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Math . Síovaca 40, 1990, No, 4, 423—434 

THE BAYES ESTIMATOR OF THE VARIANCE 
COMPONENTS AND ITS ADMISSIBILITY 

JAROSLAV STUCHLY 

ABSTRACT. In the paper the necessary and sufficient conditions for the existence of 
the Bayes invariant quadratic unbiased estimator of the linear function of the variance 

p 

components in the mixed linear model t = Xfi + f, E(f) = Xp, Var(f) = £ 0t Vh in 
/ = I 

the normal case, have been presented. Moreover, explicit expressions for this estima
tor have been found and the admissibility question has been considered. 

Introduction 

Let us consider a mixed linear model 

(1) t=Xp+s9 E(t) = Xfl9 Var( f )= £0,(7,= 1/(0), 
/ = i 

where t is an 1V-dimensional, normally distributed random vector, X is a known 
N x m matrix of rank r(X) = s, fieUm is an unknown vector, Uu ..., Up are 
known symmetric matrices, and 0 = (0,,... , 0P)' is a vector of unknown variance 
components, 0e^9 where ST = {0: 0, > 0, 02 = 0, ..., 0p = 0, U(0) is a positive 
semidefinite matrix}. 

We shall look for the Bayes invariant quadratic unbiased estimator (BAI-
QUE) f(t) = t'Bt of the parametric function 7 = f'0 (B is a symmetric 
TV-matrix and f'= (/j, ...,fp)'), i.e. for an unbiased estimator which minimizes 
the Bayes risk function 

r(f) = ^EQ(Y-Y)2dl>\ 

where Pe is the a priori distribution for the vector parameter 0, and which is 
invariant with respect to the translation f-> t + X09 i.e. which satisfies the 
condition 

Y(t) = f(t+Xp) 

AMS Subject Class i f ica t ion (1985): Primary 62H12, 62C10 
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for all fie W\ The aim of the paper is to derive explicit expressions for the 
BAIQUE of the estimable function f'0, to find sufficient conditions for the 
uniqueness, and to investigate the admissibility of this estimator. 

1. Preliminary considerations 

As a starting point, let us transform the model (1) to the form 

(2) y=Pt E(K ) = 0, Var(K)= £ 0 ,^=1/ (0 ) , 
/ = i 

where P is an (IV — s) x 1V matrix satisfying P' P = M = / — XX+ (X+ is the 
Moore-Penrose inverse of the matrix X), PP' = /„, n = IV — 8, Vf = PU{P\ 
i = 1, ..., F. The estimator y = f'Bt is the BAIQUE for y in the model (1) iff 
B = P'y-lPand y = /y-lj/is the Bayes quadratic unbiased estimator (BAQUE) 
for y under the model(2). 

Following [1, Theorem 7a], y'Ay is the BAQUE for founder the model (2) 
iff 

(3) f, c0VAVj= ZW 
Uj = i i -= i 

holds, where 

cy.= E(^.^) = J^l9;dPe, z , j = l , . . . ,p , 

and Aj, ..., Xp satisfy the unbiasedness conditions 

(4) tr (AVt)=fh i=l,...,p. 

We characterize the admissibility with respect to the risk function 

R(y, 9) = i E 0 ( y - y)2 = tv[AV(0)AV(0)]. 

The quadratic estimator yx is better than the quadratic estimator y2 iff R(yl9 6) = 

^ R(y2, 0) for all OeST and R(y1? 0O) < R(y2» ft) a t s o m e P o i n t 00e^. 
The quadratic estimator y is admissible among a subclass of quadratic 

estimators on ST iff no other quadratic estimator in this subclass is better than 
y on 9~. 

Let us denote by 90?(-4) the vector space generated by the columns of A, by 
yi(A) the null space of A, by A <g) £f the Kronecker product of 4 and £?, and 
veci4 = (an, ..., a„u a12, ..., an2, a13, ..., amw)', if A is an n x m matrix with 
elements aij9 i = 1, ..., n,j = 1, ..., m. First let us prove some lemmas. 

Lemma 1. Wl(A) a Wl(B)o{x'B= 0=>x'A = 0}. 
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P r o o f It is easily seen that the following statements are equivalent. 
(a) Wl(A)czWl(B); 
(b) 9t(B') c= yi(A'); 
(c) B'x=0 implies A'x=0; 
(d) x'B= 0 implies x'A = 0. 

