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SELF-DUAL NON-HAMILTONIAN POLYHEDRA 
WITH ONLY TWO TYPES OF FACES 

P E T E R J O H N O W E N S 

(Communicated by Martin Škoviera ) 

ABSTRACT. For all q > 8 it is shown tha t the family of all self-dual polyhedral 
graphs whose faces are all triangles or o-gons contains non-hamiltonian graphs 
and even has shortness exponent less than one. 

1. Introduction 

Graphs are assumed to be simple (without loops or multiple edges). For 
concepts and notation not explained here, see B o n d y and M u r t y [1]. 

For a graph G, v(G) = \V(G)\ and h(G) denotes the circumference (length 
of a maximum cycle). For a family of graphs T, the shortness exponent a(T) is 
denned, as in [2], by 

fr\ v ' T l QgMG) a(T) = hm inf f-j-. 
v J Ger \ogv(G) 

Also, a((Gn)) denotes the shortness exponent of the family of all graphs 
occurring in the sequence (Gn). 

For any polyhedral (3-connected planar) graph (7, G* denotes the dual 
graph, and v*, e*, /* denote the face, edge, vertex of G* corresponding to the 
vertex i>, edge e, face / of G (respectively). 

Let T(r;p,f/) be the family of all r-regular polyhedral graphs whose faces 
are all p-gons or g-gons, p < q. Let T(p, q\r) be the dual family of all r-gonal 
polyhedral graphs whose vertices are all p-valent or q-valent, p < q. A number 
of papers have given results of the form a < a0 < 1 for such families (or some 
of their subfamilies) for various values of p , q and r . See [3], [4], [5], [6], [7], [8], 
[10], [11]. 

Suppose that G is a self-dual polyhedral graph whose faces are all p-gons or 
r/-gons, p < q and whose vertices are, therefore, all p-valent or (/-valent. It is 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 05C38; Secondary 52B10. 
K e y w o r d s : polyhedral graph, non-hamiltonian, self-dual, shortness exponent . 
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easy to show with the aid of Euler's formula that p = 3. Let D(q) denote the 
family of all self-dual polyhedral graphs whose faces are all triangles or g-gons, 
q > 3. It is a subfamily of T(3, g; 3, g), the family of all polyhedral graphs whose 
faces are all triangles or g-gons and whose vertices are all 3-valent or g-valent, 
g > 3. 

In the main part of the paper, we construct, for all g > 8, an infinite sequence 
(Mn) of graphs in T(3,g;3,g) such that <r((Mn)) < 1 and also a((M*)) < 1. 
In the terminology of W a l t h e r [11], this means that T(3,g;3,g) is minishort. 
Thus, we have extended to all g > 8 a result proved in [11] for g = 8,10. 

We then prove a lemma that enables us to obtain a sequence of self-dual 
non-hamiltonian graphs in D(q). This leads to our main result, namely: 

T H E O R E M . a(D(q)) < 1 for all g > 8. 

In conclusion, two open problems are presented. 

2. Main construction 

We begin by obtaining, for all q > 8, a graph L in T(3,g;3,g) and a set 
X C V(L) such that s > r, where r = \X\ and s = u(L — X). The graph L is 
non-hamiltonian, and, in fact, no cycle in L contains vertices of more than r of 
the s components of L — X. 

There are three special cases q = 8,9,10. In each of these cases, L is actually 
in T(3, g; 3), X is defined as the set of all g-valent vertices and all the compo
nents of L — X are isolated vertices. For g = 8, L is the well-known graph (see, 
for instance, [7], [11]) obtained from the graph of the octahedron by inserting a 
new vertex in each face and joining it by new edges to the three vertices of that 
face. Here r = 6 and 5 = 8 . For q = 10, L is obtained similarly but starting 
with the icosahedron, so r = 12 and 5 = 20. For q = 9, L is again obtained 
from the icosahedron, but vertices are inserted in only 16 faces. The 4 faces to 
be left empty are chosen so that no two have a vertex in common. Here, r = 12 
and s — 16. 

