Mathematica Slovaca

Michal Tkáč

On longest circuits in certain non-regular planar graphs

Mathematica Slovaca, Vol. 45 (1995), No. 3, 235--242

Persistent URL: http://dml.cz/dmlcz/129270

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1995

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ON LONGEST CIRCUITS IN CERTAIN NON-REGULAR PLANAR GRAPHS

MICHAL TKÁČ
(Communicated by Martin Škoviera)

Abstract

An edge h of a graph G is of type $(a, b ; m, n)$ if its vertices are of degrees a and b, and the two faces incident with h are an m-gon and an n-gon. It is shown that the infinite class T of 3-polytopial graphs whose edges are of types $(3,5 ; 4,4)$ and $(5,4 ; 4,6)$ has shortness coefficient equal to $24 / 31$ and all graphs dual to those from T are Hamiltonian.

1. Introduction

There are many papers studying simple circuits in various classes of planar 3 -connected graphs (or, equivalently, 3-polytopial graphs), see, e.g., Ewald and others [1], Grünbaum [2], Grünbaum and Walther [3], Harant and Walther [4], Owens [10], Jackson [5] and others. In [3], Grünbaum and Walther introduced several numbers that measure, in a certain sense, the size of the longest simple circuits in graphs belonging to a given class of graphs. We recall one of them.

For any graph G let $v(G)$ denote the number of vertices and $h(G)$ the maximum length of simple circuits in G. The shortness coefficient $\varrho(\mathcal{G})$ of an infinite class \mathcal{G} of graphs is defined by

$$
\varrho(\mathcal{G})=\liminf _{G \in \mathcal{G}} \frac{h(G)}{v(G)} .
$$

We recall that G is Hamiltonian if $v(G)=h(G)$. The class of graphs \mathcal{G} is Hamiltonian provided that all its members are Hamiltonian, and \mathcal{G} is strongly non-Hamiltonian if it contains no Hamiltonian graph.

Now we consider a planar graph G. An edge h of G is of type $(a, b ; m, n)$ if its vertices are of degrees a and b, and the two faces incident with h are an m-gon and an n-gon. The present paper deals with 3-polytopial graphs having

[^0]edges of exactly two types. Let $S(a, b, c ; m, n, k)$ denote the class of 3-polytopial graphs with edges of types $(a, b ; m, n)$ and ($b, c ; n, k$) (see [6]). There are several papers which deal with the longest circuits in regular graphs from classes $S(a, a, a ; m, n, k), a \in\{3,4,5\}$ or with graphs dual to those (see [7] and [8]). In [9] or [10], it has been shown that the shortness coefficient is less than one for many classes of simple 3-polytopial graphs with edges of only two types. In the present paper, we investigate the maximum length of simple circuits in non-regular graphs from some classes of graphs with two types of edges.

Let R denote the class of 3-polytopial graphs with edges of types $(4,4 ; 3,5)$ and $(4,6 ; 5,4)$ and let T denote the class of graphs dual to those from R. It is easy to see that $R=S(4,4,6 ; 3,5,4)$ and $T=S(3,5,4 ; 4,4,6)$. In [6], it was shown that both of these classes contain infinitely many graphs.

The main results of this paper are summed up in the following theorem.

Theorem.

(1) The class T is strongly non-Hamiltonian.
(2) Let G be a graph from T. Then

$$
h(G)=\frac{24(v(G)-1)}{31} .
$$

(3) $\varrho(T)=24 / 31$.
(4) The class R is Hamiltonian.

2. Constructions and proof of theorem

We begin to describe our constructions. Certain graphs which occur repeatedly as subgraphs will be denoted by capital letters. As the first example, Fig. 1 shows a subgraph A. The "dangling" edges are not part of the subgraph, but show how it is to be joined into a graph. Let W be a subgraph obtained from A by replacing all its interior 10 -gons with copies of the subgraph Z, as shown in Fig. 2. Two vertices with numerical labels 1 and 2 show how a particular 10 -gon is to be replaced with the copy of Z in the subgraph W. Ten vertices of the inside face of A (or W respectively) are labelled by integer labels from $\{3,4, \ldots, 12\}$.