Lemma 2. Let Wl(S') cz 9K(H) and H be a positive semidefinite matrix. Then 
Wl(S) = Wl(SH-S'). 

P r o o f There exists a matrix D so that S' = HD. Hence 

SH~ S = SH HD= SD= D'S . 

If x'SHS' = 0, then x' D S = x' D' HD = 0 and x'D'H=xS=0, 
i.e. Wl(S)c:Wl(SH-S'). 
The other inclusion is obvious. 

Lemma 3. Let A, B be positive semidefinite matrices of order n. Then A® B 
is a positive semidefinite matrix of order n2. 

For proof see [5]. 
Lemma 4. Let P be an n x N matrix. Let A be a symmetric and B a positive 

semidefinite matrix, both of order N. If Wl(A) zo Wl(B), then Wl(PAP') ZD 
=D m(PBP'). 

Proof. There exists a matrix Q so that B = AQ. Then PB = PAQ and 
Wl(PB) c= yjl(PA) = Wl(PAP'). Hence Wl(PBP') c= Wl(PAP'). 

Lemma 5. Let M = P' P, PP' = I and let A be a positive semidefinite matrix. 
Then Wl(PB) c= Wl(PAP') iffWi(MB) c= W(MAM). 

P r o o f Wl(PB) cz Wl(PAP') = Wl(PA) iff there exists a matrix Q so that 
PB = PAQ, i.e. MB = MAQ, which means that Wl(MB) cz <$Jl(MA) = 
= m(MAM). 

2. Main results 

Theorem 1. a) The BAQUEfor the parametric function y= f'Oin the model 
(2) exists iff 

(5) feW(S), 

where S = (vec Vu ..., vec Vp)'. 
p 

b) If the matrix H = £ ^(V-® V<) is regular, then the BAQUE is uniquely 
/ J = i 

given by 

(6) y= f'(SHxST SHX vec(KK') 
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and is therefore admissible. 
c) / / 

(7) m(S') <= 95.(H), 

then the BAQUE is given by 

(8) f=[f'(SH+S')+ SH+ + x'(l- HH+)] vec(yy'), 

where x is an arbitrary n2 — vector. 

d) If the condition (7) is not fulfilled, then the BAQUE is given by 

f = {f'[S(H + S'S)+ S']+ S(H + S'S)+ + x'[l -(H+ S'S)(H + S'S)+} x 

(9) xvec(KK'), 

where x is an arbitrary n2 — vector. 

e) The sufficient conditions for the admissibility of the BAQUE is 

(10) SR(1/®1/)c:2R(H), for all i,j=\,...,p. 

Proof. Let us rewrite the equations (3), (4) to the form 
t c - , (K®K)vec4= £ A,K, 

(vec Vt)' vecA = / , i = 1, ..., p. 

Using the previous notation and X = (A,, ..., Xp)' we have 

(3a) Hvec4 = S'A, 

(4a) S v e c 4 = f. 

Under the assumption (7), all the solutions of the equation (3a) are 

(11) vec.4= H+S'X + (l- H+H)x, 

where x is an arbitrary n2 — vector. Substituting in (4a) we get 

SH+ S'X + S(l- H+H)x=f. 

According to the condition (7), the last expression vanishes. Our equation 

Sh + S'X= f 

has a solution iff (5) holds. Then 

X = (SH+S')+f+[l-(SH+S')+(SH+S')]y, 

where y is an arbitrary n2 — vector. Substituting in (11) we get 
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vccA= H+S(SHS)+ f+ H+S'[l-(SH + S')+(SHS')]y+(l- H+H)x. 

Since 

9Jl(SH+S')cz<m(S), 

there is 

vec>4 = H+S'(SHS)+ f+ (I- H+H)x. 

If we use 

f= yAy= tv(Ayy') = (vccA)' vec(yy'), 
we get (8). 

If the condition (7) is not fulfilled, we can rewrite the system (3a)—(4a) to the 
form 

(3b) (H+ S'S)vccA= S'(l+ f), 

(4a) Sveo-l = f. 

Since the matrix H is positive semidefinite, we have now 

wi(S') cz m(H + s'S), 
and in the same way we get that BAQUE exists iff 

feWl[S(H + S S)+ S'] = m(S) 

(see Lemma 2) and has the form (8) (cf. [2, p. 15—16]). 
- If the matrix H is regular, then the equations (3)—(4) have the only solution 
vccA= H]S'(SH]S')+ f and the BAQUE has the form (6). 