For q > 11 there must be some g-gons in L because then T(3,g;3) is null. 
Our construction of L depends on the value of g modulo 6. In each of the six 
cases a fragment J is defined and then k copies of J, where k is 3 or 4, are 
joined together in a standard way to form L. A special notation is used in the 
diagrams that specify J (see Figures 3.1 to 3.6). Numbers inside a 4-gon and 
near to its corners indicate the presence of vertices and edges, not shown explic
itly, that contribute these numbers to the valencies of the four vertices. Figure 1 
shows what is actually inside the 4-gon when the numbers are 2,4, 2, 5 as shown. 
The construction is similar whenever the numbers take the form 2, a, 2, b. In or-
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der that the new non-triangular face inside the 4-gon shall be a <1-gon, the 
condition a + b + 2 = q must be satisfied. The significance of numbers 1, 3 ,1 , 3 
inside a 4-gon is shown in Figure 2. All the vertices inside 4-gons are 3-valent 
and all the vertices of the 4-gons themselves become g-valent in L. 

F I G U R E 1. Par t of J when q = 11 . Numbers 2 ,4 ,2 ,5 in a 4-gon. 

F I G U R E 2. Numbers 1,3,1,3 in a 4-gon. 

In all six cases, we now construct L, specify X and give the values of r 
and s. Vertices of J that become vertices of the set X in L are denoted in the 
diagrams by large dots. Any component of L — X that is neither an isolated 
vertex nor a (non-trivial) path will be called large. 

Case 1: q = 6 ' + 5 , t > I. 
In Figure 3.1, the part of J lying to the right of the line Ct+1Dt_^_1 is the 
mirror image of the part to the left of CtDt, except that it does not contain 
any vertices of X. The numbers in the i th 4-gon from the left are 2, 6i — 2, 2, 
6t — 6z + 5, reading clockwise from the top left, 1 < i < t. To obtain L, take k 
copies of J and identify the edges AD0 , D0D1,..., D2tD2t+1,D2t+1B along one 
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"side" of the j th copy of J with the edges AC0, C0CX,. •., C2tC2t+1, C2t+1B, 
respectively, along the other side of the (j + l ) t h copy (or the first copy if 
j = k), 1 < j < k. It is easy to check that all the vertices of the 4-gons become 
(6t + 5)-valent in L and that all non-triangular faces are (6t + 5)-gons. Take 
k = 3 in order to make the vertices A, B at the "ends" of L 3-valent. Although 
4 vertices of J are shown as large dots and there are 3 copies of J , there are 
only 6 vertices in X because pairs of vertices are identified when copies of J 
are joined. Hence r = 6. One component of L — X is the isolated vertex A, six 
components are paths inside the three 4-gons CQC^^Q and there is one large 
component that contains all vertices to the right of C1D1 in all three copies 
of J . Hence 5 = 8 . 

FIGURE 3.1. J when q = 6t + 5. 

C a s e 2: q = 6t + 6, t > l . 
Exceptionally, k = 4 in this case and the construction of L involves two different 
forms of J , used alternately. In Figure 3.2, two adjacent copies of J are shown. 

з ť>-

i * 
б t 

4 T 2 

бt-2 2 l б t - 6 2 

12 

бt-8 

10 

( t odd) ( t even) 

FIGURE 3.2. J when q = 6t + 6. 

Note the dependence on whether t is odd or even. When the other two copies 
of J are joined to those shown (as before, by identifying sides), a graph with a 
4-gon at each end is produced. The two 4-gons are then filled as in Figure 2, 
using the orientation indicated by the numbers 1, 3 . In this case, r = 8 . When 
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t > 1, two components of L—X are isolated vertices, eight components are paths 
and there is one large component. Hence s = 11. In the special case t = 1, two 
extra isolated vertex components replace the large component, so s = 12. 

Case 3: q = 6t + 7, t > 1. 
In Figure 3.3, the part of J to the right of the 4-gon containing 1,3,1,3 is the 
mirror image of the part to the left. Take k = 3 so that L will have triangular 
end faces. Here, r = 6 and 5 = 8. Six components of L — X are isolated vertices 
and the other two components are large. 

F I G U R E 3.3. J when q = 6t -f 7. 

F I G U R E 3.4. J when q = 6t + l 

Case 4: q = 6t + 8,t>l. 
This case closely resembles the previous one (compare Figures 3.3, 3.4). Take 
A: = 3 so that the end vertices of L will be 3-valent. Here again r = 6 and 
5 = 8. The components of L — X are of the same types as in Case 3. 

