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(Communicated by Martin Skoviera) 

ABSTRACT. An edge h of a graph G is of type (a, b; m , n) if its vertices are of 
degrees a and b, and the two faces incident with h are an m-gon and an n-gon. 
It is shown tha t the infinite class T of 3-polytopial graphs whose edges are of 
types (3, 5; 4,4) and (5,4; 4, 6) has shortness coefficient equal to 24/31 and all 
graphs dual to those from T are Hamiltonian. 

1. Introduction 

There are many papers studying simple circuits in various classes of planar 
3-connected graphs (or, equivalently, 3-polytopial graphs), see, e.g., E w a l d 
and others [1], G r u n b a u m [2], G r u n b a u m and W a l t h e r [3], 
H a r a n t and W a l t h e r [4], O w e n s [10], J a c k s o n [5] and oth
ers. In [3], G r u n b a u m and W a 11 h e r introduced several numbers that 
measure, in a certain sense, the size of the longest simple circuits in graphs 
belonging to a given class of graphs. We recall one of them. 

For any graph G let v(G) denote the number of vertices and h(G) the 
maximum length of simple circuits in G. The shortness coefficient g(Q) of an 
infinite class Q of graphs is defined by 

<K0) = H m i n f ^ . 
v Geg v(G) 

We recall that G is Hamiltonian if v(G) = h(G). The class of graphs Q is 
Hamiltonian provided that all its members are Hamiltonian, and Q is strongly 
non-Hamiltonian if it contains no Hamiltonian graph. 

Now we consider a planar graph G. An edge h of G is of type (a,b',m,n) 
if its vertices are of degrees a and 6, and the two faces incident with h are an 
m-gon and an n-gon. The present paper deals with 3-polytopial graphs having 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 05C38. Secondary 52B05, 52B10. 
K e y w o r d s : polytopial graphs, cycles, shortness coefficient. 
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edges of exactly two types. Let 5(a, 6, c; ra, n, k) denote the class of 3-polytopial 
graphs with edges of types (a, b; ra, n) and (b, c; n, fc) (see [6]). There are sev
eral papers which deal with the longest circuits in regular graphs from classes 
5(a, a, a ; ra ,n , k), a G {3,4,5} or with graphs dual to those (see [7] and [8]). 
In [9] or [10], it has been shown that the shortness coefficient is less than one 
for many classes of simple 3-polytopial graphs with edges of only two types. 
In the present paper, we investigate the maximum length of simple circuits in 
non-regular graphs from some classes of graphs with two types of edges. 

Let R denote the class of 3-polytopial graphs with edges of types (4, 4; 3, 5) 
and (4, 6; 5, 4) and let T denote the class of graphs dual to those from i t . It 
is easy to see that R = 5(4,4, 6; 3, 5,4) and T = 5(3, 5, 4; 4, 4, 6). In [6], it was 
shown that both of these classes contain infinitely many graphs. 

The main results of this paper are summed up in the following theorem. 

T H E O R E M . 

(1) The class T is strongly non-Hamiltonian. 
(2) Let G be a graph from, T. Then 

, x 2 4 ( v ( G ) - l ) 
h(G) = - V V } } 

31 

(3) g(T) = 24/31. 
(4) The class R is Hamiltonian. 

2. Constructions and proof of theorem 

We begin to describe our constructions. Certain graphs which occur repeat
edly as subgraphs will be denoted by capital letters. As the first example, Fig. 1 
shows a subgraph A. The "dangling" edges are not part of the subgraph, but 
show how it is to be joined into a graph. Let TV be a subgraph obtained from 
A by replacing all its interior 10-gons with copies of the subgraph Z, as shown 
in Fig. 2. Two vertices with numerical labels 1 and 2 show how a particular 
10-gon is to be replaced with the copy of Z in the subgraph W. Ten vertices 
of the inside face of A (or W respectively) are labelled by integer labels from 
{ 3 , 4 , . . . , 12}. 

For any graph G, let Vi(G) or vi denote the number of i-valent vertices of 
G and S{(G) or S{ denote the number of i-gons of G. By a path through a 
subgraph H we mean a path whose ends are not in the subgraph H. By a path 
of type Pfj we mean a path through a subgraph H that contains dangling edges 
of H which are incident with the vertices with labels i and j . It is easy to see 
that all "heavy" edges determine a path in W (see Fig. 1 and 2). We denote it 
by Q. Note that Q is of type P^ and contains all 5-valent vertices of W. 
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Let K be the subgraph shown in Fig. 3 and let Q' denote the path which 
is determined by all heavy edges of K. Let G\ be the graph obtained from one 
copy of W and one copy of K by adding ten "new" edges as follows: For any 
i, j G { 3 , 4 , . . . , 12}, a new edge of G\ will join the vertex i of W to the vertex 
j of K if and only if the following condition is satisfied: i + j = 7 (mod 10). 
Now we label the vertices 3 and 4 of K by X and Y and the vertices 4 
and 3 of W by X' and Y' in the graph G\, respectively. Then we delete all 
numerical labels in G\ . It is easy to verify that G\ is a graph from T, moreover 
Q u Q ' U XX' U YY' is a circuit in G\ (denote it by C\) which contains all 
5-valent vertices of G\. Note that every subgraph K' of G\ which is isomorphic 
to K has the following property (denote it by V): 

K' n C\ is a path of type P^y in G\ which contains all 5-valent vertices 
of K'. 

