Mathematic Slovaca

Antoaneta Klobučar

On the k-dominating number of Cartesian products of two paths

Mathematica Slovaca, Vol. 55 (2005), No. 2, 141--154

Persistent URL: http://dml.cz/dmlcz/128944

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 2005

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ON THE k-DOMINATING NUMBER OF CARTESIAN PRODUCTS OF TWO PATHS

Antoaneta Klobučar

(Communicated by Martin Škoviera)

Abstract

A subset $D \subset V(G)$ is called a k-dominating set, $k \geq 1$, if for every vertex y not in D, there exists at least one vertex $x \in \bar{D}$ such that $d(x, y) \leq k$. For convenience we also say that $D k$-dominates G. The k-domination number $\gamma_{k}(G)$ is the cardinality of a smallest k-dominating set. The 1-domination number is also called the domination number.

In this paper we determine the exact values of $\gamma_{k}\left(P_{1} \square P_{n}\right), \ldots, \gamma_{k}\left(P_{3} \square P_{n}\right)$, 2-domination numbers $\gamma_{2}\left(P_{4} \square P_{n}\right), \ldots, \gamma_{2}\left(P_{7} \square P_{n}\right)$, estimates for $\gamma_{k}\left(P_{m} \square P_{n}\right)$ when $k \geq m-1$ and $\lim _{m, n \rightarrow \infty} \frac{\gamma_{k}\left(P_{m} \square P_{n}\right)}{m n}$ where P_{n} denote the path of length n.

1. Introduction and terminology

For any graph G we denote the vertex-set and the edge-set of G by $V(G)$ and $E(G)$, respectively.

The Cartesian product of two graphs G, H is a graph with vertex set $V(G) \times V(H)$ and $\left(\left(g_{1}, h_{1}\right),\left(g_{2}, h_{2}\right)\right) \in E(G \square H)$ if and only if either $g_{1}=g_{2}$ and $\left(h_{1}, h_{2}\right) \in E(H)$, or $\left(g_{1}, g_{2}\right) \in E(G)$ and $h_{1}=h_{2}$.

The study of domination numbers of products of graphs was initiated by Vizing [16]. He conjectured that the domination number of the Cartesian product of two graphs is always greater than or equal to the product of the domination numbers of two factors; a conjecture which is still unproven.

Domination numbers of Cartesian products were intensively investigated in the past (see e.g. [1], [2], [5], [6], [10]).

In this paper we extend these investigations to k-domination for $k \geq 2$.

[^0]
ANTOANETA KLOBUČAR

k-Domination numbers of $P_{2} \square P_{n}$ and $P_{3} \square P_{n}$

To fix terminology for the proofs of our results we need some more definitions.
DEFINITION 1. Let $1, \ldots, k$ and $1, \ldots, n$ be vertices of paths P_{k} and P_{n}, respectively.

For a fixed $m, 1 \leq m \leq n$, the set $\left(P_{k}\right)_{m}=\{(1, m),(2, m),(3, m), \ldots,(k, m)\}$ is called a column of $P_{k} \square P_{n}$. The set $\left(P_{n}\right)^{l}=\{(l, 1),(l, 2),(l, 3), \ldots,(l, n)\}$, $1 \leq l \leq k$, is called a row of $P_{k} \square P_{n}$.

Any set $B=\left\{\left(P_{k}\right)_{m},\left(P_{k}\right)_{m+1}, \ldots,\left(P_{k}\right)_{m+l}: l \geq 0, m \geq 1, m+l \leq n\right\}$ of consecutive columns is called a block of size $k \times(l+1)$ of $P_{k} \times P_{n}$. If another block B^{\prime} contains column $\left(P_{k}\right)_{m-1}$ (but it does not contain the column $\left.\left(P_{k}\right)_{m}\right)$, or the column $\left(P_{k}\right)_{m+l+1}$ (but not column $\left.\left(P_{k}\right)_{m+l}\right)$, then B^{\prime} is said to be adjacent to B. Block B is called internal if it is adjacent to two other blocks. It is called external, if it is adjacent only to one block.

The following observations will be frequently used in the sequel.
ObSERVATION 1. Let C_{n} and P_{n} denote the cycle and path with n vertices, respectively. Then

$$
\gamma_{k}\left(C_{n}\right)=\gamma_{k}\left(P_{n}\right)=\left\lceil\frac{n}{2 k+1}\right\rceil .
$$

The following theorem was shown by Jacobson and Kinch [5].
Theorem 1. We have

$$
\begin{aligned}
& \gamma_{1}\left(P_{2} \square P_{n}\right)=\left[\frac{n+1}{2}\right\rceil, \\
& \gamma_{1}\left(P_{3} \square P_{n}\right)=n-\left\lfloor\frac{n-1}{4}\right\rfloor .
\end{aligned}
$$

These two results can be easily extended to all $k \geq 1$.
Theorem 2. Let $k \geq 1$. Then

$$
\gamma_{k}\left(P_{2} \square P_{n}\right)= \begin{cases}\frac{n}{2 k}+1, & n \equiv 0(\bmod 2 k), \\ \left\lceil\frac{n}{2 k}\right\rceil, & \text { otherwise } .\end{cases}
$$

Proof. It is obvious that for $k=1$ our result reduces to the result given in Theorem 1. We consider the set

$$
S=\left\{(1, k+4 k l): l=0,1, \ldots,\left\lfloor\frac{n-k}{4 k}\right\rfloor\right\} \cup\left\{(2,3 k+4 k l): l=0,1, \ldots,\left\lfloor\frac{n-3 k}{4 k}\right\rfloor\right\} .
$$

It is easy to check that S is a k-dominating set for $n \equiv k, \ldots,(2 k-1)$ $(\bmod 2 k)$. Also in these cases each vertex of $P_{2} \square P_{n}$ is k-dominated by exactly one vertex of S. For all these cases $|S|=\left\lceil\frac{n}{2 k}\right\rceil$.