Case 5: q = 6t + 9, t > 1. 
Take k = 3 so that L will have a 3-valent vertex at one end and a triangular face 
at the other end (see Figure 3.5). Once again r = 6 and 5 = 8. One component 
of L — X is an isolated vertex, six components are paths and there is one large 
component. 
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6 t + 3 2 

2 10 

6 t - 3 2 

2 6 t+4 

F I G U R E 3.5. J when q = 6t + 9. 

6 t + 4 2 

2 10 

6 t - 2 2 

F I G U R E 3.6. J when o = 6£ + 10. 

Case 6: q = 6t+10,t>l. 
This case closely resembles the previous one (compare Figures 3.5, 3.6). Once 
again k = 3, r = 6 and 5 = 8. The components of L — X are of the same types 
as in Case 5. 

This completes the construction of L for all q > 8. Note that in all cases 
L E V(3, q\ 3, q), L is non-hamiltonian because 5 > r and L — X has at least 
one isolated vertex component. 

For every q > 8 we now choose s 3-valent vertices of L, one belonging 
to each component of L — X , and call them the y-vertices of L. A H-vertex 
is of type 1 if it is incident (in L) with three triangles and adjacent to three 
g-valent vertices. A y-vertex is of type 2 if it is incident with two triangles and a 
q-gon and adjacent to two 3-valent vertices and a g-valent vertex, where the two 
triangles are incident with the g-valent vertex. Every isolated vertex component 
of L — X provides a y-veitex of type 1. By inspection, for all q > 8 each path 
component or large component of L — X provides at least one possible y -vertex 
of type 2 for L. In the case of a path component any vertex other than an end 
vertex can be the y -vertex. 

The triangular face of the dual graph L* that corresponds to a y-vertex of 
L is called a y* -face. It is classified as type 1 or type 2 according to the type of 
the y-vertex. Larger graphs built out of copies of L and L* contain ^-vertices 
and H*-faces inherited from them. 

Let H,K G r(3 ,g; 3,rT), where H has a y-vertex yx, and K has a y*-face 
y\ . Form a new planar graph G from H and K by identifying the three vertices 
of H — yx that were adjacent (in H) to yx with the three vertices of K — E^y^) 
that were incident (in K) with y% in such a way that no vertex of valency greater 
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than q is produced. In every case, G is not unique. When yx and y2 are both 
of type 2, there are two ways to identify the vertices, otherwise there are three 
ways. We say that G has been formed by attaching H to K (or K to H) using 
yx and y2. The process is easiest to visualize if H and K are mapped into the 
plane in such a way that yx is incident with the unbounded face of H, and y2 

is the unbounded face of K. 

L E M M A 1. We have: 

(1) L7Er (3 ,g ;3 ,g ) . 
(2) v(G) = v(H)+v(K)-4} 

(3) h(G)<h(H) + h(K)-4. 

P r o o f . 
(1) is immediate. 
For (2), note that in forming G, the vertex yx has been deleted and three 

pairs of vertices have been identified. 
To prove (3), consider a maximum cycle C in G. If C has non-trivial inter

sections with both H - yx and K - E(y2), then these intersections are paths, 
say Px and P 2 respectively. In H, we can form a cycle from Px, yx and two 
edges incident at yx, so \E(PX)\ < h(H) - 2. In K, we can form a cycle from 
P 2 by adding two edges and one vertex of the face y2 , so \E(P2)\ < h(K) - 2. 
Hence 

h(G) = \E(PX)\ + \E(P2)\ < h(H) + h(K) - 4 . 

If C lies entirely in H (or in K), then the inequality still holds since h(K) > 
5(K) + 1 = 4 (or h(H) > 4, respectively). • 

Let H-, 1 < i < «s, be the y-vertices of L. For all q > 8, L has some 
y -vertices of type 1, so we may assume that yx is of type 1. The dual graph 
L* has H*-faces y\, 1 < i < 5, where y\ is of type 1. Obtain M from L by 
attaching 5 — 1 copies of L* to it, using y{, 2 < i < 5, and the face of y\ of 
each copy of L*. Because the process of attaching graphs to one another is not 
uniquely denned, neither is M. This does not matter . Whichever of the possible 
forms of M we use, it has just one y-vertex y1 and (s — l ) 2 ?/*-faces, s — 1 in 
each copy of L* . 

