Mathematic Slovaca

Peter John Owens
Self-dual non-Hamiltonian polyhedra with only two types of faces

Mathematica Slovaca, Vol. 48 (1998), No. 2, 137--148

Persistent URL: http://dml.cz/dmlcz/128975

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1998

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

SELF-DUAL NON-HAMILTONIAN POLYHEDRA WITH ONLY TWO TYPES OF FACES

Peter John Owens
(Communicated by Martin Škoviera)

Abstract

For all $q \geq 8$ it is shown that the family of all self-dual polyhedral graphs whose faces are all triangles or q-gons contains non-hamiltonian graphs and even has shortness exponent less than one.

1. Introduction

Graphs are assumed to be simple (without loops or multiple edges). For concepts and notation not explained here, see Bondy and Murty [1].

For a graph $G, v(G)=|V(G)|$ and $h(G)$ denotes the circumference (length of a maximum cycle). For a family of graphs Γ, the shortness exponent $\sigma(\Gamma)$ is defined, as in [2], by

$$
\sigma(\Gamma)=\liminf _{G \in \Gamma} \frac{\log h(G)}{\log v(G)}
$$

Also, $\sigma\left(\left\langle G_{n}\right\rangle\right)$ denotes the shortness exponent of the family of all graphs occurring in the sequence $\left\langle G_{n}\right\rangle$.

For any polyhedral (3-connected planar) graph G, G^{*} denotes the dual graph, and v^{*}, e^{*}, f^{*} denote the face, edge, vertex of G^{*} corresponding to the vertex v, edge e, face f of G (respectively).

Let $\Gamma(r ; p, q)$ be the family of all r-regular polyhedral graphs whose faces are all p-gons or q-gons, $p<q$. Let $\Gamma(p, q ; r)$ be the dual family of all r-gonal polyhedral graphs whose vertices are all p-valent or q-valent, $p<q$. A number of papers have given results of the form $\sigma \leq \sigma_{0}<1$ for such families (or some of their subfamilies) for various values of p, q and r. See [3], [4], [5], [6], [7], [8], [10], [11].

Suppose that G is a self-dual polyhedral graph whose faces are all p-gons or q-gons, $p<q$ and whose vertices are, therefore, all p-valent or q-valent. It is

[^0]easy to show with the aid of Euler's formula that $p=3$. Let $D(q)$ denote the family of all self-dual polyhedral graphs whose faces are all triangles or q-gons, $q>3$. It is a subfamily of $\Gamma(3, q ; 3, q)$, the family of all polyhedral graphs whose faces are all triangles or q-gons and whose vertices are all 3 -valent or q-valent, $q>3$.

In the main part of the paper, we construct, for all $q \geq 8$, an infinite sequence $\left\langle M_{n}\right\rangle$ of graphs in $\Gamma(3, q ; 3, q)$ such that $\sigma\left(\left\langle M_{n}\right\rangle\right)<1$ and also $\sigma\left(\left\langle M_{n}^{*}\right\rangle\right)<1$. In the terminology of W alther [11], this means that $\Gamma(3, q ; 3, q)$ is minishort. Thus, we have extended to all $q \geq 8$ a result proved in [11] for $q=8,10$.

We then prove a lemma that enables us to obtain a sequence of self-dual non-hamiltonian graphs in $D(q)$. This leads to our main result, namely:

Theorem. $\sigma(D(q))<1$ for all $q \geq 8$.
In conclusion, two open problems are presented.

2. Main construction

We begin by obtaining, for all $q \geq 8$, a graph L in $\Gamma(3, q ; 3, q)$ and a set $X \subset V(L)$ such that $s>r$, where $r=|X|$ and $s=\omega(L-X)$. The graph L is non-hamiltonian, and, in fact, no cycle in L contains vertices of more than r of the s components of $L-X$.