Proof of minimality follows from the fact that on $P_{2} \square P_{2 k-1}$ only one k-dominating vertex can k-dominate all vertices, but on $P_{2} \square P_{2 k}$ we need at least two vertices. (For each vertex on $P_{2} \square P_{2 k}$ there exists at least one other vertex such that distance between them is $\geq k+1$.)

For $n \equiv 0,1, \ldots,(k-1)(\bmod 2 k)$ we take $S_{1}=S \cup\{(2, n)\}$. It can be easily seen that for these n, S_{1} is a k-dominating set, and

$$
\gamma_{k}\left(P_{2} \square P_{n}\right)= \begin{cases}\frac{n}{2 k}+1, & n \equiv 0(\bmod 2 k), \\ \left\lceil\frac{n}{2 k}\right\rceil, & \text { otherwise } .\end{cases}
$$

Proof of minimality follows from previous and from the fact that for S on $P_{2} \square P_{n}$ at least one vertex is not k-dominated.

In the sequel we investigate k-dominating sets on $P_{3} \square P_{n}$.
LEMMA 1. Let $k \geq 2, n \geq 2$. Then there exists a minimum k-dominating set D of $P_{3} \square P_{n}$ such that for every $i \in\{1, \ldots, n\},\left|\left(P_{3}\right)_{i} \cap D\right| \leq 1$.

Proof. Let D be a minimum k-dominating set of $P_{3} \square P_{n}$. We first assume that $\left|\left(P_{3}\right)_{1} \cap D\right| \geq 2$ holds. Without loss of generality, let $(1,1) \in D$ and let M denote the set of vertices which are k-dominated by the vertices of $\left(P_{3}\right)_{1} \cap D$. Then $D^{\prime}=(D \cup\{(1,2)\}) \backslash\{(1,1)\}$ also k-dominates at least vertices of M. (If $(1,2) \in D$, then D is not minimal.) Hence, we can conclude that $\left(P_{3}\right)_{1}$ contains at most one vertex of D and the same holds for $\left(P_{3}\right)_{n}$.

Assume $\left|\left(P_{3}\right)_{i} \cap D\right|=3$ holds for some $\left(P_{3}\right)_{i}, 2 \leq i \leq n-1$. If M denotes the set of vertices k-dominated by the vertices of $\left(P_{3}\right)_{i}$, then $D^{\prime}=$ $(D \backslash\{(2, i),(3, i)\}) \cup\{(3, i+1),(3, i-1)\}$ also k-dominates all vertices of M and therefore k-dominates $P_{3} \square P_{n}$.

If now either $\left(P_{3}\right)_{i-1}$ or $\left(P_{3}\right)_{i+1}$ contains three vertices of D^{\prime}, then we repeat this process and finally obtain either a contradiction to the minimality of D or a k-dominating set with at most two vertices of one column of $P_{3} \square P_{n}$.

We now assume that $\left|\left(P_{3}\right)_{i} \cap D\right|=2$ holds for some $i, 2 \leq i \leq n-1$, and no $\left(P_{3}\right)_{j}, 1 \leq j \leq n$, contain more than 2 vertices of D.
a) We first consider the case that $\{(1, i),(2, i)\} \subset D$. Then $\{(1, i),(2, i)\}$ k-dominate vertices of $M=\{(j, i-1),(j, i-2), \ldots,(j, i-k)\} \cup\{(j, i+1),(j, i+2)$, $\ldots,(j, i+k)\} \cup\{(3, i-1),(3, i-2), \ldots,(3, i-k+1)\} \cup\{(3, i),(3, i+1),(3, i+2), \ldots$ $\ldots,(3, i+k-1)\}$, where $j \in\{1,2\}$.

But vertices $\{(2, i-1),(2, i+1)\}$ also k-dominate M. Hence, $D^{\prime}=$ $(D \backslash\{(1, i),(2, i)\}) \cup\{(2, i-1),(2, i+1)\}$ also k-dominate $P_{3} \square P_{n}$. If now $\left(P_{3}\right)_{i-1}$ or $\left(P_{3}\right)_{i+1}$ contains three vertices from D^{\prime}, then D^{\prime} and therefore D is not minimum. D is also not minimum if $(2, i-1)$ or $(2, i+1)$ is already contained in D.

Now assume that $\left|\left(P_{3}\right)_{i+1} \cap D\right|=1\left(\left|\left(P_{3}\right)_{i+1} \cap D^{\prime}\right|=2\right)$ holds. From previous notations it follows that $(1, i+1)$ or $(3, i+1) \in D$, say $(1, i+1)$.

Then for $i \leq n-3$ we set $D^{\prime \prime}=\left(D^{\prime} \backslash\{(1, i+1)\}\right) \cup\{(2, i+3)\}$ and repeat the above arguments. If $n-2 \leq n \leq n-1$, then $D^{\prime \prime}=\left(D^{\prime} \backslash\{(1, i+1)\}\right)$.
b) For $\{(2, i),(3, i)\} \subset D$ and $\{(1, i),(3, i)\} \subset D$ analogously as in a).

Theorem 3. For every path $P_{n}, n \geq 2$, and $k \geq 2$

$$
\gamma_{k}\left(P_{3} \square P_{n}\right)=\left\lceil\frac{n}{2 k-1}\right\rceil .
$$

Proof. We consider the set

$$
S=\left\{(2, k+(2 k-1) l): l=0,1, \ldots,\left\lfloor\frac{n}{2 k-1}\right\rfloor-1\right\} .
$$