If the matrix H is singular, then the BAQUE is not uniquely given. To 
investigate the admissibility, let us express the risk function in the form 

R ( * 0 ) = t Oiejtr(VlAVJA) = 

= Z ei0j[\tc(VjAVi)Y vecA = \ £ 0,0/V£® Vj) vccA ' vecA 
/ J = i LiJ=\ 

Under the assumption (7) we get 

(12) R(y, 0) = j f ei9J(Vi®Vj)[H
 + S'(SH+S')+f+(l-H+H)x]XvccA. 

If the conditions (10) are fulfilled, then 

R(7, 0) = I OfijM® Vj)[H+S'(SH+S)+ f] vec A 
U = i 
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Let us denote vec.40 = H+S'(SH+S')+ f. Then 

R(f, 0)= i OMV® VJ)vec.4o]'vec.4--

= i 0,By[vec(V;A>K)]'vec,-.= 

= i OiOjtHVjAYAo). 
ij = 1 

By a repeated application of this method we shall show that 

R(f, 0)= t ^/tr(KAKA), 
/ J = i 

i.e. the risk function does not depend on the choice of the vector x. Therefore all 
the BAQUE are admissible if the condition (10) holds. If the condition (7) is not 
fulfilled, then the matrix /-/in (12) must be changed to H + S'S. Then 90?(/V) c: 
cz Wl(H + S'S) and we get by assumption (10) the same conclusion. 

Remark 1. The conditions (10) are fulfilled and the given estimates (8), 
(9) are admissible in the case that Vl9 ..., Vp are positive semidefinite matrices 
and cu ^ 0 for / = 1, ..., p. The matrix C = (cjy) is obviously positive semidefi
nite. If cu = 0, then cik = cki = E (^^ ) = 0, k = 1, ..., p. Since 0, = 0 we have 
P(0; = 0) = 1. Therefore we can solve this situation by reducing the number of 
the variance components. 

Remark 2. If C= R'R, where R is an upper triangular matrix of order 
p 

p, then we can write H = £ (Wk® Wk), where 
k= 1 

p q 
Wk=*L rkiVn cu = Z rkirkp q = min(/,j), ij = 1, ...,/>. 

j = k k=\ 

This form of notation was used in [5] and [4]. In [5] this problem is solved in the 
case p = 3, Vx, V2 are positive semidefinite matrices, V$ = / and H is a regular 
matrix. In [4] we found the solution for the case p = 2, Vx, V2 being positive 
semidefinite matrices and 2R(I/14) cz SR(I/V[). The BAQUE of the parametric 
function f'0=fx0x+f202 exists if feWl(R), where R = (tr(KM,)), /W, = 

= -(lV;+ l / /C+ + / f + l / lV; + ) , j= 1,2, / f= 1/14+ W2WfW2. If the matrix Wx 

2 
is regular, then the BAQUE is uniquely given by y = y'Ay, A = -[l/l^-1 (A, Vx + 

+ X2V2)(WX+ W2Wx
lW2)

] + (Wx+W2Wx
xW2)\XxVx + X2V2)W{

xl 
where A = (A,, X^' satisfies the condition RX = f. 
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If the matrix W, is singular, then the BAQUE is y = y Ay, A = - lt1r~(A, V\ + 
2 

+ x2v2)(w, + w2wr w2y + -(w, + w2w{- wxy(kxvx + x2v2)wx- + 
+ NZ\2Q' + QZnN' + NZ22N\ where A satisfies the condition RX = f, Z12, 
Z22 are arbitrary matrices, and the matrices A/, Q are given by the conditions 
N'W\ = 0,WX~ = QQ\ respectively. We see that the BAQUE is not uniquely 
given, but since the risk function R(f, 0) does not depend on the choice of the 
matrices Z12, Z22 and is invariant with respect to the g-inverses, this estimator 
is admissible. 