For any graph G, let $v_{i}(G)$ or v_{i} denote the number of i-valent vertices of G and $s_{i}(G)$ or s_{i} denote the number of i-gons of G. By a path through a subgraph H we mean a path whose ends are not in the subgraph H. By a path of type $P_{i j}^{H}$ we mean a path through a subgraph H that contains dangling edges of H which are incident with the vertices with labels i and j. It is easy to see that all "heavy" edges determine a path in W (see Fig. 1 and 2). We denote it by Q. Note that Q is of type P_{34}^{W} and contains all 5 -valent vertices of W.

Let K be the subgraph shown in Fig. 3 and let Q^{\prime} denote the path which is determined by all heavy edges of K. Let G_{1} be the graph obtained from one copy of W and one copy of K by adding ten "new" edges as follows: For any $i, j \in\{3,4, \ldots, 12\}$, a new edge of G_{1} will join the vertex i of W to the vertex j of K if and only if the following condition is satisfied: $i+j \equiv 7(\bmod 10)$. Now we label the vertices 3 and 4 of K by X and Y and the vertices 4 and 3 of W by X^{\prime} and Y^{\prime} in the graph G_{1}, respectively. Then we delete all numerical labels in G_{1}. It is easy to verify that G_{1} is a graph from T, moreover $Q \cup Q^{\prime} \cup X X^{\prime} \cup Y Y^{\prime}$ is a circuit in G_{1} (denote it by C_{1}) which contains all 5 -valent vertices of G_{1}. Note that every subgraph K^{\prime} of G_{1} which is isomorphic to K has the following property (denote it by \mathcal{P}):
$K^{\prime} \cap C_{1}$ is a path of type $P_{x y}^{K^{\prime}}$ in G_{1} which contains all 5 -valent vertices of K^{\prime}.

Let T_{1} be the class of graphs which contains only the graph G_{1}. For $n \geq 2$, we shall say that the graph G is in the class of graphs T_{n} if and only if it can be obtained from a graph G_{n-1} of T_{n-1} when one (suitably chosen) copy of K in G_{n-1} is replaced by a copy of W in G in such a way that vertices X and Y of the copy of K are replaced by vertices 3 and 4 of the copy of W.

Let G_{n} be a graph from $T_{n}, n \geq 1$. It is easy to see that all heavy edges determine a circuit (denote it by C_{n}) in G_{n} which contains all 5 -valent vertices of G_{n}, moreover, every subgraph K^{\prime} of G_{n} which is isomorphic to K has the property \mathcal{P}.

Now we consider the class of graphs $T^{\prime}=\bigcup_{i \geq 1} T_{i}$.
In [11; Theorem (1)], it was shown in a dual form that $T^{\prime}=T$. Let G be a graph from $T=T^{\prime}=S(3,5,4 ; 4,4,6)$. Note that G contains only edges of type $(3,5 ; 4,4)$ or $(5,4 ; 4,6)$, and so G is a bipartite graph and the following conditions are satisfied:

$$
\begin{align*}
v(G) & =v_{3}+v_{4}+v_{5} \tag{1}\\
5 v_{5} & =3 v_{3}+4 v_{4} \tag{2}\\
3 s_{6} & =2 v_{4} \tag{3}
\end{align*}
$$

From Euler's famous formula,

$$
\sum_{i \geq 1}(4-i)\left(s_{i}+v_{i}\right)=8
$$

By using (1), (2) and (3), it follows that

$$
v_{5}=\frac{12}{31}(v(G)-1)
$$

Since every circuit in the bipartite graph G which contains n vertices must contain $n / 2$ vertices of degree 5 , then the length of any longest circuit is less

MICHAL TKÁC

than or equal to $2 v_{5}$. From the constructions shown before it follows that for every graph G from T

$$
h(G)=\frac{24(v(G)-1)}{31}
$$

Parts (1) and (3) of Theorem follow immediately. The proof of part (4) uses a similar construction to that shown before.

More precisely, let G_{0}^{*} denote the medial graph of the dodecahedron, shown in Fig. 4a. It is a planar 3 -connected graph with all edges of type $(4,4 ; 3,5)$, and it is easy to see that it is the unique graph with these properties. The edge $A_{1} A_{2}$ of G_{0}^{*} is directed by a couple of arrows. This "double direction" we will use in our construction. Let L be the configuration obtained from G_{0}^{*} by deleting all "dashed" edges in Fig. 4a.