There are three special cases $q=8,9,10$. In each of these cases, L is actually in $\Gamma(3, q ; 3), X$ is defined as the set of all q-valent vertices and all the components of $L-X$ are isolated vertices. For $q=8, L$ is the well-known graph (see, for instance, [7], [11]) obtained from the graph of the octahedron by inserting a new vertex in each face and joining it by new edges to the three vertices of that face. Here $r=6$ and $s=8$. For $q=10, L$ is obtained similarly but starting with the icosahedron, so $r=12$ and $s=20$. For $q=9, L$ is again obtained from the icosahedron, but vertices are inserted in only 16 faces. The 4 faces to be left empty are chosen so that no two have a vertex in common. Here, $r=12$ and $s=16$.

For $q \geq 11$ there must be some q-gons in L because then $\Gamma(3, q ; 3)$ is null. Our construction of L depends on the value of q modulo 6 . In each of the six cases a fragment J is defined and then k copies of J, where k is 3 or 4 , are joined together in a standard way to form L. A special notation is used in the diagrams that specify J (see Figures 3.1 to 3.6). Numbers inside a 4 -gon and near to its corners indicate the presence of vertices and edges, not shown explicitly, that contribute these numbers to the valencies of the four vertices. Figure 1 shows what is actually inside the 4 -gon when the numbers are $2,4,2,5$ as shown. The construction is similar whenever the numbers take the form $2, a, 2, b$. In or-
der that the new non-triangular face inside the 4 -gon shall be a q-gon, the condition $a+b+2=q$ must be satisfied. The significance of numbers $1,3,1,3$ inside a 4 -gon is shown in Figure 2. All the vertices inside 4 -gons are 3 -valent and all the vertices of the 4 -gons themselves become q-valent in L.

Figure 1. Part of J when $q=11$. Numbers $2,4,2,5$ in a 4-gon.

Figure 2. Numbers $1,3,1,3$ in a 4 -gon.

In all six cases, we now construct L, specify X and give the values of r and s. Vertices of J that become vertices of the set X in L are denoted in the diagrams by large dots. Any component of $L-X$ that is neither an isolated vertex nor a (non-trivial) path will be called large.

Case 1: $q=6 t+5, t \geq 1$.
In Figure 3.1, the part of J lying to the right of the line $C_{t+1} D_{t+1}$ is the mirror image of the part to the left of $C_{t} D_{t}$, except that it does not contain any vertices of X. The numbers in the i th 4 -gon from the left are $2,6 i-2,2$, $6 t-6 i+5$, reading clockwise from the top left, $1 \leq i \leq t$. To obtain L, take k copies of J and identify the edges $A D_{0}, D_{0} D_{1}, \ldots, D_{2 t} D_{2 t+1}, D_{2 t+1} B$ along one
"side" of the j th copy of J with the edges $A C_{0}, C_{0} C_{1}, \ldots, C_{2 t} C_{2 t+1}, C_{2 t+1} B$, respectively, along the other side of the $(j+1)$ th copy (or the first copy if $j=k), 1 \leq j \leq k$. It is easy to check that all the vertices of the 4 -gons become $(6 t+5)$-valent in L and that all non-triangular faces are $(6 t+5)$-gons. Take $k=3$ in order to make the vertices A, B at the "ends" of $L 3$-valent. Although 4 vertices of J are shown as large dots and there are 3 copies of J, there are only 6 vertices in X because pairs of vertices are identified when copies of J are joined. Hence $r=6$. One component of $L-X$ is the isolated vertex A, six components are paths inside the three 4 -gons $C_{0} C_{1} D_{1} D_{0}$ and there is one large component that contains all vertices to the right of $C_{1} D_{1}$ in all three copies of J. Hence $s=8$.

Figure 3.1. J when $q=6 t+5$.
Case 2: $\quad q=6 t+6, t \geq 1$.
Exceptionally, $k=4$ in this case and the construction of L involves two different forms of J, used alternately. In Figure 3.2, two adjacent copies of J are shown.

Figure 3.2. J when $q=6 t+6$.