Now we rewrite Theorem 1 for the model (1) as follows. 
Corollary 1. a) The BAIQUEfor the parametric function y = f'Oin the model 

(1) exists iff 

(5a) feWl(RM), 

where R = (vec Uu ..., vec Up)\ M = P'P, M = M® M. 

b) If the matrix G = £ ^-((7,® UJ) fulfils the condition SR(G) => SR(/W), 

then the BAIQUE is uniquelly given by 

(6a) y= f'[R(MGM)+ R'Y R(MGM)+ vec(tt'), 

and is therefore admissible. 
c) If 

(7a) Wl(MR') cz VR(MGM), 

then the BAIQUE is given by 

(8a) y={f'[R(MGM)+ R']+ R(MGM)+ + y'[l- G(MGM)+]} vec(tt'), 

where y is an arbitrary N2-vector. 
d) If the condition (7a) is not fulfilled, then the BAIQUE is given by 

(9a) y={f'[R(MGM+ MR'RM)+ R']+ R(M(G + RR) M]+ + 

+ y'[l -(G+ R R)(M(G + R R) M)+]} vec(tt), 

where y is an arbitrary N2-vector. 
e) The sufficient conditions for the admissibility of the BAIQUE is 

(10a) m(MU(M® MUjM) c m(MGM), i,j = 1, ..., p. 

Proof. Since the BAQUE y Ay in the model (2) is simultaneously the 
BAIQUE t'Bt in the model (1) and B = PAP, we can write vecS = 
= (P'®P') vec A. Substituting V(= PUtP', i= 1, ...,p, S = (vec(PUlP'),..., 
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v e c ( P ^ P ' ) ) = ( P ® P ) / ? ' , / ? ' = (vec(/ , , . . . ,vecl / , ) ' , /y= £ c^PU^')® 
ij = i 

p 

®(PUjP') = (P® P)G(P'® P'),G= X C/yO,® O,, we get the statements 
'.,/ = i ' 

of the Corollary 1 from the corresponding statements of the Theorem 1. From 
(5) it follows that (5a) holds, since X'R(P ® P') = 0 iff X'R(M® M) = 0. 
If 3W(G) => SK(M), then by Lemma 4 

SR(H) = Wl[(P® P) G(P'®P')] => Wl[(P® P)(M® M)(P'®P')] = SR(t), 

i.e. the matrix H is regular. Since for every square matrix B of order rr the 
following formula holds 

(P' <g> P')[(P® P) B(P ® P')] + (P® P) = [(M® M) B(M® M)] + , 

we obtain 

SH+S= R(P' ® P')[(P® P) G(P ® P')]+(P® P) R = R(MGM)+ R', 

and the BAIQUE is 

f = f'(R(P ® P')((P® P) G(P ® P'))-](P® P) R']+ R(P ® P') x 

x [(P®P)G(P'®P')]-1 \ec(Ptt'P') = 

= f'[R(MGM)+ R']+ R(MGM)+ vec(tt'). 

The condition (7) has the form 

SR[( P® P) R] c » l [ ( P ® P) G( P ® P')]. 

Hence we get (7a) using Lemma 5. 
In the same way we get (8a), (9a). The condition (10) has the form 

W[(P® P)(U,® Uj}(P'® P')] c <m[(P® P) G(P ® P')], 

which can be rewritten in the form (10a) (see Lemma 4). 
In the analysis of variance we meet often the case that the matrix Vi commutes 

with I/, i,j = 1, ..., p. This case is solved in the following theorem. 

Theorem 2. Let Vy, = Vy and 

(13) vec\<e2R(H), 

where H = £ W,® 1/1/ 

(14) M Í = I r ^ , 
./ - i 
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en = Z rkirkn q = min (/, j), ij = 1, ..., p. 
A = 1 

a) 77ze BAQUE for //ze parametric function y = f 0 in the model (2) exists iff 

(15) feSR(/(), 

w/zere 

(16) K={ir(MiVj)), i,j=\,...,p, 

(17) M, = I Vf|( t «^2)+ + - [ ' " I ^ ( I «^2)+]} + 

+\it*y+['-it*y ivy}*-
L is an arbitrary symmetric matrix which commutes with matrices Vx, ..., Vp. 

b) The BAQUE is given by 

(is) f=£xiY'Miy, 
i= 1 

where X satisfies the unbiasedness condition 

(19) KX=f 

p 

c) If the matrix £ W? is regular, then the BAQUE is uniquely given by (18), 
/ = i 

(19), where 

M, = V\ £ wf ' 
W = 1 

and is therefore admissible. 

d) 77ze sufficient conditions for the admissibility of the BAQUE is 

(20) m(yj<=m(£ wA, j=i,...,P. 

