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{Communicated by Anatolij Dvurecenskij ) 

ABSTRACT. Two effect algebra counterexamp les are presented . The first shows 
that the s tandard effect algebra of operators on a Hilbert space is not a lattice 
and the second shows t h a t the tensor product of two effect algebras need not 
exist. 

1. Introduction 

Effect algebras (or D-posets) have been recently introduced as an axiomatic 
model for the foundations of quantum mechanics ([2], [9], [10], [17]). The most 
important effect algebra is the set S'(H) of all self-adjoint operators A on a 
Hilbert space H satisfying O < A < I. The partial order on <£(H) is defined by 
setting A < B if (Ax, x) < (Bx, x) for all x G H. This effect algebra is the basis 
for a widely employed approach to quantum mechanics called the operational 
approach ([3], [4], [12], [16], [20]). In this note, it is shown that if dim H > 2, 
then £(H) is not a lattice. This substantiates a long held opinion in the folklore 
of the subject ([2], [3], [4], [10], [16]). 

Tensor products of effect algebras are important because they are used to 
describe coupled physical systems [1], [7], [8], [15] and various results concern­
ing the existence of these tensor products have been obtained ([5], [6], [8], [19], 
[21], [22]). However, whether the tensor product of two arbitrary effect alge­
bras exists has remained an open question ([5], [9]). This note also presents a 
counterexample that answers this question negatively. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 03G12; Secondary 81P10. 
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An effect algebra is a system (L,0 ,1 , ©), where 0, 1 are distinct elements in 
L cind © is a partial binary operation on L satisfying the following conditions: 

(1) If a © b is defined, then b © a is defined and b © a — a © b. 
(2) If affib and (a(Bb)(Bc are defined, then 6©c and a©(6ffic) are defined 

and a © (6 © c) = (a © 6) © c. 
(3) For any a G L, there is a unique 6 £ L such that a © b is defined 

and a © b — 1. 
(4) If a © 1 is defined, then a = 0. 

It is easy to check that S'(H) is an effect algebra, where A © B is defined for 
A, B G <?(#) if A + B < I and, in this case, A © B = A + B 

Let P , Q and R be effect algebras. A mapping j3: P x Q —> i? is called a 
bimorphism if the following conditions are satisfied: 

(1) /3(M) = 1. 
(2) If a © 6 is defined, then /3(a, c) © /3(6, c) is defined for all c G Q and 

/3(a, c) © /3(6, c) = /3(a © 6, c). 
(3) If c © d is defined, then f3(a,c) © /3(a,d) is defined for all O G P and. 

/3(a, c) © /3(a, d) = /3(a, c © J). 

The precise definition of the tensor product is not needed in this note (cf. [5]. 
[6], [9]). Roughly speaking, the tensor product of P and Q is a pair (T, T), where 
T is an effect algebra and T: PxQ -^ T is a bimorphism satisfying a universality 
condition. We shall show that P and Q need not admit a bimorphism in which 
case their tensor product does not exist. 

2. Sd(H) is not a la t t ice 

It has often been s ta ted in the l i tera ture that the s tandard effect algebra 

£(H) is no t a la t t ice for dim H > 2 ([2], [3], [4], [10], [16]). However, until very 

recently [18], no explicit coun terexample seems to have been given. Instead, the 

au thors have referred to previous sources such as [13], [14]. For example, let 

yJ(H) deno te the set of self-adjoint opera tors on H. It is shown in [13] tha t for 

E, F G <f(H) , E A y F exists if and only if E and F are comparable . However.. 

it canno t be concluded from this that E A^ F does no t exist when E and F are 

not comparable . For ins tance, it is also shown in [13] that E Ar<. F exists for any 

two projec t ion opera tors E and F . We now show that S'(H) is no t a lat t ice by 

charac terizing those pairs A, B G <?(C2) such that A A B exists, where A A B 

means A A^ B in the sequel. 

Let S = V ( C 2 ) , and let A G <?(C2) wi th 

a b 

Ь c 
O,cGІR, be 
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It is easy to show that A > O if and only if a, c > 0 and ac > \b\2 ([13]). 
It follows tha t A G S if and only if 0 < a < 1, 0 < c < 1, ac > \b\2 and 
(1 - a)( l - c) > |b | 2 . If B G S has the form 

B 
d є 

/ 
d,fєR, e Є C , 

we conclude that B < A if and only if d < a, / < c and (a — d)(c — f) > \b — e\2. 
For a, b £ R we use the notation a A b = min(a, b). 

LEMMA 1. 7/ A G <§ is a multiple of a 1-dimensional projection, then A A B 
exists for every B G <§. 

P r o o f . We can assume that A is diagonal, so A and B have the form 

a 0 _ _ b c 
0 0 ' c d 

Suppose that C < A, B, where C G <§. Then C has the form 

e 0 
0 0 

Now define 

It follows that 

0 < e < a, b; (b — e)d > \c\ 

b if d = 0 , 

b- \c\2/d if a V O . 

aЛf 0 
0 0 

A Л B . 