For $n \equiv 0(\bmod (2 k-1)), S$ is a k-dominating set and

$$
|S|=\frac{n}{2 k-1}=\left\lceil\frac{n}{2 k-1}\right\rceil
$$

For $n \equiv k, \ldots,(2 k-2)(\bmod (2 k-1)), S_{1}=S \cup\left\{\left(2, k+(2 k-1) \cdot\left\lfloor\frac{n}{2 k-1}\right\rfloor\right)\right\}$ is a k-dominating set and

$$
\left|S_{1}\right|=\left\lceil\frac{n}{2 k-1}\right\rceil
$$

For $n \equiv 1, \ldots,(k-1)(\bmod (2 k-1)), S_{1}=S \cup\{(2, n)\}$ is a k-dominating set and

$$
\left|S_{1}\right|=\left\lceil\frac{n}{2 k-1}\right\rceil
$$

It follows that $\gamma_{k}\left(P_{3} \square P_{n}\right) \leq\left\lceil\frac{n}{2 k-1}\right\rceil$.
We now prove that these sets are also minimum k-dominating sets.
Let D be a minimum k-dominating set which satisfies Lemma 1 . Let s be the number of columns which contain no vertex of D. Then, since at most $(2 k-2)$ empty columns can be adjacent,

$$
s \leq\left\lfloor\frac{n}{2 k-1}\right\rfloor(2 k-2)
$$

Then for every k-dominating set D there holds

$$
|D| \geq n-s \geq n-\left\lfloor\frac{n}{2 k-1}\right\rfloor \cdot(2 k-2)
$$

If $n \equiv 0(\bmod (2 k-1))$,

$$
|D| \geq\left\lfloor\frac{n}{2 k-1}\right\rfloor \cdot(2 k-1)-\left\lfloor\frac{n}{2 k-1}\right\rfloor \cdot(2 k-2)=\left\lfloor\frac{n}{2 k-1}\right\rfloor=\left\lceil\frac{n}{2 k-1}\right\rceil .
$$

If $n \equiv t(\bmod (2 k-1)), 1 \leq t \leq 2 k-2$,
$|D| \geq\left\lfloor\frac{n}{2 k-1}\right\rfloor \cdot(2 k-1)+t-\left\lfloor\frac{n}{2 k-1}\right\rfloor \cdot(2 k-2)=\left\lfloor\frac{n}{2 k-1}\right\rfloor+t \geq\left\lceil\frac{n}{2 k-1}\right\rceil$.

3. 2-Domination numbers

Of course, the situation is much more complex if we consider $P_{j} \square P_{n}$ for some $j \geq 4$. Even the determination of the k-domination number for $k=1$ is difficult if $j \geq 5$ holds. Hence, we only consider 2-domination for $P_{j} \square P_{n}$, $4 \leq j \leq 7$.

Theorem 4. For $n \geq 2$,

$$
\gamma_{2}\left(P_{4} \square P_{n}\right)= \begin{cases}3\left\lfloor\frac{n}{7}\right\rfloor+2, & n \equiv 1,2,3(\bmod 7) \\ 3\left\lceil\frac{n}{7}\right\rceil, & n \equiv 4,5(\bmod 7), \\ 3\left\lceil\frac{n}{7}\right\rceil+1, & n \equiv 6,0(\bmod 7), \\ 4, & n=8 .\end{cases}
$$

Proof. We consider the set

$$
\begin{aligned}
S= & \left\{(1,7+14 k): k=0,1, \ldots,\left\lfloor\frac{n-7}{14}\right\rfloor\right\} \cup\left\{(1,13+14 k): k=0,1, \ldots,\left\lfloor\frac{n-13}{14}\right\rfloor\right\} \\
& \cup\left\{(2,3+14 k): k=0,1, \ldots,\left\lfloor\frac{n-3}{14}\right\rfloor\right\} \cup\left\{(3,10+14 k): k=0,1, \ldots,\left\lfloor\frac{n-10}{14}\right\rfloor\right\} \\
& \cup\left\{(4,6+14 k): k=0,1, \ldots,\left\lfloor\frac{n-6}{14}\right\rfloor\right\} \cup\left\{(4,14+14 k): k=0,1, \ldots,\left\lfloor\frac{n}{14}\right\rfloor-1\right\} \\
& \cup\{(3,1)\} .
\end{aligned}
$$

See Figure 1.

Figure 1.
Then S is a 2 -dominating set for $n \equiv 0,3(\bmod 7)$.
Let $n \geq 2$ and $S_{1}=S \cup\{(2, n)\} . S_{1}$ is a 2 -dominating set for $n \equiv$ $1,2,4(\bmod 7)$.

If the number of $4 \square 7$ blocks is odd, let $S_{2}=S \cup\{(2, n)\}$; otherwise, let $S_{2}=S \cup\{(3, n)\}$. Then S_{2} is a 2 -dominating set for $n \equiv 5(\bmod 7)$.

For $n \equiv 6(\bmod 7)$ a 2 -dominating set S_{3} is given by $S_{3}=S \cup\{(2, n)\}$ if the number of $4 \square 7$ blocks is even, and by $S_{3}=S \cup\{(3, n)\}$ if the number of $4 \square 7$ blocks is odd.

It follows that

$$
\gamma_{2}\left(P_{4} \square P_{n}\right) \leq|S|= \begin{cases}3\left\lfloor\frac{n}{7}\right\rfloor+2, & n \equiv 1,2,3(\bmod 7) \\ 3\left\lceil\frac{n}{7}\right\rceil, & n \equiv 4,5(\bmod 7) \\ 3\left\lceil\frac{n}{7}\right\rceil+1, & n \equiv 6,0(\bmod 7)\end{cases}
$$

We now prove that $\gamma_{2}\left(P_{4} \square P_{n}\right) \geq|S|$.

Definition 2. We partition $P_{4} \square P_{n}$ into $\left\lfloor\frac{n}{7}\right\rfloor$ blocks of size $4 \square 7$, where the first $4 \square 7$ block contains $\left(P_{4}\right)_{1}$. If $n \equiv k(\bmod 7)$, where $k \neq 0$, then we also have a block B^{\prime}, which is a $4 \square k$ block. Without loss of generality, we always assume that $B^{\prime}=\left\{\left(P_{4}\right)_{n}, \ldots,\left(P_{4}\right)_{n-k+1}\right\}$.

Lemma 2. If B is an external $4 \square 7$ block, for every 2-dominating set D, there holds $|D \cap B| \geq 3$.