Note the dependence on whether t is odd or even. When the other two copies of J are joined to those shown (as before, by identifying sides), a graph with a 4 -gon at each end is produced. The two 4 -gons are then filled as in Figure 2, using the orientation indicated by the numbers 1,3 . In this case, $r=8$. When
$t>1$, two components of $L-X$ are isolated vertices, eight components are paths and there is one large component. Hence $s=11$. In the special case $t=1$, two extra isolated vertex components replace the large component, so $s=12$.

Case 3: $\quad q=6 t+7, t \geq 1$.
In Figure 3.3, the part of J to the right of the 4 -gon containing $1,3,1,3$ is the mirror image of the part to the left. Take $k=3$ so that L will have triangular end faces. Here, $r=6$ and $s=8$. Six components of $L-X$ are isolated vertices and the other two components are large.

Figure 3.3. J when $q=6 t+7$.

Figure 3.4. J when $q=6 t+8$.

Case 4: $\quad q=6 t+8, t \geq 1$.
This case closely resembles the previous one (compare Figures 3.3, 3.4). Take $k=3$ so that the end vertices of L will be 3 -valent. Here again $r=6$ and $s=8$. The components of $L-X$ are of the same types as in Case 3.

Case 5: $\quad q=6 t+9, t \geq 1$.
Take $k=3$ so that L will have a 3 -valent vertex at one end and a triangular face at the other end (see Figure 3.5). Once again $r=6$ and $s=8$. One component of $L-X$ is an isolated vertex, six components are paths and there is one large component.

Figure 3.5. J when $q=6 t+9$.

Figure 3.6. J when $q=6 t+10$.
Case 6: $\quad q=6 t+10, t \geq 1$.
This case closely resembles the previous one (compare Figures 3.5, 3.6). Once again $k=3, r=6$ and $s=8$. The components of $L-X$ are of the same types as in Case 5.

This completes the construction of L for all $q \geq 8$. Note that in all cases $L \in \Gamma(3, q ; 3, q), L$ is non-hamiltonian because $s>r$ and $L-X$ has at least one isolated vertex component.

For every $q \geq 8$ we now choose $s 3$-valent vertices of L, one belonging to each component of $L-X$, and call them the y-vertices of L. A y-vertex is of type 1 if it is incident (in L) with three triangles and adjacent to three q-valent vertices. A y-vertex is of type 2 if it is incident with two triangles and a q-gon and adjacent to two 3 -valent vertices and a q-valent vertex, where the two triangles are incident with the q-valent vertex. Every isolated vertex component of $L-X$ provides a y-vertex of type 1 . By inspection, for all $q \geq 8$ each path component or large component of $L-X$ provides at least one possible y-vertex of type 2 for L. In the case of a path component any vertex other than an end vertex can be the y-vertex.

The triangular face of the dual graph L^{*} that corresponds to a y-vertex of L is called a y^{*}-face. It is classified as type 1 or type 2 according to the type of the y-vertex. Larger graphs built out of copies of L and L^{*} contain y-vertices and y^{*}-faces inherited from them.

Let $H, K \in \Gamma(3, q ; 3, q)$, where H has a y-vertex y_{1}, and K has a y^{*}-face y_{2}^{*}. Form a new planar graph G from H and K by identifying the three vertices of $H-y_{1}$ that were adjacent (in H) to y_{1} with the three vertices of $K-E\left(y_{2}^{*}\right)$ that were incident (in K) with y_{2}^{*} in such a way that no vertex of valency greater
than q is produced. In every case, G is not unique. When y_{1} and y_{2}^{*} are both of type 2, there are two ways to identify the vertices, otherwise there are three ways. We say that G has been formed by attaching H to K (or K to H) using y_{1} and y_{2}^{*}. The process is easiest to visualize if H and K are mapped into the plane in such a way that y_{1} is incident with the unbounded face of H, and y_{2}^{*} is the unbounded face of K.

Lemma 1. We have:
(1) $G \in \Gamma(3, q ; 3, q)$,
(2) $v(G)=v(H)+v(K)-4$,
(3) $h(G) \leq h(H)+h(K)-4$.