D 

THEOREM: 2. For A, B G <§, A A B exists if and only if A and B are compa­
rable, or either A or B is a multiple of a 1 -dimensional projection. 

P r o o f . Sufficiency follows from Lemma 1. For necessity, suppose that 
A, B G <f are incomparable and neither is a multiple of a 1-dimensional projec­
tion. First assume that A and B commute, and hence, they can he simultane­
ously diagonalized 

a 0 
0 6 

B 
c 0 
0 d 

where 0 < a,b,c,d < 1. Since A and B are incomparable, we can assume 
without loss of generality that a < c, b > d. Let e = ad/(a -f b) and let 
J = (c - a) A (b - d). Then e > 0, ,6 > 0, and we let 6 = (/3e -f £2)[/2 so £ > £\ 
Suppose that A A B exists, and let 

"a 0 
0 d 
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Since C e <§ and C < A, B , we have C < A A B < A , B . It follows tha t 

A A B = C . Now let 
a — e 6 

6 d — e 
D 

To show t h a t D G c f , w e have 0 < a-£ < I, 0 < d-£ < I. Also, ad = (a + b)s, 

so 

ad-(a + d)£ + e2 = (b - d)e + £2 > f3e + £2 = b2 

and (1 - a)(I - d) > (a + b - 2)e , so 

(1 - a ) ( l - d) + (2 - a - d)e + £2 > (b - d)e + £2 > f3e + £2 = S2 . 

Hence, (1 - a + e)(l - d + e) > o2, so D G S. Now 

A - D ^ 
є -6 

-6 b~d + є 

Since 5 > 0 , b — d + £ > 0 and 

e(b - d + e) = (b - d)e + £2 > p£ + £2 = S2 , 

we have A — D > O , so D < A . Moreover, 

B - D 
c — a + є —6 

-6 є 

Since c — a + £, £ > 0 and 

(c — a + e)s -- (c — a)e + £2 > fie + £2 = S2 , 

we have B - D > 0, so D < B . We conclude t h a t D < C. But 

C - D 
є -S 

-6 є 

and £2 < b2, which is a contradict ion. 

Now consider the case in which A and B do not necessarily commute . Assume 

tha t C = A A B exists and, wi thout loss of generality, t ha t C is diagonal. Then 

A, B , C have the forms 

(1 ь ' (1 ( (J ()" 
в = c = 

(J 

b c č f. 0 // 

By assumpt ion, we have C + A, B. Or > |b | 2 and df > \c\2 . Since C < A. B. \vr 
have O < O, // < r, (O - g)(c - h) > \b\2 . O < d. h < f. (d - (j)(f - //) > \cr2. 
Now at most one of t h e following (^qualities holds: O = O. // = c. // = d. h = f. 
Indeed, assume t h a t O = a . so b = 0. Then, if O = d. we have1 r = 0. so A and 
B are comparable . If //. = r, then C = A. If // = f. then r = ().. so A and B are 
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diagonal, and this case was treated earlier. The other cases are similar. Hence, 
we can assume without loss of generality that h < c and h < f. If g -4 0, let 

0 < 6 < min (l - h, 9 { c ~ h ) , i-LlV \ 
\ a d J 

and let 

1 
a 

0 0 
0 Һ + S 

Then D ^ C. Moreover, D < A because 

h + S <h + g(c- h)/a <h + c-h = c 

and 

a(c -h-S) = (a- g)(c - h) + g(c - h) - aS > \b\2 + g(c - h) - aS > \b\2 . 

Also, D < B because 

h + 6 < h + g(f - h)/d <h + f-h = f 

and 

d(f -h-S) = (d- g)(f -h)+ g(f -h)-dS> | e | 2 + g(f - h) - db > | e | 2 . 

If .9 = 0, let 

0 < e < m i i / a - i ^ - . d - l ^ . ) , 

md let 

D є 0 
0 0 

Then D ^ C . Moreover, D < A because 

£ < a - |6|2/c < a 

iкi 

ilso, D < B because 

u i d 

(a — e)c — ac — se > \b\2 , 

e<d- \e\2/f < f 

(d - e)f = df ~ef> H 2 

D 
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Theorem 2 also holds for ^ ( R 2 ) wi th essentially the same proof. We conclude 

t ha t there are many pairs A, B in <?(C2) and ^(IR2) such t h a t A A B does not 

exist. A simple concrete example is 

1/2 0 

0 1/2 
Ð 

3/4 0 

0 1/4 

Related results are given in [18]. For example, let t ing A7 = I — A, it is shown 

in [18] t ha t there exists an A t ( f(C 2) such t h a t A A A' does not exist. But 

the verification of such counterexamples follow directly from Theorem 2. For 

instance, let t ing B be defined as above, we see t ha t B and B' are incomparable 

and neither is a multiple of a [-dimensional projection. Applying Theorem 2. 

we conclude t h a t B A B ' does not exist. Now let H be a real or complex Hilbert 

space with d i m H > 2, and let <fi and tp be or thogonal unit vectors in / / . 