Proof. Without loss of generality, assume that B is the first block in the graph $P_{4} \square P_{n}$. (Only if $n \equiv 0(\bmod 7)$ there are 2 external $4 \square 7$ blocks.) If columns $\left(P_{4}\right)_{6}$ and $\left(P_{4}\right)_{7}$ are 2-dominated by vertices from the adjacent block, there is still one undominated block of size $4 \square 5$. To 2 -dominate these vertices, we need at least three vertices from block B.

Lemma 3. $|D \cap B| \geq 2$ holds for every internal block B.
Proof. Let $B=\left\{\left(P_{4}\right)_{j},\left(P_{4}\right)_{j+1}, \ldots,\left(P_{4}\right)_{j+6}\right\}, j \geq 8$, be some internal block. Only vertices of columns $\left(P_{4}\right)_{j},\left(P_{4}\right)_{j+1}$ and $\left(P_{4}\right)_{j+5},\left(P_{4}\right)_{j+6}$ can be 2 -dominated by vertices of adjacent blocks. To 2 -dominate vertices of columns $\left(P_{4}\right)_{j+2},\left(P_{4}\right)_{j+3},\left(P_{4}\right)_{j+4}$, we always need at least two vertices which are contained in B.

LEMMA 4. Let $n \geq 21$. If $\left|D \cap B_{k}\right|=2$ for some internal $4 \square 7$ block B_{k}, then $\left|D \cap B_{k-1}\right| \geq 4$, and $\left|D \cap B_{k+1}\right| \geq 4$. If $B_{k-1}\left(B_{k+1}\right)$ is external, then $\left|D \cap B_{k-1}\right| \geq 5\left(\left|D \cap B_{k+1}\right| \geq 5\right)$.

Proof. Let $B_{k}=\left\{\left(P_{4}\right)_{j},\left(P_{4}\right)_{j+1}, \ldots,\left(P_{4}\right)_{j+6}\right\}, j=7(k-1)+1, k \in$ $\left\{2, \ldots,\left\lfloor\frac{n}{7}\right\rfloor-1\right\}$. Let $B_{k} \cap D=M$ and let $|M|=2$. Then both vertices of M must be contained in the set $L=\left(P_{4}\right)_{j+2} \cup\left(P_{4}\right)_{j+3} \cup\left(P_{4}\right)_{j+4}$ since no vertex outside B_{k} can 2 -dominate a vertex of these three columns. This also implies that vertices of M are contained in different columns. Hence, vertices of M 2 -dominate at most one vertex of $\left(P_{4}\right)_{j}$ and at most one vertex of $\left(P_{4}\right)_{j+6}$. Case a) :
Vertices of M 2-dominate exactly one vertex of $\left(P_{4}\right)_{j+6}$ and exactly one vertex of $\left(P_{4}\right)_{j}$.

In this case two vertices of M must be contained in $\left(P_{4}\right)_{j+2}$ and $\left(P_{4}\right)_{j+4}$, respectively. Then three vertices of $\left(P_{4}\right)_{j},\left(P_{4}\right)_{j+6}$, at least one vertex of $\left(P_{4}\right)_{J+1}$ and at least one vertex of $\left(P_{4}\right)_{j+5}$ remain undominated by vertices of M. We first consider B_{k+1}. Since three vertices of $\left(P_{4}\right)_{j+6}$ and at least one vertex of $\left(P_{4}\right)_{j+5}$ are not 2 -dominated by vertices of M, the first column of B_{k+1} (i.e. the column $\left.\left(P_{4}\right)_{j+7}\right)$ contains at least two vertices of D.

But these two vertices cannot 2-dominate any vertex of the columns $\left(P_{4}\right)_{j+10}$ and $\left(P_{4}\right)_{j+11}$. Vertices of $\left(P_{4}\right)_{j+10}$ and $\left(P_{4}\right)_{j+11}$ cannot be 2 -dominated by
vertices contained in B_{k+2}. To 2 -dominate these two columns, we need at least two vertices of D which are contained in B_{k+1}.

If B_{k+1} is the last block, we need at least one more vertex to 2 -dominate the remaining vertices on B_{k+1}.

Of course the same holds for B_{k-1}.
Case b) :
Vertices of M 2-dominate exactly one vertex of $\left(P_{4}\right)_{j+6}$ and no vertex of $\left(P_{4}\right)_{j}$. In this case it is obvious that $\left|D \cap B_{k-1}\right| \geq 4$ holds.

The situation on B_{k+1} is the same as in the Case 1.
Case c) :
Vertices of $M 2$-dominate no vertex of $\left(P_{4}\right)_{j}$ and no vertex of $\left(P_{4}\right)_{j+6}$. In this case our result obviously holds.

Applying Lemma 4, it is now possible to prove Theorem 4 in the case each n is a multiple of 7 .
Case 1: $n=7 m$.
We first assume that $n \geq 21$.
Let D be any 2 -dominating set. $\left|D \cap B_{k}\right| \geq 2$ holds for each block $B_{k}, 1 \leq$ $k \leq \frac{n}{7}$, by Lemma 3. Assume that there are s (4ロ7)-blocks which contain only two vertices of D. By Lemma 2, these blocks are internal. Then, by Lemma 4, there are at least $s+1(4 \square 7)$-blocks which contain at least four vertices of D. Let $B_{i_{j}}, 1 \leq j \leq 2 s+1$, denote these blocks which contain either two or four vertices. Then $\mathcal{B}=\bigcup_{j=1}^{2 s+1} B_{i_{j}}$ contains at least $6 s+4$ vertices of D. Together we have $m=\frac{n}{7}(4 \square 7)$-blocks. $2 s+1$ blocks of \mathcal{B} contain $3(2 s+1)+1$ vertices of D, the remaining $r=m-2 s-1(4 \square 7)$-blocks at least $3 r$ vertices of D. Therefore $|D| \geq 3 m+1=|S|$, which completes the proof in this case.