Proof.

(1) is immediate.

For (2), note that in forming G, the vertex y_{1} has been deleted and three pairs of vertices have been identified.

To prove (3), consider a maximum cycle C in G. If C has non-trivial intersections with both $H-y_{1}$ and $K-E\left(y_{2}^{*}\right)$, then these intersections are paths, say P_{1} and P_{2} respectively. In H, we can form a cycle from P_{1}, y_{1} and two edges incident at y_{1}, so $\left|E\left(P_{1}\right)\right| \leq h(H)-2$. In K, we can form a cycle from P_{2} by adding two edges and one vertex of the face y_{2}^{*}, so $\left|E\left(P_{2}\right)\right| \leq h(K)-2$. Hence

$$
h(G)=\left|E\left(P_{1}\right)\right|+\left|E\left(P_{2}\right)\right| \leq h(H)+h(K)-4
$$

If C lies entirely in H (or in K), then the inequality still holds since $h(K) \geq$ $\delta(K)+1=4$ (or $h(H) \geq 4$, respectively).

Let $y_{i}, 1 \leq i \leq s$, be the y-vertices of L. For all $q \geq 8, L$ has some y-vertices of type 1 , so we may assume that y_{1} is of type 1 . The dual graph L^{*} has y^{*}-faces $y_{i}^{*}, 1 \leq i \leq s$, where y_{1}^{*} is of type 1 . Obtain M from L by attaching $s-1$ copies of L^{*} to it, using $y_{i}, 2 \leq i \leq s$, and the face of y_{1}^{*} of each copy of L^{*}. Because the process of attaching graphs to one another is not uniquely defined, neither is M. This does not matter. Whichever of the possible forms of M we use, it has just one y-vertex y_{1} and $(s-1)^{2} y^{*}$-faces, $s-1$ in each copy of L^{*}.

A cycle in a graph enters a subgraph if its intersection with the subgraph contains at least one edge. Every cycle in L contains at most $r y$-vertices because the y-vertices on the cycle are separated by vertices from X. Hence every cycle in M that contains y_{1} enters at most $r-1$ of the $s-1$ copies of L^{*} and therefore enters at most $(r-1)(s-1)$ of the $(s-1)^{2} y^{*}$-faces. Every cycle in M that does not contain y_{1} enters at most $r(s-1) y^{*}$-faces.

We now used a standard sort of iterative construction. Let $M_{1}=M$ and, for $n \geq 1$, let M_{n+1} be a graph obtained from M_{n} by attaching as many copies of

PETER JOHN OWENS

M as there are y^{*}-faces in M_{n}, using these y^{*}-faces and the vertex y_{1} of every copy of M. The following lemma holds:

Lemma 2.

(1) M_{n} has $(s-1)^{2 n} y$-faces and one y-vertex.
(2) No cycle in M_{n} enters more than $r(r-1)^{n-1}(s-1)^{n} y^{*}$-faces.

This lemma is easy to prove by induction, so the proof is omitted. By the lemma,

$$
\begin{aligned}
& v\left(M_{n+1}\right)-v\left(M_{n}\right)=(s-1)^{2 n}(v(M)-4), \\
& h\left(M_{n+1}\right)-h\left(M_{n}\right) \leq r(r-1)^{n-1}(s-1)^{n}(h(M)-4) .
\end{aligned}
$$

These recurrence relations have solutions of the form

$$
\begin{aligned}
& v\left(M_{n}\right)=a(s-1)^{2 n}+b \\
& h\left(M_{n}\right) \leq c(r-1)^{n}(s-1)^{n}+d
\end{aligned}
$$

where a, b, c and d are certain constants such that $a>0$ and $c>0$. Hence

$$
\sigma\left(\left\langle M_{n}\right\rangle\right) \leq \frac{\log ((r-1)(s-1))}{\log (s-1)^{2}}=\frac{1}{2}\left(1+\frac{\log (r-1)}{\log (s-1)}\right)<1 .
$$

Consider the dual sequence $\left\langle M_{n}^{*}\right\rangle$. Its first term M^{*} is obtained from L^{*} by attaching $s-1$ copies of L to it, using $y_{i}^{*}, 2 \leq i \leq s$, and the vertex y_{1} of each copy of L. Thus M^{*} has one y^{*}-face y_{1}^{*} and $(s-1)^{2} y$-vertices.