A cycle in a graph enters a subgraph if its intersection with the subgraph 
contains at least one edge. Every cycle in L contains at most r y-vertices because 
the y -vertices on the cycle are separated by vertices from X. Hence every cycle 
in M that contains yx enters at most r — 1 of the 5 — 1 copies of L* and 
therefore enters at most (r — 1)(5 — 1) of the (s — l ) 2 y*-faces. Every cycle in 
M that does not contain yx enters at most r(5 — 1) y*-faces. 

We now used a standard sort of iterative construction. Let Mx = M and, for 
n > 1, let M n + 1 be a graph obtained from Mn by attaching as many copies of 
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M as there are y*-faces in M n , using these y*-faces and the vertex yx of every 
copy of M . The following lemma holds: 

L E M M A 2. 

(1) M n has (s — l ) 2 n y-faces and one y-vertex. 
(2) No cycle in Mn enters more than r(r — l ) n - 1 ( 5 — l ) n y*-faces. 

This lemma is easy to prove by induction, so the proof is omitted. By the 
lemma, 

v(Mn+1) - v(Mn) = (s- l)2n{v(M) - 4) , 

h(Mn+1) - h(Mn) < r(r - l ) " " 1 ^ - l)n(h(M) - 4) . 

These recurrence relations have solutions of the form 

v(Mn) = a(s-l)2n + b, 

h(Mn)<c(r-l)n(s-l)n + d, 

where a, b, c and d are certain constants such that a > 0 and c > 0. Hence 

• ^ f ^ ' 0 ^ " 1 ^ " 1 ^ 1 / l o g ( r - l ) \ 

<{Mn)> <• iog(s - n- = 2 i1 + M^rTjJ < l • 
Consider the dual sequence ( M n ) . Its first term M* is obtained from L* by 

attaching 5 — 1 copies of L to it, using y*, 2 < z < 5, and the vertex y2 of each 
copy of L. Thus M* has one 2/*-face y* and (5 — l ) 2 y-vertices. 

Let C be a cycle in M* . If its intersection with one of the copies of L — yx 

is not null, then it is a path P that can be converted into a cycle C in L by 
adding the vertex yx and two edges incident at yx. As C contains at most r 
of the y-vertices of L, P contains at most r — 1 of them. Hence C contains at 
most (r — l)(s — 1) y-vertices. 

In place of Lemma 2, we have: 

L E M M A 2*. 

(1) M* has (s — l ) 2 n y-vertices and one y*-face. 
(2) No cycle in M* contains more than (r — l)n(s — l)n y-vertices. 

Reasoning similar to that for M n leads to 

u(M*) = a * ( 5 - l ) 2 n + 6*, 

h(M*n) < c*(r - l)n(s - l)n + d* , 

where a*, b*, c* and d* are constants such that a* > 0 and c* > 0. 
Hence 

"(̂ K^âHЬ1 
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3. Proof of the theorem 

The sequences (Mn) and (M*) will be combined to give a sequence of self-
dual non-hamiltonian graphs by using the following lemma. 

LEMMA 3. Suppose that H G r(3,<1;3,r/) and that H has a y-vertex v of 
type 1. Let G be obtained by attaching H to H*, using v and v*. Then 
G € D(q). 

P r o o f . By Lemma 1, G G r (3 ,g ;3 ,g ) . To show that G is self-dual, we 
define an involutory bijection 6 from the vertices, edges and faces of G to the 
faces, edges and vertices of G, respectively, such that 6 preserves incidences and 
adjacencies. 

Let (j) be the bijection from the vertices, edges and faces of H to the faces, 
edges and vertices of H*, respectively, that is used to define H*. For every 
element (vertex, edge or face) e of H that remains unaltered in G, define eO = 
ecf). For every element e of H* that remains unaltered in G, define e6 = ecj)~l. 

FIGURE 4. Attaching H* to H. 