Let $n=14 .\left|D \cap B_{k}\right| \geq 3$ holds for each block $B_{k}, k=1,2$, by Lemma 2. If $\left|D \cap B_{1}\right|=3$, at least one vertex of B_{1} is 2 -dominated by vertices of B_{2}. Then it is obvious that $\left|D \cap B_{2}\right| \geq 4$ and therefore $|D| \geq|S|$ holds.
Case 2: $n=7 m+1$.
LEMMA 5. $\left|D \cap\left(B_{m} \cup B^{\prime}\right)\right| \geq 4$ for any 2 -dominating set D.
Proof. $B_{m} \cup B^{\prime}$ is a $4 \square 8$ block. If the first two columns of B_{m} are 2 -dominated by vertices of B_{m-1}, there is still an undominated block of size $4 \square 6$. To 2 -dominate vertices of this block we need at least four vertices which are contained in $B_{m} \cup B^{\prime}$.

LEMMA 6. Let $n \geq 15$. If $\left|D \cap\left(B_{m} \cup B^{\prime}\right)\right|=4$, then $\left|D \cap B_{m-1}\right| \geq 3$, and if B_{m-1} is external, then $\left|D \cap B_{m-1}\right| \geq 4$.

Proof. $B_{m} \cup B^{\prime}$ is a $4 \square 8$ block, and, by Lemma 5 , it contains at least 4 vertices of D. If $\left|B_{m} \cup B^{\prime}\right|=4$ holds, then $\left(P_{4}\right)_{n-7} \cap D=\emptyset$ and $\left|\left(P_{4}\right)_{n-6} \cap D\right| \leq 1$ must hold.

If B_{m-1} is an internal block, then at most the first two columns of B_{m-1} can be 2 -dominated by vertices of B_{m-2}.

By the same arguments as in the proof of Lemma 4, we obtain that $\left|D \cap B_{m-1}\right|$ ≥ 3 holds. If B_{m-1} is already external (i.e. $n=15$), then we need at least four vertices to 2 -dominate all vertices of B_{m-1}, which means that $\left|D \cap B_{m-1}\right| \geq 4$.

Let D be any 2 -dominating set. Again we assume that there are s blocks containing only two vertices of D. From Lemma 6 , if the block $B_{m} \cup B^{\prime}$ contains only four vertices of D, then B_{m-1} cannot be a block containing only two vertices of D. Therefore, we can again apply Lemma 4 to show that $|D| \geq$ $3\left\lfloor\frac{n}{7}\right\rfloor+2=|S|$.

The case $n=8$ can be checked directly.
If $n=7 m+2$ or $n=7 m+3$, we cannot have a minimal 2 -dominating set with less vertices than in the case $n=7 m+1$. Therefore, our result also holds in these cases.
Case 3: $n=7 m+4$.
LEMMA 7. $\left|D \cap B^{\prime}\right| \geq 2$ for any 2-dominating set D.
Proof. B^{\prime} is a $4 \square 4$ block. At most the first two columns can be 2 -dominated by vertices from B_{m-1}. To 2-dominate the remaining vertices, we need at least two vertices which are contained in B^{\prime}.

LEmmA 8. Let $\left|D \cap B^{\prime}\right|=2$. Then $\left|D \cap B_{m}\right| \geq 3$ if B_{m} is internal, and $\left|D \cap B_{m}\right| \geq 4$ if B_{m} is external.

Proof. The same kind of argument as in the proofs of the above lemmas immediately lead to this result.

We now assume that there exist s blocks $B_{j_{i}}, 1 \leq s, j_{i}<m-1$, with $\left|B_{j_{i}} \cap D\right|=2$. Let $\left|B_{m} \cap D\right|=3$. Then, by Lemma 4, there are also $s+1$ blocks $B_{k_{i}}$, with $\left|B_{k_{i}} \cap D\right| \geq 4$. This, together with Lemma 8 , is sufficient to show that $|D| \geq|S|$ holds for every 2 -dominating set D.

If $\left|D \cap B_{m}\right| \geq 4$ holds, we again assume that there are s blocks $B_{j_{2}}$, $j_{i} \leq m-1$, which contain only two vertices of D. As above, Lemma 4 now immediately implies that there are also s blocks $B_{k_{i}}$ with $\left|B_{k_{\imath}} \cap D\right| \geq 4$, and then again $|D| \geq|S|$.

For $n=7 m+5$ minimality follows directly from the fact that we need at least as many vertices to 2 -dominate $P_{4} \square P_{n}$ as in the case of $n=7 m+4$.
Case 4: $n=7 m+6$.

LEMMA 9. $\left|D \cap B^{\prime}\right| \geq 3$ for any 2-dominating set D.
Proof. The same as in Lemma 7.
LEMMA 10. If $\left|D \cap B^{\prime}\right|=3$, then $\left|D \cap B_{m}\right| \geq 3$.
Proof. The same as in the Lemma 6.
If B^{\prime} contains at least four vertices, then we can again apply Lemma 4 as above to obtain that $|D| \geq|S|$ holds. If $\left|B^{\prime} \cap D\right|=3$ holds, then B_{m} contains more than two vertices of D, and Lemma 4 again completes the proof.

The results about $\gamma_{2}\left(P_{5} \square P_{n}\right), \gamma_{2}\left(P_{6} \square P_{n}\right)$ and $\gamma_{2}\left(P_{7} \square P_{n}\right)$ are given without proof of minimality, because these proofs are long and tedious. They go along similar lines as for $\gamma_{2}\left(P_{4} \square P_{n}\right)$. We partition graph into blocks. Then we consider how many vertices we must at least have on some block. On $P_{5} \square P_{n}$ we have $5 \square 6$ blocks, on $P_{6} \square P_{n} 6 \square 5$ blocks and on $P_{7} \square P_{n} 7 \square 6$ blocks.