Let C be a cycle in M^{*}. If its intersection with one of the copies of $L-y_{1}$ is not null, then it is a path P that can be converted into a cycle C^{\prime} in L by adding the vertex y_{1} and two edges incident at y_{1}. As C^{\prime} contains at most r of the y-vertices of L, P contains at most $r-1$ of them. Hence C contains at most $(r-1)(s-1) y$-vertices.

In place of Lemma 2, we have:

Lemma 2^{*}.

(1) M_{n}^{*} has $(s-1)^{2 n} y$-vertices and one y^{*}-face.
(2) No cycle in M_{n}^{*} contains more than $(r-1)^{n}(s-1)^{n} y$-vertices.

Reasoning similar to that for M_{n} leads to

$$
\begin{aligned}
& v\left(M_{n}^{*}\right)=a^{*}(s-1)^{2 n}+b^{*}, \\
& h\left(M_{n}^{*}\right) \leq c^{*}(r-1)^{n}(s-1)^{n}+d^{*},
\end{aligned}
$$

where a^{*}, b^{*}, c^{*} and d^{*} are constants such that $a^{*}>0$ and $c^{*}>0$.
Hence

$$
\sigma\left(\left\langle M_{n}^{*}\right\rangle\right) \leq \frac{1}{2}\left(1+\frac{\log (r-1)}{\log (s-1)}\right)<1 .
$$

3. Proof of the theorem

The sequences $\left\langle M_{n}\right\rangle$ and $\left\langle M_{n}^{*}\right\rangle$ will be combined to give a sequence of selfdual non-hamiltonian graphs by using the following lemma.

Lemma 3. Suppose that $H \in \Gamma(3, q ; 3, q)$ and that H has a y-vertex v of type 1. Let G be obtained by attaching H to H^{*}, using v and v^{*}. Then $G \in D(q)$.

Proof. By Lemma $1, G \in \Gamma(3, q ; 3, q)$. To show that G is self-dual, we define an involutory bijection θ from the vertices, edges and faces of G to the faces, edges and vertices of G, respectively, such that θ preserves incidences and adjacencies.

Let ϕ be the bijection from the vertices, edges and faces of H to the faces, edges and vertices of H^{*}, respectively, that is used to define H^{*}. For every element (vertex, edge or face) e of H that remains unaltered in G, define $e \theta=$ $e \phi$. For every element e of H^{*} that remains unaltered in G, define $e \theta=e \phi^{-1}$.

Figure 4. Attaching H^{*} to H.
As in Figure 4 , let v_{1}, v_{2}, v_{3} be the vertices of H adjacent to v and let f_{1}, f_{2}, f_{3} be the triangular faces, with boundaries $v v_{2} v_{3}, v v_{3} v_{1}, v v_{1} v_{2}$, respectively, that are incident with v. In H^{*}, the 3 -valent vertices on the boundary of v^{*} are $f_{1}^{*}, f_{2}^{*}, f_{3}^{*}$ and the faces adjacent to v^{*} are $v_{1}^{*}, v_{2}^{*}, v_{3}^{*}$. These three faces are q-gons because v_{1}, v_{2}, v_{3} are q-valent in H. When H is attached to H^{*}, the vertex v and the edges $v v_{1}, v v_{2}, v v_{3}, f_{2}^{*} f_{3}^{*}, f_{3}^{*} f_{1}^{*}, f_{1}^{*} f_{2}^{*}$ disappear. The triples of vertices v_{1}, v_{2}, v_{3} in $H-v$, and $f_{1}^{*}, f_{2}^{*}, f_{3}^{*}$ in $H^{*}-E\left(v^{*}\right)$ become identified in G, but in opposite cyclic orders. We may suppose that v_{1} is identified with f_{1}^{*}, v_{2} with f_{3}^{*}, v_{3} with f_{2}^{*} and we denote the resulting q-valent vertices of