Define A, B G S{H) by A 0 =- § 0 , A ^ = \if>, Bah = | 0 , B-0 = \i/>. and 

A 7 = B 7 = O for all 7 in the or thogonal complement of the span of {0 , i/>} . 

It follows from Theorem 2 t h a t A A B does not exist, so S'(H) is not a latt ice. 

Theorem 2 might be useful in solving the following. 

O P E N PROBLEM. Character ize the pairs of elements A, B e <?(H) such that 

A A B exists. 

Applying Theorem 2 and De Morgan 's laws, we conclude t ha t for A, B C 
<?(C2), A V B exists if and only if A and B are comparable , or either I — A or 

I — B is a mult iple of a 1-dimensional project ion . Thus , A A B can exist while 

A V B does not exist and vice versa. For example, let t ing 

1/2 

0 
B 

0 

1/2 

we conclude t h a t A A B exists, bu t A V B does not exist. Moreover, even if A 

and B are incomparable , it is possible t h a t A A B and A V B bo th exist. For 

example, this happens for 

1 0 

0 0 
B 

a 0 

0 ò 
a,b Є a 7-- 1, b / 0 . 

Finally, we have t h e converse of L e m m a 1. 

COROLLARY 3 . For A e <^(C 2 ) . A A B exists for every B e <?(C 2) if and 

only if A equals I or a multiple of a 1-dimensional projection. 
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3. Nonexistence of tensor products 

Since 0 is an associative partial operation, we can write (a 0 b) 0 c as 
a. 0 b 0 c when this expression is defined. It follows by induction that we do not 
need parentheses in expressions of the form a 1 0 • • • 0 an. If ax 0 • •• • 0 an is 
defined, where a{ = a, i -= 1,. . . , n , we denote this element by na. An n-chain 
generated by a is an effect algebra with elements 0, a, 2a,. . . ,na, where na = 1. 

Let Pj be the horizontal sum of three 4-chains generated by a, b and c, 
respectively, with the additional requirement that a 0 b 0 c = 1. The 0 table 
for P. is displayed below. In this table, a dash indicates that the sum is not 
defined and the trivial sums involving a 0 or 1 are not displayed. It is not hard 
to show that P1 is indeed an effect algebra. 

(3) a 2a Зa b 2b зb c 2c Зc 

a 2a Зa 1 Зc - - Зb - -

2a Зa 1 - - - - - - -

Зa 1 - - - - - - - -

b Зc - - 2b Зb 1 Зa - -

2b - - - Зb 1 - - - -

- - - 1 - - - - -

c Зb - - Зa - - 2c Зc 1 

2c - - - - - - Зc 1 -

Зc - - - - - - 1 - -

THEOREM 4. If Q is the A-chain generated by d. then P1 and Q do not admit 
a bimorphism. Hence, the tensor product of P1 and Q does not exist. 

P r o o f . Suppose a bimorphism /3: P1 x Q —» R exists. Then 

1 =/3(1,1) = /3(l,4d) = 4/3(1, d) = 4 / 3 ( a 0 b 0 c , d ) 

= 4[/3(a,d)0 0(b,d)0/3(c,d)] 

= 4/3(a, d) 0 4/3(b, d) 0 4/3(c, d) 

= /3(4a, d) 0 /3(4b, d) 0 /3(4c, d) = 3/3(1, d ) . 

Since 3/3(1, d) 0 0(1, d) = 1, we conclude that /3(l,d) 0 1 is defined. Hence, 
.5(1, d) = 0. It follows that 0 = 3/5(1, d) = 1, which is a contradiction. • 

It is clear thcit there are many counterexamples of this type. There are also 
counterexamples in which one of the effect algebras is an orthomodular poset 
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or lattice. For example, let W be the 3 x 4 window ([11]), and let Q be a 
4-chain. An argument similar to that given in Theorem 4 shows that W and Q 
do not admit a bimorphism. Moreover, if we replace d by a G Pl in the proof 
of Theorem 4, then we conclude that the tensor product of Px and P± does not 
exist. Nevertheless, we conjecture that the tensor product of W and W does 
exist. If this conjecture is true, it would give an example of a tensor product in 
which neither of its components possesses a state. A state on an effect algebra 
P Is a map qb\ P —> [0,1] C ]R such that 4>(1) = 1, and if a 0 6 is define, then 
4>(a) -f qb(b) < 1 and 0 ( a 0 b ) = 0(a) H-0(b). Such an example would be of interest 
because it is known that if two effect algebras P and Q each possess a state, 
then their tensor product exists ([6]). 
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