As in Figure 4, let vl, v2, v3 be the vertices of H adjacent to v and let f1, 
f2, / 3 be the triangular faces, with boundaries vv2v3 , vv3v1, vv1v2 , respectively, 
that are incident with v. In H*, the 3-valent vertices on the boundary of v* are 
f\ 5 /;*» /;* a n d the faces adjacent to u* are v*, D^ , ^3 • These three faces are 
g-gons because v1, i>2, i73 are g-valent in H. When LI is attached to II*, the 
vertex v and the edges vvx, OT2 , 1W3, /£/ .* , /£ /-*, /-*/.* disappear. The triples 
of vertices vx, f2. L>3 in II — v, and /^ , / 2 , /£ in II* —E(v*) become identified 
in G, but in opposite cyclic orders. We may suppose that vx is identified with 
fl, v2 with /g , L>3 with / 2 and we denote the resulting g-valent vertices of 
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G by v[, v2, v3, respectively. The faces fx, / 2 , / 3 of H become merged with 
the faces v{, u*, v2 of LP to yield g-gons f[, f2, f3 m G, respectively. To 
complete the definition of 6, let 

v[ = f[, v'2 = f'г, v'ъ = f2, 

f[ = v[, Ą = v'2, f'2 = v'г. 

Clearly, 92 is the identity mapping. We claim that incidences and adjacencies 
are preserved under 9. Where elements of H only (or H* only) are involved 
and they remain unaltered in G, this is clear. In other cases, it is easy to verify 
and we just give an example. In Figure 4, the faces other than f1, f2, f3 that 
are incident (in H) with the edges v2v3, v3vx, vxv2 are denoted by gx, g2, O3, 
respectively. In G, v'2 is incident with / 3 , f[ and adjacent to g*.. Hence, / 3 

( = t^fl) should be incident with v'2,v[ and adjacent to g3. This is indeed the 
case. • 

Choose q > 8 and any n. Apply Lemma 3, with H = Mn, v = y 1 , and let 
G = Gn. Then Gn e D(q) and, by Lemma 1, 

v(Gn) = v(Mn) + v(M*) - 4 = a'(s - l)2n + b', 

h(Gn) < h(Mn) + h(M*) - 4 < c'(r - l)n(s - l)n + d', 

where a' = a + a* > 0, b' = b + b* - 4, c' = c + c* > 0, and d' = d + d* - 4. 
Since O"(K>(g)) < o-((G n)), it follows that 

-<™><.(i+^îD<1 

for all q > 8. This completes the proof of the theorem. 

The theorem gives an upper bound independent of q for a(D(q)). Suppose 
that we exclude the worst case q = 9 . Then we have 

a(D(q)) <±(l + log107) 

for all q> 10 (and for q = 8). 

4. Final remarks 

T k a c [9] constructed non-hamiltonian graphs in T(3;3,7) and we can use 
them to obtain non-hamiltonian graphs in D(7). Take H* to be the graph that 
is denoted by Gn in [9]. Then 

v(H*) = 12 + 416n, h(H*) < v(H*) - n . 
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For the dual graph iJ, Euler's formula gives v(H) = ^v(H*) + 2, so 

v(H) = 8 + 208n , h(H) < v(H). 

Graphs in T(3; 3, 7) cannot have adjacent triangles because they are 3-connected. 
Hence, we may choose any triangle in H* to use as v* in Lemma 3. Attach H* 
to its dual iJ, using v* and v, and denote the resulting graph in D(7) by Ln. 
We have 

v(Ln) = v(H) + v(H*) - 4 = 16 + 624n , 

h(Ln) < h(H) + h(H*) - 4 < 16 + 623n , 

so Ln is non-hamiltonian. In fact, h(Ln)/v(Ln) -> 623/624 as n —> co, which 
shows that the shortness coefficient (defined in [2], [9]) is less than one for D(7). 

PROBLEM 1. Is a(D(7)) < 1? 

An edge of a plane graph is of type (a, 6; c, d) if it is incident with vertices of 
valencies a, b (a < b) and with faces having c, d edges (c < d). Our graph Gn 

has 7 types of edges, for all q > 11, so we ask: 

PROBLEM 2. For q > 11, is there a non-hamiltonian graph in the family D(q) 
with fewer than 7 types of edges? 
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