Let G_{1}^{*} denote the graph obtained as follows: Embed in each face α of a dodecahedron graph a configuration L in such a way that the vertices $A_{1}, A_{2}, \ldots, A_{5}$ coincide with the vertices of α, and the double direction of the edge $A_{1} A_{2}$ coincides with the double direction of a directed edge of α such that its small crossing arrow tends to the inside of α (see Fig. 5). Then delete all original edges (or the directed edges) of the dodecahedron graph. Note that G_{1}^{*} is from R.

The heavy edges (see Fig. 4b and Fig. 5) determine a circuit in G_{1}^{*} which contains all vertices of G_{1}^{*}, except several "white" vertices of some copies of configuration L. It is easy to verify that this circuit can be "enlarged" into a Hamiltonian circuit which contains no dashed edges in G_{1}^{*}. Hence G_{1}^{*} is Hamiltonian.

Let M denote the configuration marked by a thick boundary line in Fig. 4a, and let N denote the configuration obtained from G_{1}^{*} by deleting one (any one) copy of the configuration M.

Let R_{1} be the class of graphs which contains only the graph G_{1}^{*}. For $n \geq 2$, we shall say that the graph G^{*} is in the class of graphs R_{n} if and only if it can be obtained from a graph G_{n-1}^{*} of R_{n-1} when one (suitably chosen) copy of M in G_{n-1}^{*} is replaced with a copy of N in G^{*} in such a way that vertices X and Y of the copy of M coincide with the vertices Z and Y of the copy of N (see Fig. 4b).

It is easy to see that all graphs in R_{n} are Hamiltonian, and that R_{n} contains exactly all graphs dual to those from T_{n}. Since $R=\bigcup_{i \geq 1} R_{i}$, part (4) of the theorem follows.

ON LONGEST CIRCUITS IN CERTAIN NON-REGULAR PLANAR GRAPHS

Figure 1.

Figure 2.

MICHAL TKÁČ

Figure 3.

Figure 4.

Figure 5.

REFERENCES

[1] EWALD, G.-KLEINSHMIDT, P.-PACHNER, U.-SCHULZ, CH.: Neuere Entwicklungen in der kombinatorischen Konvexgeometrie. In: Contributions to Geometry (J. Tolke, J. M. Wills, eds.), Birkhäuser Verlag, Basel, 1979, pp. 131-169.
[2] GRÜNBAUM, B. : Convex Polytopes, Interscience, New York, 1967.
[3] GRÜNBAUM, B.-WALTHER, H. : Shortness exponents of families of graphs, J. Combin. Theory Ser. A 14 (1973), 364-385.
[4] HARANT, J.-WALTHER, H.: Some new results about the shortness exponent in polyhedral graphs, Časopis Pěst. Mat. 112 (1987), 114-122.
[5] JACKSON, B.: Longest cycles in 3-connected cubic graphs, J. Combin. Theory Ser. B 41 (1986), 17-26.
[6] JENDROL, S. TKÁČ, M.: Convex 3-polytopes with exactly two types of edges, Discrete Math. 84 (1990), 143-160.
[7] JENDROL, S.-KEKEŇÁK, R.: Longest circuits in triangular and quadrangular 3-polytopes with two types of edges, Math. Slovaca 40 (1990), 341-357.
[8] JENDROL, S.-MIHÓK, P.: Note on a class of Hamiltonian polytopes, Discrete Math. 71 (1988), 233-241.
[9] OWENS, P. J.: Simple 3-polytopial graphs with edges of only two types and shortness coefficients, Discrete Math. 59 (1986), 107-114.
[10] OWENS, P. J.: Non-Hamiltonian simple 3-polytopes with only one type of face besides triangles. In: Ann. Discrete Math. 20, North-Holland, Amsterdam-New York, 1984, pp. 241251.

MICHAL TKÁČ

[11] TKÁČ, M.: Combinatorial properties of certain classes of 3-polytopial planar graphs. In: Colloq. Math. Soc. János Bolyai, North-Holland, Amsterdam-New York, 1992, pp. 699-704.

Received June 26, 1992
Revised February 22, 1994

Department of Mathematics
Faculty of Mechanical Engineering
Technical University
Letná 9
SK-042 00 Košice
SLOVAKIA
E-mail: tkacmich@ccsun.tuke.sk

[^0]: AMS Subject Classification (1991): Primary 05C38. Secondary 52B05, 52B10. Key words: polytopial graphs, cycles, shortness coefficient.