Theorem 5. For $n \geq 2$

$$
\gamma_{2}\left(P_{5} \square P_{n}\right)= \begin{cases}3\left\lfloor\frac{n}{6}\right\rfloor+1, & n \equiv 1(\bmod 6), \\ 3\left\lfloor\frac{n}{6}\right\rfloor+2, & n \equiv 2(\bmod 6), \\ 3\left\lfloor\frac{n}{6}\right\rfloor+3, & n \equiv 3,4(\bmod 6), \\ 3\left\lfloor\frac{n}{6}\right\rceil+1, & n \equiv 5,0(\bmod 6)\end{cases}
$$

Proof. We consider the set

$$
\begin{aligned}
S= & \left\{(1,4+6 k): k=0,1, \ldots,\left\lfloor\frac{n-4}{6}\right\rfloor\right\} \cup\left\{(3,1+6 k): k=0,1, \ldots,\left\lfloor\frac{n-1}{6}\right\rfloor\right\} \\
& \cup\left\{(5,4+6 k): k=0,1, \ldots,\left\lfloor\frac{n-4}{6}\right\rfloor\right\} .
\end{aligned}
$$

S is a 2 -dominating set of $P_{5} \square P_{n}$ for $n \equiv 1,4(\bmod 6)$.

$$
S_{1}= \begin{cases}S \cup\{(3, n)\}, & n \equiv 2,5,0(\bmod 6) \\ S \cup\{(1, n),(5, n)\}, & n \equiv 3(\bmod 6)\end{cases}
$$

S_{1} is a 2 -dominating set for $n \equiv 2,3,5,0(\bmod 6)$.
Hence, we have 2 -dominating sets with the following cardinalities:

$$
\begin{cases}3\left\lfloor\frac{n}{6}\right\rfloor+1 & \text { if } n \equiv 1(\bmod 6) \\ 3\left\lfloor\frac{n}{6}\right\rfloor+2 & \text { if } n \equiv 2(\bmod 6) \\ 3\left\lfloor\frac{n}{6}\right\rfloor+3 & \text { if } n \equiv 3,4(\bmod 6) \\ 3\left\lceil\frac{n}{6}\right\rceil+1 & \text { if } n \equiv 5,0(\bmod 6)\end{cases}
$$

Theorem 6. For $n \geq 2$,

$$
\gamma_{2}\left(P_{6} \square P_{n}\right)= \begin{cases}3\left\lfloor\frac{n}{5}\right\rfloor+1, & n \equiv 0(\bmod 5), \\ 3\left\lfloor\frac{n}{5}\right\rfloor+2, & n \equiv 1,2(\bmod 5), \quad n \neq 6,7, \\ 3\left\lfloor\frac{n}{5}\right\rfloor+3, & n \equiv 3,4(\bmod 5), \quad n \neq 3,4, \\ 2, & n=3, \\ 4, & n=4,6, \\ 6, & n=7 .\end{cases}
$$

Proof. We consider the set

$$
\begin{aligned}
S= & \left\{(1,1+10 k): k=0,1, \ldots,\left\lfloor\frac{n-1}{10}\right\rfloor\right\} \cup\left\{(1,7+10 k): k=0,1, \ldots,\left\lfloor\frac{n-7}{10}\right\rfloor\right\} \\
& \cup\left\{(3,4+10 k): k=0,1, \ldots,\left\lfloor\frac{n-4}{10}\right\rfloor\right\} \cup\left\{(4,9+10 k): k=0,1, \ldots,\left\lfloor\frac{n-9}{10}\right\rfloor\right\} \\
& \cup\left\{(6,6+10 k): k=0,1, \ldots,\left\lfloor\frac{n-6}{10}\right\rfloor\right\} \cup\left\{(6,12+10 k): k=0,1, \ldots,\left\lfloor\frac{n-2}{10}\right\rfloor-1\right\} \\
& \cup\{(5,2)\} .
\end{aligned}
$$

S is 2 -dominating set for $n \equiv 4(\bmod 5), n \neq 4$.
The 2 -dominating set for other n (when there are even number of $6 \square 5$ blocks) is

$$
\begin{array}{lr}
S_{1}=S \cup\{(6, n)\} & \text { for } n \equiv 1(\bmod 5) \\
S_{1}=(S \backslash\{(1, n-1)\}) \cup\{(2, n-1)\} & \text { for } n \equiv 2(\bmod 5) \\
S_{1}=S \cup\{(3, n)\} & \text { for } n \equiv 3(\bmod 5) \\
S_{1}=(S \backslash\{(6, n-4),(4, n-1)\}) \cup\{(5, n-4),(3, n),(6, n-2)\} \\
& \text { for } n \equiv 0(\bmod 5)
\end{array}
$$

When there are odd number of $6 \square 5$ blocks, we have the symmetrical case. Then in S_{1} instead $(6, n)$ we must take $(1, n)$, and so on.

It follows that

$$
\gamma_{2}\left(P_{6} \square P_{n}\right) \leq|S|= \begin{cases}3\left\lfloor\frac{n}{5}\right\rfloor+1, & n \equiv 0(\bmod 5), \\ 3\left\lfloor\frac{n}{5}\right\rfloor+2, & n \equiv 1,2(\bmod 5), \quad n \neq 6,7 \\ 3\left\lfloor\frac{n}{5}\right\rfloor+3, & n \equiv 3,4(\bmod 5), \quad n \neq 3,4 \\ 2, & n=3, \\ 4, & n=4,6, \\ 6, & n=7,\end{cases}
$$

ON THE k-DOMINATING NUMBER OF CARTESIAN PRODUCTS OF TWO PATHS

Theorem 7. We have

$$
\gamma_{2}\left(P_{7} \square P_{n}\right)= \begin{cases}2, & n=2, \\ 4\left\lfloor\frac{n}{6}\right\rfloor+2, & n \equiv 0,1(\bmod 6), \\ 4\left\lfloor\frac{n}{6}\right\rfloor+3, & n \equiv 2(\bmod 6), \quad n \neq 2 \\ 4\left\lfloor\frac{n}{6}\right\rfloor+4, & n \equiv 3,4(\bmod 6) \\ 4\left\lfloor\frac{n}{6}\right\rfloor+5, & n \equiv 5(\bmod 6)\end{cases}
$$