Let T\ be the class of graphs which contains only the graph G\. For n > 2, 
we shall say that the graph G is in the class of graphs Tn if and only if it can 
be obtained from a graph Gn-\ of Tn-\ when one (suitably chosen) copy of K 
in Gn-\ is replaced by a copy of W in G in such a way that vertices X and Y 
of the copy of K are replaced by vertices 3 and 4 of the copy of W. 

Let Gn be a graph from Tn, n > 1. It is easy to see that all heavy edges 
determine a circuit (denote it by Cn) in Gn which contains all 5-valent vertices 
of Gn, moreover, every subgraph K' of Gn which is isomorphic to K has the 
property V. 

Now we consider the class of graphs T' = (J T{. 
i>l 

In [11; Theorem (1)], it was shown in a dual form that T' = T. Let G be 
a graph from T = T' = 5(3, 5,4; 4,4, 6). Note that G contains only edges of 
type (3, 5; 4,4) or (5,4; 4, 6), and so G is a bipartite graph and the following 
conditions are satisfied: 

V(G) = ^ 3 + ^ 4 + ^ 5 , (1) 

5v5 = 3v3 + 4v4 , (2) 

356 = 2^4 • (3) 

From Euler's famous formula, 

"}T{4-i)(si + vi) = 8. 
i>i 

By using (1), (2) and (3), it follows that 

Since every circuit in the bipartite graph G which contains n vertices must 
contain n /2 vertices of degree 5, then the length of any longest circuit is less 
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than or equal to 2v$. From the constructions shown before it follows that for 
every graph G from T 

w=_m_\. 
Parts (1) and (3) of Theorem follow immediately. The proof of part (4) uses a 
similar construction to that shown before. 

More precisely, let GJ denote the medial graph of the dodecahedron, shown 
in Fig. 4a. It is a planar 3-connected graph with all edges of type (4,4; 3, 5), and 
it is easy to see that it is the unique graph with these properties. The edge A\ A2 
of GQ is directed by a couple of arrows. This "double direction" we will use in 
our construction. Let L be the configuration obtained from G*j by deleting all 
"dashed" edges in Fig. 4a. 

Let G\ denote the graph obtained as follows: Embed in each face a of 
a dodecahedron graph a configuration L in such a way that the vertices 
A\,A2,... ,A$ coincide with the vertices of a, and the double direction of 
the edge A1A2 coincides with the double direction of a directed edge of a such 
that its small crossing arrow tends to the inside of a (see Fig. 5). Then delete 
all original edges (or the directed edges) of the dodecahedron graph. Note that 
G\ is from R. 

The heavy edges (see Fig. 4b and Fig. 5) determine a circuit in G\ which 
contains all vertices of G\, except several "white" vertices of some copies of 
configuration L. It is easy to verify that this circuit can be "enlarged" into a 
Hamiltonian circuit which contains no dashed edges in G\. Hence G\ is Hamil-
tonian. 

Let M denote the configuration marked by a thick boundary line in Fig. 4a, 
and let N denote the configuration obtained from G\ by deleting one (any one) 
copy of the configuration M. 

Let R\ be the class of graphs which contains only the graph G\. For n > 2, 
we shall say that the graph G* is in the class of graphs Rn if and only if it can 
be obtained from a graph Gn_1 of Rn-\ when one (suitably chosen) copy of M 
in Gn_\ is replaced with a copy of N in G* in such a way that vertices X and 
Y of the copy of M coincide with the vertices Z and Y of the copy of N (see 
Fig. 4b). 

It is easy to see that all graphs in Rn are Hamiltonian, and that Rn contains 
exactly all graphs dual to those from Tn. Since R— (J Ri, part (4) of the 
theorem follows. l-1 

238 



ON LONGEST CIRCUITS IN CERTAIN NON-REGULAR PLANAR GRAPHS 

Figure 1. 
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Figure 3. 

ь) 

Figure 4. 

240 



ON LONGEST CIRCUITS IN CERTAIN NON-REGULAR PLANAR GRAPHS 

Figure 5. 
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