S(n,r2,r) = E(Xr).(l + o(^-)) . (3.18) 

Combining (3.16), (3.17) and (3.18) yields 

£«) = B(Xr)*.(l+o(!^)). 

Since 
E(Xr)

2 = E(Yr)
2.(l-p'-)2'-2") 
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and if r ^ r2, then 

(1 _ ffr-2n _ e x p ( 2 n p r } . (- + Q {np2r)) _ ^ + Q (^_£_^ ^ ^ 

we can write 

E(X2
r) = E{Yrf .(l + O ( - ^ - ) ) • (3-19) 

Substituting (3.1), (3.14) and (3.19) into (2.2) yields the assertion of our lemma. 

• 
Now we can use the second moment method to estimate the number of cliques 

of a given order in a random graph. 

THEOREM 3 .1 . Let [r0J ̂  r ^ |~ r i l , P be a constant, 0 < p < 1, and Gn 

be a random graph. Then it holds almost surely 

yr=Q.p©(i--T-'(i + 0 ( - ^ l ) ) . (3.20) 

P r o o f . The assertion of the theorem follows directly from Chebyshev's 

inequality, Lemmas 3.1. and 3.2. for d = Var(Y r)log6 ' n . • 

The result of the previous theorem enables us to estimate the total number 
of cliques in a random graph. 

COROLLARY. Let Gn be a random graph, Y(n) = ]C^r> LroJ ^ r ^ T r i l > 
7* 

then 
Y(n) = n^ log> n- l o g* l o g* n + ° ( 1 ) (3.21) 

almost surely. 

P r o o f . Let Gn be a random graph. According to the Theorem 3.1, 
the r.v.'s Yr fulfil the condition (3.20) almost surely (with probability 1 — 
0 ( 1 / l o g 3 n ) ) . Therefore the following estimates hold almost surely (with prob­
ability (1 - 0 ( 1 / log2 n ) ) , too: 

y(»)=(i + 0(!$-)) _ Q.pOu- _.-'. 

Let g(r) = ( r ) -p^ 2 ' ( l—p r ) n ~ r . The sequence g(r) is increasing for [r0J ̂  r ^ r 3 
and decreasing for r > r3. The point r 3 at which g(r) reaches its maximum 
lies between log6 n — logb log6 n and log6 n . (The exact value of r 3 will be found 
later.) Since 

g(logbn + i) = n2log*n-log>log*n+°W for t = - log 6 l og 6 n , . . . , (1 + e) l og 6 n , 
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and (r x — r 0 ) = O(logn) = 0(n), the estimate (3.21) is proved. • 

The previous study of the behaviour of g(r) discovered an interesting fact: 

g(r) has a sheer peak in r 3 , and consequently, although a random graph contains 

cliques of order r , [r 0J ̂  r ^ \r^\, most of its cliques have order « r 3 . We 

shall study this phenomenon in detail now. 

THEOREM 3.2. Let Y(n) be a random variable on (&(n,p) denoting the num­

ber of cliques in a random graph. Let 

r 3 = log6 n - log6 log6 log6 n + log6 log6 e + log 6(l - p) + 1. 

Then a random graph Gn has the following properties almost surely 

(1) Almost all cliques in Gn have order [r 3J or [ r 3 ] ; 
(2) there are 

Y{n) = n 2 l o S6 n " l o S b l ogb n + _ + l o g 6 e . / , Q g \-og6 log6 log6 n-fO(l) 

cliques in Gn . 

P r o o f . We can concentrate our effort on the interval 

(log6 n - (1 + e) logfe log6 n, log6 n) (3.22) 

since 

g(r) / n" ̂  e • l o ^ n +°( 1 > if [r 0J ^ r < log6 n - (1 + e) log6 log6 n , (r) Г 
'g ь

n ) l 3(log6 n) 1 0 ( 1 / log6 n)* if r = (log6 n) + t , t = 1 , . . . , log6 n , 
(3.23) 

and therefore the contribution to Y(n) of cliques to (3.22) of orders not belonging 
is negligible with respect to the value g(logb n). Therefore we can assume that 
the point r 3 , in which g(r) reaches its maximum, can be expressed in the form 
logfe n - j . For simplicity, let g(logb n - j) = aj, j = 0 , . . . , (1 + e) log6 log6 n . 
Now we will study the ratio a-^x/a-: 

/ í l /r,V'+1 \ n ~ l o S b n + J ' + -
» m b h . - j /A-..-Í-' ( i - - - * - ) 
j n-log tn-i + l Vř̂  /'1_ílMÍ')n"los'"+'' 

We need to find good asymptotic estimates of terms of the product (3.24). Since 
j = O(loglogn), using (2.7) we have 

a-f - -*» -p" -p {-w# {•£)) H (*gF)) • <*»> 
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If 

j = log6 log6 log6 n - log6 log6 e + log6 j ^ — 

+ j L _ log6 log6 log6 n - log6 log6 e - log6(l - p) \ 

\ !og6log6n / ' (3.26) 

the ratio (3.25) equals asymptotically 1. If j is greater (less) than (3.26), the 
ratio aj+l/a- is greater (less) than 1 respectively. Therefore g(r) attains its 
maximum at the point 

r3 = log6 n - log6 log6 log6 n + log6 log6 e - log6 j ^ — 

+ j L _ togfc togfc -Ogt
 n - lQgfc l Q g& e - lQg6(- ~P)\ 

\ log6log6n / ' 
Since the value r3 is not integer and 

! L _ logblogfc logfcn - log6 log6e- log6(l - p)\ _ 
V Jogtlogfon ) 

the function g(r) attains its maximum at integer [r3J or [r3] . 
Now we can estimate the total number of cliques in Gn . For simplicity, let 

g(r'3) = max{ 5 ( | r 3 J ) , 5 ( r r 3 l )} . Then 

Since g(r) is increasing for r ^ [r3J and decreasing for r ^ [r 3] , and moreover 

9{[r3} ~ 1) • ^ogblogbn = o(g(r'3)) , 

^ (htl + -) • logfc log& log& n = o(g(r'3)), 
5(log6n) • log6n = o(g(r'3)) ; 

Y(n) = ( l + c r ) . p ( r 3 ) , 

where cr is a constant, 0 < cr ^ 1. 
To complete the proof of our theorem, it is sufficient to substitute the values 

|r3J, fr3l into (3.1). • 

Remark. The asymptotic bound on Y(n) generalizes and improves one of the 
results published in [7]. 
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