PETER JOHN OWENS

G by $v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}$, respectively. The faces f_{1}, f_{2}, f_{3} of H become merged with the faces $v_{1}^{*}, v_{3}^{*}, v_{2}^{*}$ of H^{*} to yield q-gons $f_{1}^{\prime}, f_{2}^{\prime}, f_{3}^{\prime}$ in G, respectively. To complete the definition of θ, let

$$
\begin{array}{lll}
v_{1}^{\prime} \theta=f_{1}^{\prime}, & v_{2}^{\prime} \theta=f_{3}^{\prime}, & v_{3}^{\prime} \theta=f_{2}^{\prime}, \\
f_{1}^{\prime} \theta=v_{1}^{\prime}, & f_{3}^{\prime} \theta=v_{2}^{\prime}, & f_{2}^{\prime} \theta=v_{3}^{\prime} .
\end{array}
$$

Clearly, θ^{2} is the identity mapping. We claim that incidences and adjacencies are preserved under θ. Where elements of H only (or H^{*} only) are involved and they remain unaltered in G, this is clear. In other cases, it is easy to verify and we just give an example. In Figure 4, the faces other than f_{1}, f_{2}, f_{3} that are incident (in H) with the edges $v_{2} v_{3}, v_{3} v_{1}, v_{1} v_{2}$ are denoted by g_{1}, g_{2}, g_{3}, respectively. In G, v_{2}^{\prime} is incident with $f_{3}^{\prime}, f_{1}^{\prime}$ and adjacent to g_{3}^{*}. Hence, f_{3}^{\prime} ($=v_{2}^{\prime} \theta$) should be incident with $v_{2}^{\prime}, v_{1}^{\prime}$ and adjacent to g_{3}. This is indeed the case.

Choose $q \geq 8$ and any n. Apply Lemma 3 , with $H=M_{n}, v=y_{1}$, and let $G=G_{n}$. Then $G_{n} \in D(q)$ and, by Lemma 1 ,

$$
\begin{aligned}
& v\left(G_{n}\right)=v\left(M_{n}\right)+v\left(M_{n}^{*}\right)-4=a^{\prime}(s-1)^{2 n}+b^{\prime}, \\
& h\left(G_{n}\right) \leq h\left(M_{n}\right)+h\left(M_{n}^{*}\right)-4 \leq c^{\prime}(r-1)^{n}(s-1)^{n}+d^{\prime},
\end{aligned}
$$

where $a^{\prime}=a+a^{*}>0, b^{\prime}=b+b^{*}-4, c^{\prime}=c+c^{*}>0$, and $d^{\prime}=d+d^{*}-4$. Since $\sigma(D(q)) \leq \sigma\left(\left\langle G_{n}\right\rangle\right)$, it follows that

$$
\sigma(D(q)) \leq \frac{1}{2}\left(1+\frac{\log (r-1)}{\log (s-1)}\right)<1
$$

for all $q \geq 8$. This completes the proof of the theorem.
The theorem gives an upper bound independent of q for $\sigma(D(q))$. Suppose that we exclude the worst case $q=9$. Then we have

$$
\sigma(D(q)) \leq \frac{1}{2}\left(1+\log _{10} 7\right)
$$

for all $q \geq 10$ (and for $q=8$).