Proof. We consider the set

$$
\begin{aligned}
S= & \left\{(1,4+6 k): k=0,1, \ldots,\left\lfloor\frac{n-4}{6}\right\rfloor\right\} \cup\left\{(3,1+6 k): k=0,1, \ldots,\left\lfloor\frac{n-1}{6}\right\rfloor\right\} \\
& \cup\left\{(5,4+6 k): k=0,1, \ldots,\left\lfloor\frac{n-4}{6}\right\rfloor\right\} \cup\left\{(7,7+6 k): k=0,1, \ldots,\left\lfloor\frac{n-1}{6}\right\rfloor-1\right\} \\
& \cup\{(6,2)\}
\end{aligned}
$$

S is a 2 -dominating set of $P_{7} \square P_{n}$ for $n \equiv 1,4(\bmod 6), n \neq 1$.

$$
S_{1}= \begin{cases}S \cup\{(3, n)\}, & n \equiv 2(\bmod 6) \\ S \cup\{(1, n),(5, n)\}, & n \equiv 3(\bmod 6) \\ S \cup\{(5, n)\}, & n \equiv 5(\bmod 6) \\ S \cup\{(3, n),(7, n)\}, & n \equiv 0(\bmod 6)\end{cases}
$$

S_{1} is 2 -dominating set for $n \equiv 2,3,5,0(\bmod 6)$.
Hence we have 2 -dominating sets with the following cardinalities:

$$
\begin{cases}2, & n=2 \\ 4\left\lfloor\frac{n}{6}\right\rfloor+2, & n \equiv 0,1(\bmod 6) \\ 4\left\lfloor\frac{n}{6}\right\rfloor+3, & n \equiv 2(\bmod 6), n \neq 2 \\ 4\left\lfloor\frac{n}{6}\right\rfloor+4, & n \equiv 3,4(\bmod 6) \\ 4\left\lfloor\frac{n}{6}\right\rfloor+5, & n \equiv 5(\bmod 6)\end{cases}
$$

4. Some general results

Theorem 8. For m odd and $k \geq m-1$,

$$
\gamma_{k}\left(P_{m} \square P_{n}\right) \leq\left\lceil\frac{n}{2 k-m+2}\right\rceil .
$$

Proof. We consider the set

$$
S=\left\{\left(\left\lfloor\frac{m}{2}\right\rfloor+1, k-\left\lfloor\frac{m}{2}\right\rfloor+1+(2 k-m+2) l\right): l=0,1, \ldots,\left\lfloor\frac{n}{2 k-m+2}\right\rfloor-1\right\} .
$$

ANTOANETA KLOBUČAR

For $n \equiv 0(\bmod (2 k-m+2)), S$ is a k-dominating set and $|S|=\frac{n}{2 k-m+2}$.
For $n \equiv k-\left\lfloor\frac{m}{2}\right\rfloor+1, \ldots,(2 k-m+1)(\bmod (2 k-m+2))$,

$$
S_{1}=S \cup\left\{\left(\left\lfloor\frac{m}{2}\right\rfloor+1, k-\left\lfloor\frac{m}{2}\right\rfloor+1+(2 k-m+2) \cdot\left\lfloor\frac{n}{2 k-m+2}\right\rfloor\right)\right\}
$$

is a k-dominating set and

$$
|S|=\left\lceil\frac{n}{2 k-m+2}\right\rceil \text {. }
$$

For $n \equiv 1, \ldots,\left(k-\left\lfloor\frac{m}{2}\right\rfloor\right)(\bmod (2 k-m+2)), S_{1}=S \cup\left\{\left(\left\lfloor\frac{m}{2}\right\rfloor+1, n\right)\right\}$ is a k-dominating set and $\left|S_{1}\right|=\left\lceil\frac{n}{2 k-m+2}\right\rceil$.
Theorem 9. For m even and $k \geq m-1$

$$
\gamma_{k}\left(P_{m} \square P_{n}\right) \leq \begin{cases}\frac{n}{2 k-m+2}+1, & n \equiv 0(\bmod (2 k-m+2)), \\ \left\lceil\frac{n}{2 k-m+2}\right\rceil, & \text { otherwise. }\end{cases}
$$

Proof. We consider the set

$$
\begin{aligned}
S= & \left\{\left(\frac{m}{2}, k-\frac{m}{2}+1+(2 k-m+2) 2 l\right): l=0,1, \ldots,\left\lfloor\frac{1}{2}\left(\frac{n-k+\frac{m}{2}-1}{2 k-m+2}\right)\right\rfloor\right\} \\
& \cup\left\{\left(\frac{m}{2}+1,3 k-\frac{3 m}{2}+3+(2 k-m+2) 2 l\right): l=0,1, \ldots,\left\lfloor\frac{1}{2}\left(\frac{n-k+\frac{m}{2}-1}{2 k-m+2}\right)\right\rfloor-1\right\} .
\end{aligned}
$$

For $n \equiv k-\frac{m}{2}+1, \ldots, 2 k-m+1(\bmod (2 k-m+2)), S$ is a k-dominating set and

$$
|S|=\left\lceil\frac{n}{2 k-m+2}\right\rceil \text {. }
$$

For $n \equiv 0(\bmod (2 k-m+2)), S_{1}=S \cup\left\{\left(\frac{m}{2}, n\right)\right\}$ is a k-dominating set and $\left|S_{1}\right|=\frac{n}{2 k-m+2}+1$.