P r o o f Using the notation from Remark 2, the equation (3) has the form 

(3b) t W,AW,= £ XJVJ. 
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Since (3b) is identical to 

(3c) £ (Wt® W;) vec>4 = £ A,- vec If, 
1 = 1 . / = i 

the equation (3b) is consistent for all A = (A,, ..., Xp)' iff (13) holds. 
By [3, § lc.3, Theorem II], there exists an orthogonal matrix Q and diagonal 

matrices Di9 i = 1, ..., p so that 

Q'VQ=Di9 i.e. V,= QD,Q'9 i = 1, ...,/>. 

Therefore 

Q ^ Q = /t;, i.e. / i ,= QI/KQ', i = ! , . . . , /> , 

where /l,- = £ r^D,, / = 1, ..., p are diagonal matrices. Substituting in (3b), we 
J =' 

get 

p p 

Hence 

£ QA,QAQA,Q = £ A / Q D / Q 

£ Л,Ű'ДQЛ, = £ ^D, , 
1 = 1 ./ = 1 

Putting Z = Q'AQ9 we obtain 

(3d) ZA /̂= ZW 
i = l j=l 

This equation has, under the condition (13), the following symmetric solution 
\ p c / P \ + 

A=QZQ=- X Щ\Q{ I Û'VK2Q) Û + 

+ 
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where L = QDQ\ D is an arbitrary diagonal matrix. DD, = D{D holds and 
therefore Q LQQf VtQ = Q V{QQ IQ,i.e. LVX,= VtL,i= 1,...,/?. Substituting 
in (4), we get equations for A1? ..., Xp 

tAytrM7K=f„ k=l, ...,p, 
y = i 

where My is given by (17). These equations have a solution iff the condition (15) 
holds. Therefore the BAQUE of the parametric function f'0has the form (18), 
where A = (A,, ..., Xp)

f satisfies the conditions (19). 
From the form of A and the risk function R(y, 9) = tr(AV(0) AV(O)), we 

see that the risk function is invariant with respect to the choice of the matrix /., 
and therefore all the BAQUE are admissible if the condition (20) holds. 

Remark 3. If the condition (20) holds, then 

(21) M,= K ( £ i/i?x + 

Proof. Since K ( f W? \ = ( £ l/lfWweget 

i wfj v(i w?)(i w?j=(i w^f(t w?) v{£ w 
and using the conditions (20), we have ( £ w} \ V{ = V{ ( £ Wf J from 

which (21) follows. 
Remark 4. If the matrices Vu ..., Vp are positive semidefinite and 

rw # 0, i = 1, ..., P, then the condition (20) is fulfilledand all the BAQUE's are 
admissible. These conditions are also sufficient for the solvability of the equa
tion (3d). If for some i(i = 1, ...,P) rXi = 0, then P(0, = 0) = 1 and we can pass 
to the model with a less number of the variance components. 

In the similar way as in Collorary 1, we can rewrite Theorem 2 for the model 
(1) as follows. 

Corollary 2. Let MU,MU}M = MU}MU{M and M vec (S(.e<Dl(/ftG/0), 
P P R 

G=Y.Zi®Z>> Zi=Y.rijUj, cif = X rkirkj9 q = min(/, j), / , j = l , ..., p, 
/ = 1 j = i k = 1 

M= P'P, M= M®M. 
a) The BAIQUE of the parametric function y = fBin the model (1) exists iff 

feSTC(Q), 

where 

Q = (tr(NiUJ)), i,j=\,...,p, 
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A/, - - MYM\( £ (M.7M)2) + z\l- £ (M.7./W)2( £ (M2;.M)2) j + 

+ - {( £ (MZMfX + [/~ ( I (MZ,M)2)+ £ (M-7/W)2 Z'X MVtM, 

where Z is an orbitrary symmetric matrix such that the matrix MZM commutes 
with the matrices MUXM, .... MUpM. 

b) The BAIQUE is given by 

f= lA, .t ' /V, .f , 
/ = 1 

where k satisfies the unbiasedness condition 

Qk= f. 

c) If the condition 9M| £ (MZfM)21 3 SR(M) ho/ds t/zen f/ze BAIQUE /s 

uniquely given by the previous expressions, where 

A/, = MV(M f" f (M.Z;M)21 . 

and therefore is admissible. 
d) 77?e sufficient conditions for the admissibility of the BAIQUE is 

yn(MUjM) c ml f (MZ;M) 2 1, j= 1, . . . ,p . 
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