4. Final remarks

Tkáč [9] constructed non-hamiltonian graphs in $\Gamma(3 ; 3,7)$ and we can use them to obtain non-hamiltonian graphs in $D(7)$. Take H^{*} to be the graph that is denoted by G_{n} in [9]. Then

$$
v\left(H^{*}\right)=12+416 n, \quad h\left(H^{*}\right) \leq v\left(H^{*}\right)-n .
$$

For the dual graph H, Euler's formula gives $v(H)=\frac{1}{2} v\left(H^{*}\right)+2$, so

$$
v(H)=8+208 n, \quad h(H) \leq v(H)
$$

Graphs in $\Gamma(3 ; 3,7)$ cannot have adjacent triangles because they are 3-connected. Hence, we may choose any triangle in H^{*} to use as v^{*} in Lemma 3. Attach H^{*} to its dual H, using v^{*} and v, and denote the resulting graph in $D(7)$ by L_{n}. We have

$$
\begin{aligned}
& v\left(L_{n}\right)=v(H)+v\left(H^{*}\right)-4=16+624 n \\
& h\left(L_{n}\right) \leq h(H)+h\left(H^{*}\right)-4 \leq 16+623 n
\end{aligned}
$$

so L_{n} is non-hamiltonian. In fact, $h\left(L_{n}\right) / v\left(L_{n}\right) \rightarrow 623 / 624$ as $n \rightarrow \infty$, which shows that the shortness coefficient (defined in [2], [9]) is less than one for $D(7)$.

Problem 1. Is $\sigma(D(7))<1$?
An edge of a plane graph is of type $(a, b ; c, d)$ if it is incident with vertices of valencies $a, b(a \leq b)$ and with faces having c, d edges $(c \leq d)$. Our graph G_{n} has 7 types of edges, for all $q \geq 11$, so we ask:

Problem 2. For $q \geq 11$, is there a non-hamiltonian graph in the family $D(q)$ with fewer than 7 types of edges?

Acknowledgement

The results given in this paper were presented at the Workshop on Cycles and Colourings, Stará Lesná, in September 1995. The author wishes to thank the organizers for their kind support and hospitality.

REFERENCES

[1] BONDY, J. A.-MURTY, U. S. R. : Graph Theory with Applications, Macmillan, London, 1976.
[2] GRÜNBAUM, B.-WALTHER, H. : Shortness exponents of families of graphs, J. Combin. Theory Ser. A 14 (1973), 364-385.
[3] HARANT, J.-WALTHER, H. : Some new results about the shortness exponent in polyhedral graphs, Časopis Pěst. Mat. 112 (1987), 114-122.
[4] HARANT, J.-OWENS, P. J.-TKÁC̆, M.-WALTHER, H.: 5-regular 3-polytopal graphs with edges of only two types and shortness exponents less than one, Discrete Math. 150 (1996), 143-153.
[5] JENDROL', S.-OWENS, P. J.: Pentagonal 3-polytopal graphs with edges of only two types and shortness parameters, Discrete Math. 137 (1995), 251-263.

PETER JOHN OWENS

[6] OWENS, P. J.: Regular planar graphs with faces of only two types and shortness parameters, J. Graph Theory 8 (1984), 253-275.
[7] OWENS, P. J.: Shortness parameters for planar graphs with faces of only one type, J. Graph Theory 9 (1985), 381-395.
[8] OWENS, P. J.-WALTHER, H. : Hamiltonicity in multitriangular graphs, Discuss. Math. - Graph Theory 15 (1995), 77-88.
[9] TKÁC̆, M.: On shortness coefficients of simple 3-polytopal graphs with only one type of faces besides triangles, Discrete Math. 128 (1994), 407-413.
[10] WALTHER, H.: Note on two problems of J. Zaks concerning hamiltonian 3-polytopes, Discrete Math. 33 (1981), 107-109.
[11] WALTHER, H. : Longest cycles in polyhedral graphs, Israel J. Math. 83 (1993), 203212.

Received January 15, 1996
Department of Mathematical and Computing Sciences University of Surrey Guildford GU2 5XH ENGLAND, U. K.

[^0]: AMS Subject Classification (1991): Primary 05C38; Secondary 52B10.
 Key words: polyhedral graph, non-hamiltonian, self-dual, shortness exponent.