For $n \equiv 1, \ldots, k-\frac{m}{2}(\bmod (2 k-m+2))$, also $S_{1}=S \cup\left\{\left(\frac{m}{2}, n\right)\right\}$ is a k-dominating set and $\left|S_{1}\right|=\left\lceil\frac{n}{2 k-m+2}\right\rceil$.
Proposition 1. For any two paths $P_{m}, P_{n}, m, n \geq 2$,

$$
\lim _{m, n \rightarrow \infty} \frac{\gamma_{k}\left(P_{m} \square P_{n}\right)}{m n}=\frac{1}{2 k^{2}+2 k+1} .
$$

Proof. We follow the ideas used in [15] for the cardinal product.
We consider the set $H=\left\{(i, j): j \equiv(2 k+1) i\left(\bmod \left(2 k^{2}+2 k+1\right)\right)\right\} . H$ contains $\left\lceil\frac{n m}{2 k^{2}+2 k+1}\right\rceil$ vertices.

Vertex $(i, j) k$-dominates all vertices on a $(k+1) \square(k+1)$ block on $P_{m} \square P_{n}$. There are $2 k^{2}+2 k+1$ such vertices.

We take $(i, j) \in H\left(j \equiv(2 k+1) i\left(\bmod \left(2 k^{2}+2 k+1\right)\right)\right)$. This vertex can k-dominate all vertices at distance $\leq k$.

The vertices at distance $k+1$ from (i, j) are

$$
\begin{aligned}
& \{(i, j-k-1),(i+1, j-k), \ldots,(i+k, j-1) \\
& \quad(i+k+1, j),(i+k, j+1), \ldots,(i+1, j+k) \\
& \quad(i, j+k+1),(i-1, j+k), \ldots,(i-k, j+1) \\
& \quad(i-k-1, j),(i-k, j-1), \ldots,(i-1, j-k)\}
\end{aligned}
$$

It is easy to see (by the same methods as in [13]) that all these vertices are k-dominated by vertices of H or vertices of the kind $(1, r),(m, r),(s, 1),(s, n)$, $1 \leq r \leq n, 1 \leq s \leq m$.

Figure 2. $(k=2)$.
Then $D=H \cup\{(1, s),(m, s),(r, 1),(r, n): 1 \leq s \leq n, 1 \leq r \leq m\}$ is a k-dominating set and

$$
|D|=\left\lceil\frac{n m}{2 k^{2}+2 k+1}\right\rceil+2 m+2 n .
$$

From the fact that one vertex can k-dominate at most $2 k^{2}+2 k+1$ vertices it follows that D must contain at least $\frac{m n}{2 k^{2}+2 k+1}$ vertices. Then

$$
\begin{aligned}
& \frac{m n}{2 k^{2}+2 k+1} \leq \gamma_{k}\left(P_{m} \square P_{n}\right) \leq\left(\frac{m n}{2 k^{2}+2 k+1}+2 m+2 n\right), \\
& \frac{1}{2 k^{2}+2 k+1} \leq \frac{\gamma_{k}\left(P_{m} \square P_{n}\right)}{m n} \leq \frac{1}{m n} \cdot\left(\frac{m n}{2 k^{2}+2 k+1}+2 m+2 n\right) .
\end{aligned}
$$

For $m, n \rightarrow \infty$ the right hand side of this inequality tends to $\frac{1}{2 k^{2}+2 k+1}$. Therefore

$$
\lim _{m, n \rightarrow \infty} \frac{\gamma_{k}\left(P_{m} \square P_{n}\right)}{m n}=\frac{1}{2 k^{2}+2 k+1} .
$$

ANTOANETA KLOBUČAR

REFERENCES

[1] EL-ZAHAR, M.-PAREEK, C. M. : Domination number of products of graphs, Ars Combin. 31 (1991), 223-227.
[2] FAUDREE, R. J.-SCHELP, R. H.: The domination number for the product of graphs, Congr. Numer. 79 (1990), 29-33.
[3] GRAVIER, S.-KHELLADI, A.: On the dominating number of cross product of graphs, Discrete Math. 145 (1995), 273-277.
[4] HAYNES, T.-HEDETNIEMI, S. T.-SLATER, P. J. : Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[5] JACOBSON, M. S.-KINCH, L. F.: On the domination number of products of graphs I, Ars Combin. 18 (1983), 33-44.
[6] JACOBSON, M. S.-KINCH, L. F.: On the domination number of the products of graphs II: Trees, J. Graph Theory 10 (1986), 97-106.
[7] JAENISCH, C. F. de: Applications de l'Analyse Mathematique an Jenudes Echecs, Petrograd, 1862.
[8] JHA, P. K.-KLAVŽAR, S.: Independance and matching in direct-product graphs, Ars Combin. 50 (1998), 53-63.
[9] JHA, P. K.-KLAVŽAR, S.—ZMAZEK, B. : Isomorphic components of Kronecker product of bipartite graphs, Discuss. Math. Graph Theory 17 (1997), 301-309.
[10] KLAVŽAR, S.-SEIFTER, N. : Dominating Cartesian products of cycles, Discrete Appl. Math. 59 (1995), 129-136.
[11] KLAVZ̆AR, S.-ZMAZEK, B.: On a Vizing-like conjecture for direct product graphs, Discrete Math. 156 (1996), 243-246.
[12] KLOBUČAR, A.: Domination numbers of cardinal products of graphs, Math. Slovaca 49 (1999), 387-402.
[13] KLOBUČAR, A.: The domination numbers of the cardinal products $P_{6} \square P_{n}$, Math. Commun. 4 (1999), 241-250.
[14] KLOBUČAR, A.-SEIFTER, N.: K-dominating sets of the cardinal products of paths, Ars Combin. 55 (2000), 33-41.
[15] KLOBUČAR, A.: K-dominating sets of $P_{2 k+2} \times P_{n}$ and $P_{m} \times P_{n}$, Ars Combin. 58 (2001), 279-288.
[16] VIZING, V. G.: The Cartesian product of graphs, Vychisl. Sistemy 9 (1963), 30-43.

Received October 18, 2001
Revised February 9, 2004

Department of Mathematics
Faculty of Economics
University of Osijek
Gajev trg 7
HR-31 000 Osijek
CROATIA
E-mail: aneta@oliver.efos.hr

[^0]: 2000 Mathematics Subject Classification: Primary 05C69.
 Keywords: k-dominating number, Cartesian product, path.

