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POLYNOMIAL CYCLES 
IN FINITE EXTENSION FIELDS 

F R A N Z H A L T E R - K O C H * — P E T R A K O N E Č N Á * * 

(Communicated by Stanislav Jakubec ) 

ABSTRACT. Let K/F be an algebraic field extension. We characterize finite 
orbits of polynomial mappings of K which are induced by polynomials from F. 
As an application we determine all possible cycle lengths of such orbits in the 
case of a finite field F. 

Let it be a commutative ring, k G N 0 , / G N and / G R[X]. By a finite 
orbit of f in R with precycle length k and cycle length I we mean a sequence 
(xx, x 2,..., xk+l) of distinct elements of R such that 

f(x{) = xi+1 for all i G {1,2,..., k + I - 1} , and f(xk+l) = xk+l . 

If it is a field, k G N0 and (xx, x 2,..., xk+l) is any finite sequence of distinct 
elements of it, then it follows by Lagrange interpolation that there exists a 
polynomial / G R[X] (of degree deg(/) < k + I) such that (xx, x2,..., xk+l) is 
a finite orbit of / with precycle length k and cycle length /. 

In contrast, if R is an integral domain of characteristic zero which is finitely 
generated (over Z) with integral closure R such that (Rx :RX) < co, then in 
it there are (up to trivial cases) only finitely many equivalence classes of finite 
orbits of polynomials / G it[X], see [2; Theorem 5]. 

For a survey concerning finite polynomial orbits in integral domains, the 
reader should consult [6] and the survey articles [7] and [8]. For more recent 
results and problems, see [1], [3] and [9]. 

In this paper, we return to polynomial cycles in fields. We consider an al
gebraic field extension K/F and we determine the structure of finite orbits of 
polynomials / G F[X] in K. For a finite field F , we obtain as a corollary all 
possible lengths of cycles of polynomials from F[X] in K. 
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THEOREM. Let K/F be an algebraic field extension, k G N0 , / G N, and let 
(x1,x2,... iXfz+i) be a sequence of distinct elements of K. Then the follow^ng 
assertions are equivalent: 

a) ( x 1 , x 2 , . . . ,.xA,+/) is a finite orbit of a unique polynomial f G F[X] with 
precycle length k and cycle length I such that with a certain d 

k+d 

d e g / < J J d e g F ( a ; i ) . 
i = i 

b) (x1 5x2 , . . . ,-E f e +j) is a finite orbit of a polynomial f G F[X] with precycle 
length k and cycle length I. 

c) We have F(xx) D F(x2) D • • - D F(xk+1) = • • • = F(xk+l), there exist 
d,m G N, and there exists some r G AutF(F(xk+1)) such that I = dm, 
ord(r) = m, the elements x 1 , . . . , £A.+d are pairwise not conjugate over 
F, and 

Xh+u.d+3 = rfI(xk+3) f°r d l j 6 { 1 , . . . , d} and Li G { 1 , . . . , ra-1} . 

For the proof we need the Chinese Remainder Theorem for polynomials, 
which we state for the convenience of the reader. 

LEMMA. Let F be a field, m G N, let fv...,fm G F[X] \ F be pai^se 
coprime polynomials, and let gx,..., gm G F[X] be any polynomials. Then there 
exists a unique polynomial f G F[X] such that 

m 

deg(/) < Y[ d e g( / j ) and f = 9j m o d fj for al1 j G { 1 , . . . , m} . 
i = i 

P r o o f . This follows immediately from well-known isomorphism 

m 

F[X]/f...... fmF[X] - ^ "[[FiXy/flX] 

3 = 1 

(induced by the identity on F[X]). D 

P r o o f of T h e o r e m . 
a) ==> b ) : Obvious. 

b) = > c) : Let (xx^x2)...,xk+l) be a finite orbit of / G F[X] with precycle 
length k and cycle length /, and set xk+M = xk+1. Now / (x . ) = xi+1 G F(x-) 
implies F(x z + 1 ) C F(x-) for all i G { 1 , . . . , k + I}. Since F(xk+l+1) = F(xk+1) 
it follows that 

F^) D F(x 2 ) D • • O F(x f c + 1) - . • • • = F(x f c + < ) , 
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and there exist uniquely determined indices 0 < e < g < k + / such that 
xX)...,x are pairwise not conjugate, and x + 1 is conjugate to x e + 1 over F . 
But now F ( x e + 1 ) D F(x + 1 ) implies -F(xe+1) = F (x + 1 ) , and there is an 
automorphism r G A u t F ( F ( x e + 1 ) ) such that x + 1 = r ( : r e + 1 ) , and we denote 
by m = ord(r) the order of r in A u t F ( F ( x e + 1 ) ) . 

Now we assert that 

[xXl..., x e , x e + 1 , . . . , x g , r ( a ; e + 1 ) , . . . , r ( x g ) , . . . , r ( x e + 1 ) , . . . , r (x
q)) 

is a finite orbit of / with precycle length e and cycle length m(q — e). Once 
this is done, the assertion follows with d = q — e and k = e, since every finite 
orbit is uniquely determined by its first element. 

By definition, we have 

f(T»(xe+J))=T»(f(xe+J))=T»(xe+j + 1) 

for all fi G { 0 , . . . , m — 1} and j G { 1 , . . . , q — e — 1}, and 

/ ( r" (* , ) ) = T"(/(X,)) = T"(S,+1) = T ^ O e + l ) 

for all fi G {0, . . . , r a — 1}. In particular, it follows that f(rm~1(xq)) = 
r m ( x e + 1 ) = xe+1, and since 

F(xq) C F ^ ) C • • • C F ( z e + 1 ) C F(rm-\xq)) = F(xq), 

all these fields are equal. 
It remains to prove that the m(q — e) elements 

T,l(xe+j) f o r A4 e { 0 , . . . , m - 1} and j G { 1 , . . . ,g - e} 

are distinct. Suppose that i,j G { 1 , . . . ,# — e} and i!,/iG { 0 , . . . , m - l } are 
such that Tv(xe+i) — r M (x e + •). Then the elements xe+i and x e + • are conjugate 
over F , and by the choice of q we obtain i = j . Since F ( x e + i ) = F ( x e + 1 ) , we 
get r " = rM and therefore finally *v = /i . 

c) ==> a) : Let gl5... ,g f c+d G F[K] be the minimal polynomials of 
x l r . . , x w over F . By assumption, they are distinct and hence coprime in 
pairs. For every j £ { l , . . . , f c + d— l } , w e have x + 1 G F(x-), and therefore 
there exists a polynomial / . G F[X] such that x + 1 = fj(xj)-

By the lemma, there exists some polynomial / G F[X] such that 

deg / < Y[ de&F(xi) a n d / = fj m o d #j for a11 j G {1, . . . , A; + d} . 
i = l 

Then we obtain 

/ ( * , ) = /j(^j) = ^ + i for all j G { l , . . . , f e T d } , 
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and if fi G { 0 , . . . , m - 1} and j G { 1 , . . . , d} , then 

ffrk+nd+j) = / ( ^ ( * f c + i ) ) = ^ ( / ( x f c + i ) ) - ^ ( x f c + i + 1 ) = * f c + / l d + j + 1 . 

Consequently, (a^, . . . , xk+l) is a finite orbit of / with precycle length k and 
cycle length I. 

It remains to prove the uniqueness of / . Suppose that (xx,... ,xk+l) is also 
a finite orbit with precycle length k and cycle length / of some polynomial /* G 
F[X]. Now r(x •) - f(x •) implies /* = / mod g. for all j G { 1 , . . . , k + d} . 
Hence it follows by the uniqueness statement of the lemma that 

k+d 

/* = / , provided that deg(/*) < J ] degF( :r . ) . 
i=l 

D 

COROLLARY. Le£ F be a finite field, n G N and jV £/ie number of irreducible 
monic polynomials of degree n over F. Let K/F be a field extension of degree n . 
Then the set of all possible cycle lengths in K of polynomials over F is given 
by 

Cyc\(K/F) = {dm : l<d<N, \<m\n). 

P r o o f . By part c) of Theorem, an integer c G N lies in Cyc\(K/F) if and 
only if c = rad, where m is the order of some r G AutF(i\T), and there exist 
d elements of K which are pairwise not conjugate over F. Since AutF(K) is 
cyclic of order n , m is the order of some r G AutF(K) if and only if m \ n. By 
the very definition of N, there exist d elements in K which are pairwise not 
conjugate over F if and only if d < N. • 
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